Main content

Exploration of the Peptidoglycan O-Acetylation Pathway in Bacillus cereus, and Inhibition of De-O-acetylation as a Potential Novel Antibacterial Target

Show full item record

Title: Exploration of the Peptidoglycan O-Acetylation Pathway in Bacillus cereus, and Inhibition of De-O-acetylation as a Potential Novel Antibacterial Target
Author: Pfeffer, John
Department: Department of Molecular and Cellular Biology
Program: Molecular and Cellular Biology
Advisor: Clarke, Anthony J.
Abstract: The O-acetylation of peptidoglycan (PG) is currently known to occur in greater than 50 eubacterial species, including numerous pathogens. This modification, which occurs at the C-6 hydroxyl of the N-acetylmuramoyl residues within the heteropolymer’s glycan backbone, serves as a cell wall autolytic regulatory mechanism, and contributes to pathogenesis and persistence within a host. Despite these significant physiological and pathobiological roles however, the identity of the pathway(s) responsible for the modification was only recently elucidated, for which two unrelated systems were identified, viz., the O-acetylpeptidoglycan (OAP) cluster-encoded multi-component system typical of Gram-negative species and the singular OatA of Gram-positives. As part of the OAP PG O-acetylation system, our group previously identified O-acetylpeptidoglycan esterase (Ape) as an enzyme responsible for the removal of the modification, permitting the continued metabolism of the PG sacculus. Herein, studies were performed to assess the postulated viability of this class of enzyme as a novel antibacterial target. Specifically, recombinant Ape1 from Neisseria gonorrhoeae was purified to homogeneity and the inhibitory effect of purpurin, a natural product identified as such, evaluated in detail. Kinetic analysis demonstrated that the compound elicited a competitive mode of inhibition (Kic ~3.7 μM), while the in vivo treatment of an array of environmental and pathogenic species was found to result in growth arrest for those cells containing both O-acetylPG and Ape. Evaluation of modification levels, cell wall morphology, and viability indicated a bacteriostatic effect. Taken together these data provide proof of principle that this class of enzyme presents a worthy therapeutic target. In addition to the presence of an Ape, the OAP system further differs from that of OatA through the use of two PG O-acetyltransferases. While purported to be mutually exclusive and evolutionarily divergent, in silico genomic analyses indicated their potential copresence in Bacillus anthracis and other closely related organisms. Indeed, purpurin-mediated differential growth inhibition between several such isolates and other bacilli indicated Ape activity therein. To investigate this possibility, the hypothetical Ape3 protein from Bacillus cereus ATCC 10987 was overproduced, purified, and its function assessed. Data from activity assays involving natural and synthetic substrates indicated that the protein possesses basal esterase activity in vitro. Phenotypic analysis of B. anthracis mutants deficient in each of the organism’s putative integral membrane PG O-acetyltranslocases subsequently indicated that Ape3 preferentially functions as a PG O-acetyltransferase (Pat) in vivo and that the OAP-mediated system is required for the separation of daughter cells following division. In addition, the presence of an Oat homologue was also confirmed. Thus, this is the first report of a bacterium known to possess both types of PG O-acetylation systems.
Date: 2013-01

Files in this item

Files Size Format View
Pfeffer_John_201301_PhD.pdf 8.351Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record