Main content

Long-term trends in corn yields and soil carbon under diversified crop rotations

Show full item record

Title: Long-term trends in corn yields and soil carbon under diversified crop rotations
Author: Jarecki, M.; Grant, B.; Smith, W.; Deen, B.; Drury, C.; VanderZaag, A.; Qian, B.; Yang, J.; Wagner-Riddle, C.
Abstract: Agricultural practices such as including perennial alfalfa (Medicago sativa L.), winter wheat (Triticum aestivum L.), or red clover (Trifolium pratense L.) in corn (Zea mays L.) rotations can provide higher crop yields and increase soil organic C (SOC) over time. How well process‐based biogeochemical models such as DeNitrification‐DeComposition (DNDC) capture the beneficial effects of diversified cropping systems is unclear. To calibrate and validate DNDC for simulation of observed trends in corn yield and SOC, we used long‐term trials: continuous corn (CC) and corn–oats (Avena sativa L.)–alfalfa–alfalfa (COAA) for Woodslee, ON, 1959 to 2015; and CC, corn–corn–soybean [Glycine max (L.) Merr.]–soybean (CCSS), corn–corn–soybean–winter wheat (CCSW), corn–corn–soybean–winter wheat + red clover (CCSW+Rc), and corn–corn–alfalfa–alfalfa (CCAA) for Elora, ON, 1981 to 2015. Yield and SOC under 21st century conditions were projected under future climate scenarios from 2016 to 2100. The DNDC model was calibrated to improve crop N stress and was revised to estimate changes in water availability as a function of soil properties. This improved yield estimates for diversified rotations at Elora (mean absolute prediction error [MAPE] decreased from 13.4–15.5 to 10.9–14.6%) with lower errors for the three most diverse rotations. Significant improvements in yield estimates were also simulated at Woodslee for COAA, with MAPE decreasing from 24.0 to 16.6%. Predicted and observed SOC were in agreement for simpler rotations (CC or CCSS) at both sites (53.8 and 53.3 Mg C ha−1 for Elora, 52.0 and 51.4 Mg C ha−1 for Woodslee). Predicted SOC increased due to rotation diversification and was close to observed values (58.4 and 59 Mg C ha−1 for Elora, 63 and 61.1 Mg C ha−1 for Woodslee). Under future climate scenarios the diversified rotations mitigated crop water stress resulting in trends of higher yields and SOC content in comparison to simpler rotations.
URI: https://hdl.handle.net/10214/21243
Date: 2018
Terms of Use: All items in the Atrium are protected by copyright with all rights reserved unless otherwise indicated.
Related Publications: Jarecki, M., Grant, B., Smith, W., et al. Long?term trends in corn yields and soil carbon under diversified crop rotations. J Environ Qual 47, 635–643 (2018). https://doi.org/10.2134/jeq2017.08.0317


Files in this item

Files Size Format View
JareckiEtAl_102134jeq2017080317.pdf 785.6Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record

The library is committed to ensuring that members of our user community with disabilities have equal access to our services and resources and that their dignity and independence is always respected. If you encounter a barrier and/or need an alternate format, please fill out our Library Print and Multimedia Alternate-Format Request Form. Contact us if you’d like to provide feedback: lib.a11y@uoguelph.ca  (email address)