Main content

Toxicity of human pharmaceuticals and personal care products to Benthic Invertebrates

Show full item record

Title: Toxicity of human pharmaceuticals and personal care products to Benthic Invertebrates
Author: Dussault, Eve B.; Balakrishnan, Vimal K.; Sverko, Ed; Solomon, Keith R.; Sibley, Paul K.
Abstract: Despite concerns about potential risks associated with the presence of pharmaceuticals and personal care products(PPCPs) in the environment, few toxicological data address the effects of these compounds. In aquatic systems, which often represent the final repository for PPCPs, increasing toxicological information regarding aquatic biota is improving our capacity to assess potential risks. However, responses of key biota, such as benthic invertebrates, have not been investigated as widely. In the present study, we examined the toxicity of four PPCPs—the lipid regulator atorvastatin (ATO), the antiepileptic drug carbamazepine (CBZ), the synthetic hormone 17 -ethinylestradiol (EE2), and the antimicrobial triclosan (TCS)—to the midge Chironomus tentans and the freshwater amphipod Hyalella azteca in 10-d waterborne exposures. The toxicity of the four compounds varied between 0.20 and 47.3 mg/L (median lethal concentration), with a relative toxicity ranking of TCS EE2 ATO CBZ. Hyalella azteca was more sensitive than C. tentans to these compounds. The toxicity data were used in a hazard quotient approach to evaluate the risk posed by the four PPCPs to benthic invertebrates and other aquatic organisms. For each compound, a hazard quotient was calculated by dividing the lowest toxicity value by the highest exposure value found in the literature, to which an uncertainty factor was applied. With hazard quotients of 3.55 to 11.5, we conclude that potential risks exist toward benthic invertebrates for the toxicity of TCS and CBZ and that further investigations of these compounds are required to characterize more completely the risks to benthic organisms. In contrast, our data also indicate that considering the low concentrations currently detected in the environment, ATO and EE2 pose negligible risks to benthic invertebrates.
Date: 2008

Files in this item

Files Size Format View
Dussault_et_al_ETAC_2008_27-2-435.pdf 99.93Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record