
Deep Learning on FPGAs

by

Griffin James Lacey

A thesis
presented to

the University of Guelph

In partial fulfillment of requirements
for the degree of

Master of Applied Science
in

Engineering

Guelph, Ontario, Canada

c© Griffin James Lacey, August, 2016

ABSTRACT

DEEP LEARNING ON FPGAS

Griffin James Lacey Advisor:

University of Guelph, 2016 Dr. Graham W. Taylor

Co-Advisor:

Dr. Shawki Areibi

The recent successes of deep learning are largely attributed to the advancement of hardware acceleration

technologies, which can accommodate the incredible growth of data sizes and model complexity. The

current solution involves using clusters of graphics processing units (GPU) to achieve performance beyond

that of general purpose processors (GPP), but the use of field programmable gate arrays (FPGA) is gaining

popularity as an alternative due to their low power consumption and flexible architecture. However, there

is a lack of infrastructure available for deep learning on FPGAs compared to what is available for GPPs and

GPUs, and the practical challenges of developing such infrastructure are often ignored in contemporary

work. Through the development of a software framework which extends the popular Caffe framework, this

thesis demonstrates the viability of FPGAs as an acceleration platform for deep learning, and addresses

many of the associated technical and practical challenges.

Acknowledgements

I would like to thank my advisors, Graham W. Taylor and Shawki Areibi, for their guidance and support

throughout this entire process. Their efforts in helping me succeed, both inside and outside of my graduate

work, have been truly overwhelming. I feel lucky to have had such incredible advisors.

I can’t thank Joel Best enough for his tireless efforts in helping me with the technical challenges of this

thesis. Without his expertise, I don’t know how I would have retained my sanity dealing with the issues

of using bleeding-edge tools. Thanks for always making time to help.

Thank you to all of the lab members, many who have come and gone, who made the long days and late

nights more enjoyable. I won’t attempt to list names in fear of forgetting someone important, but know

that you have all benefited my work in more ways than you may realize. To my University of Toronto

friends Jasmina Vasiljevic and Roberto DiCecco, thanks for all of the helpful discussions and advice.

A special thank you to my family for the love and support that is always there when I need it. My parents

Lyn and Larry Lacey, my grandparents Mae Benton and Larry Lacey, Sr., my sisters Courtney Lacey and

Heather Patel, my brother-in-law Ronak Patel, my nephew Kieran Patel, and my furry relatives Cooper

and Casey, thanks for putting up with me this whole time.

Hayley and Wilfrid, thank you for everything, especially the support, perspective, and baked goods.

This work is supported financially by both the Canadian and Ontario governments through the Ontario

Graduate Scholarship (OGS) award and the NSERC Canada Graduate Scholarship-Master’s Program.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Motivations . 3

1.2 Objectives . 4

1.3 Contributions . 4

1.4 Relationship to Other Work . 5

1.5 Organization . 6

2 Background 8

2.1 Deep Learning . 10

2.1.1 Multi-Layer Perceptrons . 12

2.1.2 Convolutional Neural Networks . 12

2.2 FPGAs . 18

2.2.1 High-Level Synthesis . 20

2.2.2 OpenCL . 20

2.3 Deep Learning Acceleration using GPUs . 23

2.3.1 GPU-Based Deep Learning Frameworks . 24

2.3.2 GPU Parallelism . 27

2.4 Summary . 29

3 Literature Review 30

3.1 Multi-Layer Perceptrons on FPGAs . 30

3.2 Convolutional Neural Networks on FPGAs . 32

3.3 Summary . 33

4 Methodology 34

4.1 Deep Learning Acceleration using FPGAs . 35

4.1.1 FPGA-Based Deep Learning Frameworks . 36

4.1.2 FPGA Parallelism . 37

iv

4.1.3 FPGA Challenges . 40

4.2 FPGA Caffe Framework . 42

4.2.1 Deployment Architecture . 43

4.2.2 Memory Architecture . 43

4.2.3 Device Kernel Design . 45

4.2.4 Layer Extensions . 53

4.2.5 Design Iteration . 55

4.3 Summary . 56

5 Results 57

5.1 Experimental Setup . 58

5.1.1 FPGA Hardware . 59

5.2 Layer Benchmarking . 60

5.3 Model Benchmarking . 66

5.4 Pipeline Layer Benchmarking . 68

5.5 Power Consumption . 70

5.5.1 Economic Considerations . 72

5.6 Summary . 73

6 Conclusions 74

6.1 Future Work . 75

References 77

A FLOP Calculations 84

v

List of Tables

2.1 Overview of supported high-level languages in popular deep learning frameworks 25

4.1 Experimental results for FPGA kernel compilation times. 55

5.1 Alpha Data ADM-PCIE-7V3 FPGA Resource Statistics . 59

5.2 Fully-Connected Layer Benchmark Results . 60

5.3 Fully-Connected Layer Resource Utilization . 61

5.4 Convolution results . 62

5.5 Convolutional Layer Resource Utilization . 62

5.6 ReLU results . 63

5.7 ReLU Layer Resource Utilization . 63

5.8 Max pooling results . 64

5.9 Max Pooling Layer Resource Utilization . 64

5.10 Local response normalization layer results . 65

5.11 Local Response Normalization Layer Resource Utilization 65

5.12 AlexNet Model Benchmarking . 66

5.13 Experimental results for a small example CNN comparing the GPU-based, non-pipeline,

and pipeline layer design approach. This model processes 5 feature maps for 1 input image

of size 227× 227 with 3 colour channels. 69

5.14 Power Consumption Measurements . 71

5.15 Pipeline Layer Power Consumption . 71

5.16 AlexNet Model Benchmarking . 72

5.17 Benchmarking Hardware Costs (USD) . 73

vi

List of Figures

1.1 This thesis contributes to the development of a practical deep learning framework which

extends the popular Caffe tool to include support for FPGA acceleration. This is accom-

plished through the development of an FPGA-supported backend (OpenCL), model-specific

optimizations, and a practical compilation strategy. Validation is done through an empirical

performance evaluation of CNN models. 2

2.1 Common activation functions used in neural networks. 15

2.2 The OpenCL platform model describes a host device (i.e. GPP) connected to one or more

compute devices (e.g. FPGA, GPU) which are broken down into compute units, and pro-

cessing elements. 22

2.3 GPU-based deep learning framework abstraction hierarchy for deep learning practitioners. . 24

2.4 Computational graphs as represented in Caffe (left) by connections of layers, and Theano

(right) by connections of nodes which describe more general mathematical computation

(e.g. apply, variable, and operator nodes). 26

2.5 For GPU acceleration, computational graphs are broken down into modules, which can be

replicated on the GPU to maximize throughput. On GPUs, only one unique module can

be executing at any given time, and each module exchanges data with the GPU between

executions. 27

4.1 In the FPGA-based deep learning framework abstraction hierarchy, the differences (*) from

the GPU-based approach are not visible to deep learning practitioners. 36

4.2 Consider a simple 5-layer CNN. Let each block represent one layer and each group of coloured

blocks represent one “mini-batch” of data. In 10 units of time, both the FPGA and GPU

complete 6 “mini-batches” of data compared to 2 on the GPP. The FPGA, using pipeline

parallelism, achieves the highest maximum throughput of 5 work-items. 38

vii

4.3 For FPGA acceleration, computational graphs are broken down into modules (e.g. layers

of a CNN), which can be grouped together in a single binary. To maximize throughput,

circuits can also be replicated (compute units in SDAccel). In contrast to GPUs, several

unique modules can be executing at any given time and data can be exchanged between

modules on the FPGA using local data structures (i.e. FIFOs), alleviating the need for each

module to exchange data with the host. 39

4.4 This figure demonstrates a more complete picture of the FPGA Caffe framework compared

to Figure 1.1 in Chapter 1. We see that each hardware-specific data path shares the same

computational graph, which is composed of layers specific to the AlexNet CNN. Hardware-

specific optimizations for FPGAs are achieved through strategies such as pipelining, while

for GPPs this can be achieved through different linear algebra (BLAS) packages, and for

GPUs this can be achieved through optimized deep learning libraries (cuDNN). It should

be noted that FPGA the device kernel binaries (.xclbin) are compiled offline, and are used

to program the FPGA at runtime. 44

4.5 Consider a simple network using one convolution and one pooling layer. (a) The GPU-

based approach requires 2 program layers and 4 global memory operations (MEM R/W).

(b) Using a single kernel, the non-pipeline approach requires only 1 program layer and 2

global memory operations, but the kernels cannot execute concurrently. (c) The pipeline

approach is similar but kernels can execute concurrently and exchange data using a FIFO. . 54

5.1 Pipeline Layer Execution Time Improvement vs. Number of Input Images 70

viii

Chapter 1

Introduction

Hardware acceleration has been an integral factor in the advancement of machine learning. The success

of a particular sub-class of machine learning techniques, called deep learning, can be largely attributed

to the adoption of massively parallel graphics processing units (GPU) running alongside general purpose

processors (GPP) for efficient computation of deep neural networks [1]. Moreover, the growing support for

deep learning tools in both academia and industry has resulted in a maturing design flow which is accessible

to all types of deep learning practitioners [2, 3, 4, 5]. The seamless integration of software (deep learning

frameworks) and hardware (high performance computing platforms) has made the rapid prototyping of

deep learning models fast and efficient. With the recent popularity of supervised techniques, such as the

convolutional neural network (CNN) [6, 7, 8], the emphasis for growth in this field has fallen on developing

techniques for hardware acceleration which can accommodate increasing sizes in labelled data sets and

model complexity. Most recently, neural networks of increasing depth (as many as 1000 layers) have been

shown to improve performance on classification tasks [9]. The future of hardware acceleration for deep

learning is far from clear, and recently there has been a spike in interest in investigating alternative high

performance computing platforms, such as those with low power or flexible architectures, which may better

accommodate the needs of tomorrow.

1

In this thesis, we investigate the use of field programmable gate arrays (FPGA) as an alternative acceler-

ation platform for deep learning. While this idea is not new, we believe that contemporary work in this

field has ignored many important challenges specific to modern deep learning design flows. Therefore, we

focus our investigation on the practical challenge of developing a deep learning framework, which uses

FPGAs for acceleration. Most importantly, this development attempts to accommodate the conventional

deep learning design flow to which practitioners are accustomed. These contributions, along with their

enabling technologies, are visualized in Figure 1.1.

Deep Learning
Practitioner

Deep Neural Network
AlexNet (CNN)

C++ CUDA OpenCL

 cat

Selects Task
Defines Network

Selects Accelerator

FPGA Caffe

GPP
Optimizations

GPU
Optimizations

FPGA
Optimizations

GPP
Acceleration

GPP + GPU
Acceleration

GPP + FPGA
Acceleration

.xclbin.cubin.o
Thesis Contributions

Network
Definition

Parallel Computing
Backend

Model-Specific
Optimizations

Compilation
Strategy

Hardware
Acceleration

Input

Output

Figure 1.1: This thesis contributes to the development of a practical deep learning framework which
extends the popular Caffe tool to include support for FPGA acceleration. This is accomplished through
the development of an FPGA-supported backend (OpenCL), model-specific optimizations, and a practical
compilation strategy. Validation is done through an empirical performance evaluation of CNN models.

2

This work reflects on several specific practical challenges related to deep learning on FPGAs:

1. Design Effort: Traditional FPGA design tools require hardware-specific knowledge, and are not

compatible with software deep learning practices.

2. Design Iteration: Compiling designs for FPGAs is very slow compared to GPPs and GPUs, which

may be unsuitable for just-in-time compilation methods employed in some deep learning frameworks.

3. Model Exploration: Most contemporary works focus only on deployment of deep learning on

FPGAs while ignoring training, for which hardware acceleration is even more important.

4. Multi-Device Parallelism: Current FPGA technology has been less accommodating of multi-

device acceleration schemes compared to GPUs, despite their growing importance for deep learning.

5. Economic Factors: Current FPGA technologies are more expensive than GPU alternatives, making

it difficult to justify the use of FPGAs for applications which aim to minimize cost.

1.1 Motivations

While FPGAs have shown promising results for deep learning acceleration in contemporary literature,

there is a lack of infrastructure supporting deep learning on FPGAs compared to what is available for

GPPs and GPUs. Additionally, much of this work on FPGAs builds infrastructure from the ground up, so

deep learning practitioners tend to choose more common frameworks which mature through community

development. This thesis is motivated by the need for such infrastructure, and the technical and practical

challenges of integrating FPGAs into existing deep learning frameworks and design flows. As well, this

thesis is enabled by recent developments in the support of the parallel programming framework OpenCL,

which provides a sensible technological path between deep learning and FPGAs.

3

1.2 Objectives

This thesis attempts to answer one main question:

Can FPGAs be used as a practical acceleration platform for deep learning?

Due to the lack of infrastructure, as well as technical and practical challenges related to using FPGAs for

deep learning, the answer to this question is unclear. This thesis aims to provide clarity by addressing these

challenges through the development of a software framework, through which we are able to demonstrate a

practical design flow for deep learning practitioners, and perform an empirical assessment of model-specific

performance optimizations for FPGAs. Given that deep learning encompasses a large variety of models

and techniques, we focus our investigation toward convolutional neural networks (CNN), as most of the

research on FPGA-based deep learning has focused on accelerating CNNs [10]. As well, two important

application areas, vision and speech, are presently dominated by CNNs [6, 11].

In addition to these research objectives, this thesis is largely motivated by improving future work in this

field. Firstly, by making the proposed framework available to future researchers, it attempts to standardize

a methodology in which related work can be performed. Secondly, by describing much of this work from

the perspective of a conventional deep learning practitioner who is accustomed to working with GPUs,

this thesis acts as a guide for translating those skills and experiences into developing on FPGAs. Lastly,

since this work involves the early development of a software framework, we make a strong attempt to

guide future improvements and directions of the framework which could not be addressed given the time

constraints of this work.

1.3 Contributions

The contributions of this thesis are as follows:

4

• This thesis contributes to the development of a design flow and practical software framework, FPGA

Caffe, for deep learning practitioners to accelerate neural networks using FPGAs.

• This thesis provides an empirical assessment of model-specific optimizations which contribute to the

framework. Specifically, this work optimizes deployment of the AlexNet deep convolutional neural

network (CNN) [6] on FPGAs and shows competitive performance compared to GPPs and GPUs in

terms of execution time and power consumption.

1.4 Relationship to Other Work

This work is largely developed on top of the open-source Caffe deep learning framework, developed by

the Berkeley Vision and Learning Center (BVLC) and community contributors [3]. The Caffe project was

originally created by Yangqing Jia during his PhD at the University of California, Berkeley. In addition

to code, this work draws on inspiration from the structure, function, and motivation of the Caffe project.

The FPGA Caffe project, an extension of Caffe which supports FPGAs, was originally started by Roberto

DiCecco during his MASc at the University of Toronto. The development of FPGA Caffe as presented

in this work is done in collaboration with Roberto and the Computer Engineering Research Group at the

University of Toronto. Details of further development of FPGA Caffe not included in this work are found

in “Caffeinated FPGAs: FPGA Framework for Convolutional Neural Networks” by DiCecco et al. [12].

Finally, much of the background and literature review discussed in this work is presented in a related

paper which is written to appeal to a much wider audience. For readers looking for a more condensed and

digestible discussion on the outlook of deep learning on FPGAs are encouraged to read “Deep Learning

on FPGAs: Past, Present, and Future” by Lacey et al. [10].

5

1.5 Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides background information on deep learning, FPGAs, and the conventional GPU approach

used for deep learning acceleration. We begin by providing background information on deep learning,

focused on the two models most relevant to this work, the multi-layer perceptron (MLP) and convolutional

neural network (CNN). We then discuss background on FPGAs, including a brief overview of FPGA

architectures, followed by a discussion of design tools including high-level abstraction tools (HLS) and

OpenCL. We conclude with background on deep learning acceleration using GPUs, including a discussion

on current deep learning frameworks which use GPU acceleration, as well as a brief overview of GPU

parallelism techniques.

Chapter 3 provides a review of contemporary literature, including a timeline of important historical events

relevant to this work. This chapter begins with a review of MLPs on FPGAs, and concludes with a review

of CNNs on FPGAs.

Chapter 4 provides a discussion of the methodology used in this work. It begins with a high-level discussion

of the most popular methods employed for deep learning acceleration, directly comparing this to the GPU

approach in terms of framework support and parallelism techniques. We also discuss additional challenges

posed by using FPGAs in this context. Next, we discuss the details of the development of the FPGA Caffe

framework, including a discussion of the deployment and memory architecture, device kernel design, layer

extensions, and design flow.

Chapter 5 provides results of an empirical assessment of model-specific optimizations which contribute to

the FPGA Caffe framework. This begins with a brief overview of the experimental setup, then presents

the results organized by layer benchmarks, model benchmarks, pipeline layer benchmarks, and power

consumption results.

6

Chapter 6 provides a brief overview of the findings, draws conclusions, and recommends directions for

future work.

7

Chapter 2

Background

The effects of machine learning on our everyday life are far-reaching. Whether you are clicking through

personalized recommendations on websites, using speech to communicate with your smart-phone, or using

face-detection to get the perfect picture on your digital camera, some form of artificial intelligence is

involved. This new wave of artificial intelligence is accompanied by a shift in philosophy for algorithm

design. Where past attempts at learning from data involved much “feature engineering” by hand, using

expert domain-specific knowledge, the ability to learn composable feature extraction systems automatically

from massive amounts of example data has led to ground-breaking performance in important domains such

as computer vision, speech recognition, and natural language processing. The study of these data-driven

techniques is called deep learning, and is seeing significant attention from two important groups of the

technology community: researchers, who are interested in exploring and training these models to achieve

top performance across tasks, and application scientists, who are interested in deploying these models for

novel, real world applications. However, both of these groups are limited by the need for better hardware

acceleration to accommodate scaling beyond current data and algorithm sizes.

The current state of hardware acceleration for deep learning is largely dominated by using clusters of

8

graphics processing units (GPU) as general purpose processors (GPGPU) [1]. GPUs have orders of mag-

nitude more computational cores compared to traditional general purpose processors (GPP), and allow a

greater ability to perform parallel computations. In particular, the NVIDIA CUDA platform for GPGPU

programming is most dominant, with major deep learning tools utilizing this platform to access GPU ac-

celeration [2, 3, 4, 5]. More recently, the open parallel programming standard OpenCL has gained traction

as an alternative tool for heterogeneous hardware programming, with interest from these popular tools

gaining momentum. OpenCL, while trailing CUDA in terms of support in the deep learning community,

has two unique features which distinguish itself from CUDA. First is the open source, royalty-free stan-

dard for development, as opposed to the single vendor support of CUDA. The second is the support for

a wide variety of alternative hardware including GPUs, GPPs, field programmable gate-arrays (FPGA),

and digital signal processors (DSP).

The imminent support for alternative hardware is especially important for FPGAs, a strong competitor

to GPUs for algorithm acceleration. Unlike GPUs, these devices have a flexible hardware configuration,

and often provide better performance per watt than GPUs for subroutines important to deep learning,

such as sliding-windows computation [13] and dense matrix multiplication [14]. However, programming of

these devices requires hardware-specific knowledge that many researchers and application scientists may

not possess, and as such, FPGAs have been often considered a specialist architecture. Recently, FPGA

tools have adopted software-level programming models, including OpenCL, which has made them a more

attractive option for users trained in mainstream software development practices.

For researchers considering a variety of design tools, the selection criteria is typically related to having

user-friendly software development tools, flexible and upgradeable ways to design models, and fast com-

putation to reduce the training time of large models. Deep learning researchers will benefit from the use

of FPGAs given the trend of higher abstraction design tools which are making FPGAs easier to program,

the reconfigurability which allows customized architectures, and the large degree of parallelism which will

accelerate execution speeds. For application scientists, while similar tool-level preferences exist, the em-

phasis for hardware selection is to maximize performance per watt of power consumption, reducing costs

for large-scale operations. Deep learning application scientists will benefit from the use of FPGAs given

the strong performance per watt that typically accompanies the ability to customize the architecture for

9

a particular application. FPGAs serve as a logical design choice which appeal to the needs of these two

important audiences, herein referred to as deep learning practitioners.

The following chapter discusses the background information relevant to this work. This is accomplished by

first introducing deep learning, and providing context for the modern deep learning paradigm within the

history of artificial intelligence. To narrow the scope of this discussion, we then introduce the two specific

types of neural networks which are most relevant to FPGA accleration, multi-layer perceptrons (MLP) and

convolutional neural networks (CNN). This section also includes a brief description of several important

CNN layer types which this work implements for experimentation. Next, we introduce FPGAs, and discuss

two important design tools for FPGAs which are relevant to this work, high-level synthesis and OpenCL.

Finally, we discuss the current state of conventional deep learning acceleration using GPUs, including the

current design flows for acceleration, and the commonly employed methods of parallelism used for design.

The conventional approach is necessary to provide context for comparison with the unconventional FPGA

approach introduced in this work.

2.1 Deep Learning

Traditional approaches to artificial intelligence focused on using computation to solve problems analyt-

ically, requiring explicit knowledge about a given domain [15]. For simple problems, this approach was

adequate, as the programs engineered by hand were small, and domain experts could carefully transform

the modest amount of raw data available into useful representations for learning. However, advances in

artificial intelligence created interest in solving more complex problems, where knowledge is not easily

expressed explicitly. Expert knowledge about problems such as face recognition, speech transcription,

and medical diagnosis is difficult to express formally, and conventional approaches to artificial intelligence

failed to account for the implicit information stored in the raw data. Moreover, tremendous growth in

data acquisition, particularly of the unstructured type, as well as storage means that using this implicit

information is more important than ever. Recently, these types of applications are seeing state-of-the-art

performance from a class of techniques called deep learning, where this implicit information is discovered

10

automatically by learning task-relevant features from raw data. Interest in this research area has led to

several recent reviews [16, 17, 18].

The field of deep learning emerged around 2006 after a long period of relative disinterest around neural

networks research. Interestingly, the early successes in the field were due to unsupervised learning -

techniques that can learn from unlabeled data. Specifically, unsupervised learning was used to “pre-train”

(initialize) the layers of deep neural networks, which were thought at the time to be too difficult to

train with the usual methods, i.e. gradient backpropagation. However, with the introduction of GPGPU

computing and the availability of larger datasets towards the end of the 2000’s and into the current decade,

focus has shifted almost exclusively to supervised learning. In particular, there are two types of neural

network architectures that have received most of the attention both in research and industry. These are

multi-layer perceptrons (MLP) and convolutional neural networks (CNN). Essentially all of the research

on FPGA-based deep learning has focused on one of these architectures.

Before describing any specific architecture, however, it is worth noting several characteristics of most deep

learning models and applications that, in general, make them well-suited for parallelization using hardware

accelerators.

Data parallelism – The parallelism inherent in pixel-based sensory input (e.g. images and video) manifests

itself in operations that apply concurrently to all pixels or local regions. As well, the most popular way

of training models is not by presenting it with a single example at a time, but by processing “mini-

batches” of typically hundreds or thousands of examples. Each example in a mini-batch can be processed

independently.

Model parallelism – These biologically-inspired models are composed of redundant processing units

which can be distributed in hardware and updated in parallel. Recent work on accelerating CNNs using

multiple GPUs has used very sophisticated strategies to balance data and model-based parallism such that

different parts of the architecture are parallelized in different, but optimal ways [19].

Pipeline Parallelism – The feed-forward nature of computation in architectures like MLPs and CNNs

11

means that hardware which is well suited to exploit pipeline parallelism (e.g. FPGAs) can offer a particular

advantage. While GPPs and GPUs rely on executing parallel threads on multiple cores, FPGAs can create

customized hardware circuits which are deeply pipelined and inherently multithreaded.

2.1.1 Multi-Layer Perceptrons

Simple feed-forward deep networks are known as multi-layer perceptrons (MLP), and are the backbone of

deep learning [20]. To describe these models using neural network terminology, we refer to the examples

fed to these models as inputs, the predictions produced from these models as outputs, each modular

sub-function as a layer with hidden layers referring to those layers between the first (input) layer and

last (output) layer, each scalar output of one of these layers as a unit (analogous to a neuron in the

biological analogy of these models), and each connection between units as a weight (analogous to a synapse),

which define the function of the model as they are the parameters that are adjusted during training [18].

Collections of units are sometimes referred to as features, as to draw similarities to the traditional idea of

features in conventional machine learning, which, in the past, were most often designed by domain experts.

To prevent the entire network from collapsing to a linear transformation, each unit applies an element-wise

nonlinear operation to its input, with the most popular choice being the rectified linear unit (ReLU).

2.1.2 Convolutional Neural Networks

Deep convolutional neural networks (CNN) are currently the most popular deep learning architecture,

especially for pixel-based visual recognition tasks. More formally, these networks are designed for data

that has a measure of spatial or temporal continuity. This inspiration is drawn largely on work from Hubel

and Wiesel, who described the function of a cat’s visual cortex as being sensitive to small sub-regions of

the visual field [21]. Commonly, spatial continuity in data is found in images where a pixel at location

(i, j) shares similar intensity or color properties to its neighbours in a local region of the image.

12

While CNN architectures have many customizable parameters that make them unique to each other, CNNs

are typically composed of predictable combinations of a few important layer types. Convolution layers,

pooling layers, and fully connected layers are fundamental to CNNs and found in virtually all CNNs.

In comparison to MLPs, these layers are constructed as a 2D arrangement of units called feature maps.

Convolution layers, analogous to the linear feature extraction operation of MLPs, are parameterized by

learnable filters, which have local connections to a small receptive field of the input feature map and shared

at all locations of the input. Feature extraction in a CNN amounts to convolution with these filters. Pooling

layers apply a simple reduction operation (e.g. a max or average) to local regions of the feature maps. This

reduces the size of the feature maps, which is favorable to computation and reducing parameters, but also

yields a small amount of shift-invariance. Finally, in recognition applications CNNs typically apply one or

more fully connected layers (the same layers used in MLPs) towards the output layer in order to reduce the

spatially and/or temporally organized information in feature maps to a decision, such as a classification

or regression. While CNNs could be composed of any number of different configurations of these or other

layer types, we focus our discussion on the layer types that are used in the AlexNet CNN, as this is the

model chosen to be implemented in this work. The details of these layers are discussed below.

Fully Connected Layers

While CNN architectures consist mostly of convolution and pooling layers, fully connected layers, which

are the same layers used in MLPs, are used near the output layer to capture global context and model

high-level concepts. A fully connected layer connects all units in the previous layer to all units in the

current layer, and can be performed using a matrix multiplication and addition of a bias term. Consider

a neural network with L hidden layers expressed in matrix form:

h(l) = σ(l)(W(l)h(l−1) + b(l)) (2.1)

where we define h(l) as the output of the hidden layer l, σ(l) as an element-wise non-linear activation, W (l)

13

as a weight matrix, h(l−1) as the output of the previous hidden layer, and b(l) as a bias. The activation

function, chosen by the architect of the model, is discussed in more detail below.

Convolution Layers

In discrete mathematics, the convolution of a 1D signal f with a signal g is defined in Equation 2.2,

o[n] = f [n] ∗ g[n] =

∞∑
u=−∞

f [u]g[n− u] (2.2)

where n & u are discrete variables. However, we can also extend this definition to include convolution in

a second dimension, as required for pixel-based convolution, as follows:

o[m,n] = f [m,n] ∗ g[m,n] =

∞∑
u=−∞

∞∑
v=−∞

f [u, v]g[m− u, n− v] (2.3)

where m and n index the two dimensions of the original signal, and u, v index the second signal. However,

when considering convolution applied to pixel-based input, such as images, we no longer have signals

defined on the interval of (−∞,∞); the signals are now constrained to finite numbers, which are often the

sizes of the images and associated filters. In CNNs, these convolutional filters allow features in sub-regions

of the image to be learned. These filters are treated as parameters to be learned through back propagation

- similar to how traditional weights W and biases b in MLPs are used. Each convolution layer often

has multiple filters associated with it, and thus produces multiple output feature maps. Mathematically,

convolution layers are expressed very similarly to fully connected layers:

h(l) = σ(l)(W(l) ∗ h(l−1) + b(l)) (2.4)

14

where instead of matrix multiplication, the weights W(l) and input h(l−1) are convolved, denoted by ∗.

In terms of computational power, these convolution layers are often the most expensive to perform due

to the number of multiplications and additions that need to be computed. For hardware acceleration, the

main focus is to efficiently perform the convolution operation.

ReLU Activation

Similar to MLPs, a non-linear activation function is applied to the linear output of every convolution to

prevent the network from collapsing to a single layer. While traditional neural networks have favoured the

tanh and sigmoid (logistic) activation functions, many state-of-the-art networks are now using rectified

linear units (ReLU) [22], as seen in Equation 2.5:

y = max(0, x) (2.5)

where the activation y is strictly positive definite. While not typically considered a layer of a neural

network, we will refer to ReLU as a layer to provide convenience when discussing the implementation

specifics. This activation avoids some of the pitfalls of neural networks, including when their units are

acting in the saturated region. Differences between the tanh, sigmoid, and ReLU activation characteristics

can be seen in Figure 2.1.

6 4 2 0 2 4 6

X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Logistic Activation Function

6 4 2 0 2 4 6

X

1.0

0.5

0.0

0.5

1.0

Y

Tanh Activation Function

6 4 2 0 2 4 6

X

0

1

2

3

4

5

Y

ReLU Activation Function

Figure 2.1: Common activation functions used in neural networks.

15

Pooling Layers

Pooling layers are commonly used following convolution and non-linear activation layers. In pooling, local

regions of the previous layer are replaced with statistics that summarize the neighbouring outputs, meaning

the size of every input map is spatially reduced. The most common type of pooling is max pooling, where

the maximum value of a rectangular a neighbourhood is reported. Consider a pooling layer with a square

input matrix of size Nin
2, which produces a square output matrix of size Nout

2. Assuming no overlapping

of filters, the input is divided into pooling regions Pi,j where

Pi,j ⊂ {1, ..., Nin}2 for each (i, j) ∈ {1, ..., Nout}2. (2.6)

Max pooling is then seen as a max function applied element-wise to a given pooling region, and tiled

across an entire input image as seen in Equation 2.7.

outputi,j = max
(k,l)∈Pi,j

inputk,l (2.7)

Determining the output dimensions is a function of the input dimensions, pooling filter size and stride.

Consider the case for a square input matrix and filter:

Nout =
Nin − F
S + 1

(2.8)

where F is the pooling filter size, and S is the stride. While most common pooling is done on square

dimensions, extending this relationship to non-square dimensions is trivial. In addition to reducing dimen-

sionality, pooling aides in making a representation invariant to small shifts or translations in the input,

which is useful for applications that care more about the presence of a feature than the exact spatial

16

position of that feature. In practice, pooling has computational conveniences such as handling variable

sized inputs, and reducing memory requirements for parameter storage.

Local Response Normalization Layers

While in theory, no normalization method is needed to achieve convergence when training neural networks,

it is common practice to use normalization techniques to help speed up the rate of convergence. Since

the distribution of layer inputs changes during training, the use of high learning rates can be troublesome.

One solution to this problem is the use of normalization layers, which normalize layer inputs and allow

higher learning rates to be used, which empirically helps speed up training. As used in the AlexNet

CNN architecture, local response normalization layers (LRN) normalize across adjacent channels (input

examples). By denoting the activity of a unit aix,y as the application of kernel i to position (x, y) which is

then applied through a non-linear activation. The normalized response bix,y is given by

bix,y = aix,y/

(
k + α

min(N−1,i+n/2)∑
max(0,i−n/2)

(aix,y
2
)

)β
(2.9)

where N is the total number of kernels per layer, the summation is performed over n adjacent feature maps

at the same spatial location, and k, n, α, and β are hyper-parameters [6]. Intuitively, these layers enforce

a local competition between adjacent units, encouraging neighbouring units to compete for representing

significant features. While this layer type was important in the AlexNet model, it has now been largely

ignored in favour of newer techniques such as batch normalization [23].

17

2.2 FPGAs

Traditionally, when evaluating hardware platforms for acceleration, one must inevitably consider the trade-

off between flexibility and performance. At one end of the spectrum, general purpose processors (GPP)

provide a high degree of flexibility and ease of use, but perform relatively inefficiently. These platforms

tend to be more readily accessible, can be produced cheaply, and are appropriate for a wide variety of uses

and reuses. At the other end of the spectrum, application specific integrated circuits (ASIC) provide high

performance at the cost of being inflexible and more difficult to produce. These circuits are dedicated to

a specific application, and are expensive and time consuming to produce.

FPGAs serve as a compromise between these two extremes. They belong to a more general class of

programmable logic devices (PLD) and are, in the most simple sense, a reconfigurable integrated circuit.

As such, they provide the performance benefits of integrated circuits, with the reconfigurable flexibility

of GPPs. At a low-level, FPGAs can implement sequential logic through the use of flip-flops (FF) and

combinational logic through the use of look-up tables (LUT). Modern FPGAs also contain hardened

components for commonly used functions such as full processor cores, communication cores, arithmetic

cores, and block RAM (BRAM). In addition, current FPGA trends are tending toward a system-on-chip

(SoC) design approach, where ARM coprocessors and FPGAs are commonly found on the same fabric. The

current FPGA market is dominated by Xilinx and Altera, accounting for a combined 85 percent market

share [24]. In addition, FPGAs are rapidly replacing ASICs and application specific standard products

(ASSP) for fixed function logic. The FPGA market is expected to reach the $10 billion mark in 2016 [24].

For deep learning, FPGAs provide an obvious potential for acceleration above and beyond what is possible

on traditional GPPs. Software-level execution on GPPs rely on the traditional Von Neumann architecture,

which stores instructions and data in external memory to be fetched when needed. This is the motivation

for caches, which alleviate much of the expensive external memory operations [24]. The bottleneck in

this architecture is the processor and memory communication, which severely cripples GPP performance,

especially for the memory-bound techniques frequently required in deep learning. In comparison, the

programmable logic cells on FPGAs can be used to implement the data and control path found in common

logic functions, which do not rely on the Von Neumann architecture. They are also capable of exploiting

18

distributed on-chip memory, as well as large degrees of pipeline parallelism, which fit naturally with the

feed-forward nature deep learning methods. Modern FPGAs also support partial dynamic reconfiguration,

where part of the FPGA can be reprogrammed while another part of the FPGA is being used. This can

have implications for large deep learning models, where individual layers could be reconfigured on the

FPGA while not disrupting ongoing computation in other layers. This would accommodate models which

may be too large to fit on a single FPGA, and also alleviate expensive global memory reads by keeping

intermediate results in local memory.

Most importantly, when compared to GPUs, FPGAs offer a different perspective on what it means to

accelerate designs on hardware. With GPUs and other fixed architectures, a software execution model

is followed, and structured around executing tasks in parallel on independent compute units. As such,

the goal in developing deep learning techniques for GPUs is to adapt algorithms to follow this model,

where computation is done in parallel, and data interdependence is ensured. In contrast, the FPGA

architecture is tailored for the application. When developing deep learning techniques for FPGAs, there

is less emphasis on adapting algorithms for a fixed computational structure, allowing more freedom to

explore algorithm level optimizations. Techniques which require many complex low-level hardware control

operations which cannot be easily implemented in high-level software languages are especially attractive

for FPGA implementations. However, this flexibility comes at the cost of large compile (synthesis) times,

which is often problematic for researchers who need to quickly iterate through design cycles.

In addition to compile time, the problem of attracting researchers and application scientists, who tend to

favour high-level programming languages, to develop for FPGAs has been especially difficult. While it is

often the case that being fluent in one software language means one can easily learn another, the same

cannot be said for translating skills to hardware languages. The most popular languages for FPGAs have

been Verilog and VHDL, both examples of hardware description languages (HDL). The main difference

between these languages and traditional software languages, is that HDL is simply describing hardware,

whereas software languages such as C are describing sequential instructions with no need to understand

hardware level implementation details. Describing hardware efficiently requires a working knowledge of

digital design and circuits, and while some of the low level implementation decisions can be left to automatic

synthesizer tools, this does not always result in efficient designs. As a result, researchers and application

19

scientists tend to opt for a software design experience, which has matured to support a large assortment of

abstractions and conveniences that increase the productivity of programmers. These trends have pushed

the FPGA community to now favour design tools with a high-level of abstraction.

2.2.1 High-Level Synthesis

Both Xilinx and Altera have favoured the use of high-level design tools which abstract away many of

the challenges of low level hardware programming. These tools are commonly termed high-level synthesis

(HLS) tools, which translate high-level designs into low-level register-transfer level (RTL) or HDL code. A

good overview of HLS tools is presented in [24], where they are grouped into five main categories: model-

based frameworks, high-level language based frameworks, HDL-like languages, C-based frameworks, and

parallel computing frameworks (i.e. CUDA/OpenCL). While it is important to understand these different

types of abstraction tools, this work focuses on parallel computing frameworks, as they provide the most

sensible path to join deep learning and FPGAs.

2.2.2 OpenCL

OpenCL is an open source, standardized framework for algorithm acceleration on heterogeneous archi-

tectures. As a C-based language (C99), programs written in OpenCL can be executed transparently on

GPPs, GPUs, DSPs, and FPGAs. Similar to CUDA, OpenCL provides a standard framework for parallel

programming, as well as low-level access to hardware. While both CUDA and OpenCL provide similar

functionality to programmers, key differences between them have left most people divided. Since CUDA

is the current choice for most popular deep learning tools, it is important to discuss these differences in

detail, in the interest of demonstrating how OpenCL could be used for deep learning moving forward.

The major difference between OpenCL and CUDA is in terms of ownership. CUDA is a proprietary

framework created by the hardware manufacturer NVIDIA, known for manufacturing high performance

20

GPUs. OpenCL is open-source, royality-free, and is maintained by the Khronos group. This gives OpenCL

a unique capability compared to CUDA: OpenCL can support programming a wide variety of hardware

platforms, including FPGAs. However, this flexibility comes at a cost, where all supported platforms are

not guaranteed to support all OpenCL functions. In the case of FPGAs, only a subset of OpenCL functions

are currently supported. While a detailed comparison of OpenCL and CUDA is outside the scope of this

work, performance of both frameworks has been shown to be very similar for given applications [25].

Beginning in late 2013, both Altera and Xilinx started to adopt OpenCL SDKs for their FPGAs [26,

27]. This move allowed a much wider audience of software developers to take advantage of the high-

performance and low power benefits that come with designing for FPGAs. Conveniently, both companies

have taken similar approaches to adopting OpenCL for their devices. The key to understanding OpenCL

is to understand how devices are organized, memory is organized, and how programs are executed. This

amounts to understanding the OpenCL platform, memory, and execution model.

The OpenCL platform model defines how hardware is structured within the OpenCL standard, and is

designed to accommodate heterogeneous accelerators, where one host device is connected to one or more

accelerators (e.g. FPGA, GPU) called compute devices. Each compute device is broken down into multiple

compute units, which are further broken down into processing elements. Computation on a compute device

occurs on the processing elements. These terms are purposefully ambiguous in a way such that compute

devices of variable architectures can be described with useful consistency. A diagram of the OpenCL

platform model is seen in Figure 2.2. It should be noted that while the OpenCL standard can deal with

multiple compute devices, this work addresses the case of a single host interacting with a single compute

device (FPGA).

The OpenCL memory model describes the structure and behaviour of memory within the OpenCL stan-

dard. It includes memory that is exposed to the host and compute devices, and how memory is viewed

from each devices. The following list summarizes the memory model structure.

• Host memory is the region that is only visible and accessible only to the host processor. OpenCL

devices cannot access this memory region, and as such, any data needed by the device must be

21

HOST

Compute Device Compute Unit Processing Element

Figure 2.2: The OpenCL platform model describes a host device (i.e. GPP) connected to one or more
compute devices (e.g. FPGA, GPU) which are broken down into compute units, and processing elements
[28].

transferred to a device-accessible region such as global memory. In FPGA systems, host memory

refers to any memory connected only to the host.

• Global memory is the region that is visible and accessible by both the host processor and device.

While the host controls the access of this memory region prior to kernel execution, once kernel

execution begins this control is handed off to the device. The use of global in this context refers to

the property that all work-items in all work-groups have access to this memory region. In FPGA

systems, global memories are usually off-chip banks connected to the FPGA, such as DDR3 SDRAM.

• Constant memory is a region of global memory that is read-only to the device, and therefore

immutable during kernel execution. In FPGA systems, this memory region is the same as global

memory.

• Local memory is the device region that is only visible to work-items in the same work-group. In

FPGA systems, local memory is implemented with block RAM of the FPGA fabric.

• Private memory is the device region that is only visible to singular work-items. In FPGA systems,

private memory is implemented using registers of the FPGA fabric.

22

Finally, the execution model describes how computation is performed under the OpenCL standard. While

a full description of the this model not necessary to understand this work, the fundamental structure is

described in the following list:

• Context is the environment within which the desired computation is performed, and includes infor-

mation describing the devices, memory, commands, and schedule for execution.

• Program consists of a set of device kernels and other functions, which act as a dynamic library of

functions to perform the desired task.

• Device kernel is the function implementation which is executed on a compute device. While

commonly referred to as simply a kernel, we use the term device kernel in this work is differentiate

from the use of the term kernel in machine learning.

• Work-group is a collection of work-items which execute the same device kernel instance.

• Work-item is the basic unit of work in OpenCL, and is a collection of parallel executions of a

particular device kernel executing on a compute device.

It should be noted that, while the FPGA design tools used in this work fully support OpenCL, the

methodology in which OpenCL is used is slightly different than common OpenCL devices such as GPUs and

GPPs. These important differences are described in Chapter 4 as they become relevant to the discussion.

2.3 Deep Learning Acceleration using GPUs

In practice, most conventional implementations of neural networks use graphics processing units (GPU)

for acceleration. Though originally intended for graphics applications, the use of GPUs for general purpose

computation, GPGPU, is growing in popularity. Conveniently, the hardware requirements of deep learning

and graphics applications are very similar. Firstly, deep learning requires high memory bandwidth to

store large buffers of gradients, activations, and parameters. Graphics applications require high memory

23

bandwidth to store information relating to object textures and colours. Secondly, deep learning requires

a high degree of parallelism to process independent neurons concurrently. Graphics applications require a

high degree of parallelism to process pixels and objects in images concurrently. Deep learning applications

also do not typically require sophisticated branching or control logic, making them a good fit for GPUs

[29].

2.3.1 GPU-Based Deep Learning Frameworks

The large majority of deep learning practitioners use one or more open-source deep learning frameworks

to design and test their models, with these frameworks commonly accessing GPU acceleration through a

CUDA backend. From the perspective of the practitioner, complex deep learning and hardware acceleration

techniques can be accessed through a high-level language such as Python or C++. A block diagram of

abstraction hierarchy for deep learning practitioners is seen in Figure 2.3.

Deep Learning
Framework

(e.g. Caffe,

Theano)

Device Kernels

(e.g. convolution,

pooling)

Hardware Device

(e.g. GPP, GPU)

High-Level
Language

(e.g. C++,
Python)

Parallel
Language

(e.g. CUDA)

Binary

(e.g. cubin)

Deep Learning
Practitioner

Figure 2.3: GPU-based deep learning framework abstraction hierarchy for deep learning practitioners.

From Figure 2.3, we see that the interaction between the deep learning practitioner and the deep learning

framework is a high-level programming language. The programming language is dependent on the choice

of deep learning framework, however, many frameworks include bindings for multiple high-level language

interfaces. A brief overview of these popular deep learning frameworks, including which languages and

backends are supported, is shown in Table 2.1. It should be noted that this table describes only the original

projects, and does not include details on libraries built on top of these frameworks that provide additional

abstractions (e.g. the Lasagne, Keras, or Blocks libraries for Theano).

24

Table 2.1: Overview of supported high-level languages in popular deep learning frameworks

Tool Core Language Bindings CUDA OpenCL

Caffe [3] C++
Python
MATLAB

Yes Unofficial Support

Torch [5] Lua - Yes Unofficial Support
Theano [4] Python - Yes Official Support

TensorFlow [30] C++ Python Yes No Support

At the backend of the deep learning framework, a parallel computing language is used to express the

computationally expensive routines in a structure which allows access to parallel computation. Here,

we define these routines written in a parallel computing language for hardware acceleration as device

kernels. As seen in Table 2.1, most popular deep learning frameworks use CUDA as the backend for GPU

acceleration. However, many tools are starting to support OpenCL as an alternative. While this support

is compatible with many OpenCL devices, FPGAs have unique OpenCL characteristics which means that

these tools would not support FPGAs out-of-the-box simply because they support OpenCL. This issue,

a main concern of this thesis, it addressed in further detail in Chapter 4. Since designing these device

kernels for high performance can be difficult, most deep learning practitioners should attempt to structure

their workflow to reuse existing device kernels, rather than designing new ones. When these device kernels

are needed for needed for execution, they are compiled to executable code (e.g. cubin) which contains

instructions to structure the hardware to perform the required task. This executable code can be compiled

either online (run time) or offline (compile time), and is loaded to the compute device for execution at run

time.

While Figure 2.3 shows how many implementation details of deep learning frameworks are abstracted

away from the practitioner, these details become important for understanding how to design efficiently for

hardware. At a lower level, most deep learning frameworks work fundamentally the same, by creating a

computational graph to describe a deep learning model. In Caffe, for example, computational graphs are

described through the connections of neural network layers (e.g. convolution, pooling) where each layer

contains a function defining the forward (output computation) and backward (gradient computation) activ-

ity of the layer. In Theano, however, computational graphs are described through symbolic mathematical

expressions, which are much more general than just neural networks. These graphs use different types

of nodes (e.g. apply, variable, and operation) to represent mathematical expressions, such as convolution,

25

(a) Caffe computational graph1 (b) Theano computational graph2

Figure 2.4: Computational graphs as represented in Caffe (left) by connections of layers, and Theano (right)
by connections of nodes which describe more general mathematical computation (e.g. apply, variable, and
operator nodes).

which can be used to efficiently build neural networks. These graphs are visualized in Figure 2.4.

Despite the differences in framework structure, the hardware acceleration methodology is very similar

across frameworks. Since computational graphs are modular, device code can be extracted from modular

components of the graph. Typically, device code is organized by the layer structure of the neural network.

For example, consider a convolution layer implemented in Caffe and Theano. In Caffe, a convolution layer

is represented by a node in the computational graph, and the device code for convolution is written as a

member function of that layer. In Theano, convolution is represented as an operator, and so Theano must

intelligently replace convolution operators with the respective device code during an optimization phase.

In addition, the input and output variables would have to be declared as specific types (shared variables)

such that they are located in memory on the hardware device. While we limit our discussion to Caffe and

Theano as examples, these ideas extend to encompass most popular deep learning frameworks. To remain

agnostic to framework specific terminology, we define each section of device code to be accelerated on the

hardware device as a module.

1http://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
2http://deeplearning.net/software/theano/extending/graphstructures.html

26

http://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
http://deeplearning.net/software/theano/extending/graphstructures.html

2.3.2 GPU Parallelism

In deep learning frameworks using GPU acceleration, the modules representing the computationally ex-

pensive operations (e.g. convolution, pooling, etc...) are organized into CUDA subroutines and compiled

either offline or online to be executed on the GPU. While CUDA is a software programming model, some

knowledge about the underlying GPU hardware architecture and parallel programming is required for de-

signing highly efficient device kernels. To ensure consistency, we use OpenCL terminology when describing

parallel architectures, such as work-item (CUDA thread), work-group (CUDA thread block), local memory

(CUDA shared memory), and private memory (CUDA local memory). Despite the differences in termi-

nology, these ideas can be applied to both OpenCL and CUDA designs. Figure 2.5 shows the structure

for accelerating computational graphs on GPUs, including a visualization of GPU parallelism.

Computational

Graph

Module

A
Data

Module

B
Data

Module

C
Data

Module

A/B/C

Module

A/B/C

Module

A/B/C

Module

A/B/C

Hardware Device (GPU)Host (GPP)

Figure 2.5: For GPU acceleration, computational graphs are broken down into modules, which can be
replicated on the GPU to maximize throughput. On GPUs, only one unique module can be executing at
any given time, and each module exchanges data with the GPU between executions.

27

Data Parallelism

Typically, efficient GPU kernel design for deep learning is achieved through data parallelism, which is

often inherent in the pixel-based sensory input (e.g. images and video) relevant to CNNs. The pixels can

be operated on concurrently, as independent local regions. In CUDA, this parallelism is achieved through

tiling, where the problem space is broken down as a grid model. As a grid, the input is partitioned into

small, independent chunks that can be executed in parallel. Each chunk, which will execute as a work-

item, operates on a small enough portion of the data such that it will fit in private memory, reducing the

amount of high latency global memory reads. As such, each kernel operation is described from the point

of view of a single work-item, and this work-item is duplicated enough times to cover the entire problem

space. While other parallel programming techniques are available, this approach is often best for deep

learning, given the satisfaction of the basic assumption of data independence. This idea of low-level data

parallelism within a single image can be extended further to include high-level parallelism across groups

of images. Since input examples are often independent, processing “mini-batches” of typically hundreds

or thousands of input examples is common practice. GPGPU is fundamentally a SIMD approach, as each

kernel performs a single operation (e.g. convolution, pooling, etc...) on multiple pieces of the input data.

Model Parallelism

Where data parallelism uses the same model in every partition but uses different parts of the input data,

model parallelism uses the same input data but splits the model across partitions. Model parallelism can

be especially useful for accommodating large neural network sizes, as well as performing efficient model

search by training multiple networks at the same time and averaging the results. Recent work on multi-

GPU acceleration has used techniques which balance data and model parallelism across different layers of

the network [19].

28

2.4 Summary

In this chapter, we discussed background information on deep learning, FPGAs, and the conventional GPU-

based approach for deep learning acceleration. We focused our deep learning background information on

CNNs, while our FPGA discussion focused on OpenCL as a high level design tool. The background on

the conventional GPU-based approach for deep learning acceleration focused on which frameworks are

commonly used, how they differ, and how parallelism is commonly achieved with GPU acceleration. This

discussion was intended to give an overview on the current state of deep learning hardware acceleration,

so as to better understand how FPGAs may fit into this paradigm. We notice that no commonly used

deep learning frameworks currently support FPGAs.

29

Chapter 3

Literature Review

Since most contemporary work related to deep learning on FPGAs has focused on MLP and CNN archi-

tectures, we focus our literature review to these two architectures. This chapter provides a review of both

MLP and CNN implementations using FPGAs and is written mostly chronologically, outlining important

historical events and leading into the current state-of-the-art.

3.1 Multi-Layer Perceptrons on FPGAs

The first FPGA implementations of neural networks began appearing in the early 1990’s, with the first

implementation credited to Cox et al. in 1992 [31]. While a great change in neural network understanding,

computer hardware, and terminology has changed since this time, the basic functionality of these networks

has remained the same. What began as connectionist classifiers has now become referred to as artificial

neural networks or multi layer perceptrons, and FPGA implementations of these networks were, at first,

strongly limited by the logic density of FPGAs at the time. Still, several strong efforts were seen before

30

the turn of the century, including [32, 33, 34, 35]. A common theme in these early implementations

was to attempt to increase the density of these implementations, and allow for scalable, reconfigurable

architectures of feed-forward neural networks. During this time, dense hardened multiply-accumulate

(MAC) units were not available in most FPGAs. As a result, the heavy multiplication requirements of

these networks were resource expensive on FPGAs, as they had to be realized using the generic FPGA

fabric. For a review of ANN progress during the first decade of existence, readers are encouraged to

read the work of Zhu et al. circa 2003 [36]. Another similar review conducted by Omondio et al. in

2006, focused on specific papers that, to date, marked important progress towards the goal of FPGA-

based neurocomputers [37]. This includes an in-depth look at multi-layer MLPs [38], accelerating back

propagation [39, 40], and the impact of arithmetic representation for MLPs [41]. The next decade of

progress for FPGA implementations continued in a similar trend, with special interests in efficiency as

the capabilities of modern FPGAs grew, and applications of neural networks began to see adoption in a

more mainstream sense. Vitabile et al. demonstrated efficient MLP designs in [42], while designs for low

cost FPGAs began to emerge, such as that presented by Ordonez et al. [43]. For a more detailed look at

progress during this second decade of existence, readers are encouraged to look at the work of Misra et

al. [44]. Of additional interest to readers of this survey may be the treatment of both alternative network

structures, and alternative learning schemes, topics of which are outside the scope of this thesis.

The third decade of existence brings us to our current state, which inches closer to the goal of realizing

complete deep learning systems on FPGAs. Up until now, however, learning had been mostly considered

a separate problem from evaluation (forward propagation with no learning) of the model. As such, most

designs involved off-chip learning, where the weights were exported and fixed within the FPGA, greatly

reducing the complexity of the design. While this is acceptable for many applications, the goal of deep

learning on FPGAs is one where learning is done on-chip, something that only became possible for large

networks on single FPGAs somewhat recently. Readers are encouraged to investigate a survey of on-chip

learning realizations for FPGAs by Lakshmi et al. for a more detailed discussion [45]. One of the first

efforts in realizing this goal is done by Gomperts et al., who describe a platform implemented in VHDL

which offers a high degree of parametrization [46]. This effort highlights an important groundwork for more

recent FPGA deep learning achievements, and marks a shift in focus to CNNs for more application-oriented

designs.

31

3.2 Convolutional Neural Networks on FPGAs

Similar to the MLP, the first FPGA implementations of convolutional neural networks (CNN) began

appearing in the mid-to-late 90’s. Cloutier et al. were among the first to explore these efforts, but were

strongly limited by FPGA size constraints at the time, leading to the use of low-precision arithmetic [47].

In addition, because FPGAs at this time did not contain the MAC units that are present in today’s FPGAs,

arithmetic was also very slow in addition to being resource expensive. Since this time, FPGA technology

has changed significantly. Most notably, there has been a large increase in the density of FPGA fabric,

motivated by the decreasing feature (transistor) size, as well as an increase in the number of hardened

computational units present in FPGAs. State-of-the-art FPGA implementations of CNNs take advantage

of both of these design improvements.

To the best of our knowledge, state-of-the-art performance for forward propagation of CNNs on FPGAs

was achieved by a team at Microsoft. Ovtcharov et al. have reported a throughput of 134 images/second on

the ImageNet 1K dataset [6], which amounts to roughly 3x the throughput of the next closest competitor,

while operating at 25 W on a Stratix V D5 [48]. This performance is projected to increase by using top-of-

the-line FPGAs, with an estimated throughput of roughly 233 images/second while consuming roughly the

same power on an Arria 10 GX1150. This is compared to high-performing GPU implementations (Caffe +

cuDNN), which achieve 500-824 images/second, while consuming 235 W. Interestingly, this was achieved

using Microsoft-designed FPGA boards and servers, an experimental project which integrates FPGAs into

datacenter applications. This project has claimed to improve large-scale search engine performance by a

factor of two, showing promise for this type of FPGA application [49].

Other strong efforts include the design proposed by Zhang et al., referenced above as the closest competitor

achieving a throughput of 46 images/second on a Virtex 7 485T, with an unreported power consumption

[50]. In this paper, Zhang et al. show their work to outperform most of the main strong competitors in this

field, including [51, 52, 53, 54, 55]. Most of these implementations contain architecturally similar designs,

commonly using off-chip memory access, configurable software layers, buffered input and output, and

many parallel processing elements implemented on FPGA fabric (commonly used to perform convolution).

However, important FPGA specific differences exist, such as using different memory sub-systems, data

32

transfer mechanisms, soft-cores, LUT types, operation frequencies, and entirely different FPGAs, to name

a few. As a result, it is hard to determine specific optimal architecture decisions, as more research is

needed.

Since pre-trained CNNs are algorithmically simple and computationally efficient, most FPGA efforts have

involved accelerating the forward propagation of these models, and reporting on the achieved throughput.

This is often of most importance to application engineers who wish to use pre-trained networks to process

large amounts of data as quickly and efficiently as possible. However, this only represents one aspect of

CNN design considerations for FPGAs, as accelerating backward propagation on FPGAs is also an area

of interest. Paul et al. were the first to completely parallelize the learning phase of an MLP on a Virtex

E FPGA in 2006 [39]. Other notable efforts include Savich et al. who demonstrated a scalable MLP

back propagation implementation on FPGAs that achieved orders of magnitude greater performance over

software implementations [56].

3.3 Summary

In this chapter, we reviewed contemporary literature related to the implementation of MLPs and CNNs on

FPGAs. We reviewed this literature in a chronological order where possible, giving a general impression

of the history of MLPs and CNNs on FPGAs. We notice that, to the best of our knowledge, no other work

has focused on the practical integration of FPGAs into common deep learning frameworks.

33

Chapter 4

Methodology

While the conventional approach of using GPUs has been a valuable contributor to the success of deep

learning, hardware acceleration is becoming even more important as the scaling and complexity of these

techniques continues to grow. As a result, there is an increasing research interest in alternative acceleration

schemes and architectures, and in this work we explore FPGAs as an alternative architecture for deep

learning acceleration.

This chapter discusses the methodology of this work as it relates to the development of a practical FPGA

acceleration platform for deep learning. We begin by discussing the framework from a high level, and make

important comparisons to the conventional GPU-based approach from a parallel programming perspective.

Next, we discuss the practicality of this framework, in relation to several important challenges. Finally,

we discuss the important details of this framework, including memory structure, device kernel design

strategies, and optimizations which are introduced at the layer, device kernel, and bit level.

34

4.1 Deep Learning Acceleration using FPGAs

To best understand the methods employed in this work, let us revisit our motivating question:

Can FPGAs be used as a practical acceleration platform for deep learning?

This objective can be broken down into a few fundamental parts, which can be addressed and discussed

independently. At the heart of this objective is the investigation of an FPGA platform for deep learning.

While many platforms for deep learning exist, as were discussed in Chapter 2 (e.g. Caffe, Theano), these

platforms favour GPU backends. In this work, we focus on the development of a platform for deep

learning on FPGAs which functions similarly to the conventional GPU-based approach. This development

includes both the theoretical discussion of a design flow which accommodates FPGAs, and the actual

implementation of the framework. This topic is introduced in Section 4.1.1, and discussed throughout

Section 4.2.

Next, the acceleration component of this work involves the investigation of optimization techniques for

deep learning that are specific to FPGAs. While this work focuses on the high level ideas of deep learning

on FPGAs and is not solely focused on performance, there are many design choices made which are per-

formance driven. As such, we focus our work on developing model-specific optimizations which accelerate

CNNs, and provide an empirical assessment of their performance. This topic is introduced in Section 4.1.2

with important details outlined in Section 4.2, and the results are discussed in Chapter 5.

Finally, the concept of practicality is essential to this work. While contemporary work has been successful

in demonstrating the performance of FPGAs for deep learning tasks, much of this work does not address the

practical challenges of integrating FPGAs into software frameworks. As a result, it is unclear if software-

oriented deep learning practitioners can benefit from the use of FPGAs. The discussion of practicality

in this work is centered around a few important challenges posed by using FPGAs, such as design effort,

design iteration, model exploration, and multi-device parallelism. This topic is introduced in Section 4.1.3,

and is continuously touched on with the framework details of Section 4.2.

35

4.1.1 FPGA-Based Deep Learning Frameworks

As discussed in Chapter 2 and summarized in Table 2.1, most popular deep learning frameworks have

limited or incomplete support for OpenCL. As well, given the non-standard OpenCL support for FPGAs,

frameworks with standard OpenCL backends will not work with FPGAs out-of-the-box, and would need

significant structural changes to make this accommodation. Given these difficulties, there are currently

no widely-used deep learning frameworks which support FPGAs for acceleration. In response, the main

deliverable of this thesis is the development of a deep learning framework which includes support for

FPGAs, and addresses important limitations of similar work.

From the perspective of the deep learning practitioner (end user), the user experience for a deep learning

framework with FPGA support remains the same as the GPU alternative. In fact, the goal of a well-

constructed framework should be to keep the user agnostic to the hardware implementation details, and

simply give the choice of platform for acceleration at runtime. The abstraction hierarchy is therefore very

similar to the GPU-based approach, as seen in Figure 4.1, with the differences emphasized with asterisks.

Deep Learning
Framework

(e.g. Caffe,

Theano)

Device Kernels

(e.g. convolution,

pooling)

Hardware Device

(e.g. GPP, GPU,

*FPGA)

High-Level
Language

(e.g. C++,
Python)

Parallel
Language

(e.g. CUDA,
*OpenCL)

Binary

(e.g. cubin,
*xclbin)

Deep Learning
Practitioner

Figure 4.1: In the FPGA-based deep learning framework abstraction hierarchy, the differences (*) from
the GPU-based approach are not visible to deep learning practitioners.

By using a parallel programming language which supports FPGAs, we are able to design device kernels

which compile into binary (e.g. xclbin) which can be used to program an FPGA. It should also be noted

that, since these changes are far removed from the user (i.e. to the right in Figure 4.1) these differences

are not visible to the typical deep learning practitioner. However, these changes are important to anyone

designing at a lower level, such as directly designing device kernels. While the framework developed in this

work uses this model of abstraction hierarchy, there are several challenges unique to FPGAs which make

36

this development more difficult than the GPU-based alternative, discussed in more detail in section 4.1.3.

4.1.2 FPGA Parallelism

While GPPs and GPUs rely on executing parallel threads on multiple cores, FPGAs have the ability to

create customized hardware circuits, allowing a more sophisticated type of parallelism called deep pipeline

parallelism. Simply put, FPGAs can break down a complicated algorithm into stages, executing different

stages on different parts of the data concurrently. Often this helps achieve higher throughput than the

equivalent parallel techniques provided by GPUs and GPPs.

Pipelining has particular importance for deep learning. At the layer level, pipelining can be used to execute

different layers concurrently to achieve high throughput. Consider a simple example of a CNN with five

layers - convolution (Conv), rectified linear unit activation (ReLU), local response normalization (Norm),

max pooling (Pool), and a fully connected (Full) layer. Assuming that each layer has an equivalent execu-

tion time of one time unit, Figure 4.2 shows the throughput over 10 time units for several parallelization

schemes, where each group of coloured blocks represents a single mini-batch of data that is being processed.

This example is inspired by a whitepaper from Acceleware [57].

For the single input single data (SISD) scheme, execution is performed as a single thread, and so 2 mini-

batches of data are processed over 10 units of time. The throughput for SISD, which is representative of

how a single core GPP would handle this problem, is 1 work-item per 10 clock cycles. For the single input

multiple data scheme, assuming 3 work-items can be processed in parallel, a total of 6 mini-batches of

data are processed. The throughput for the SIMD parallelism, which is found in GPUs, is 3 work-items

per 10 clock cycles. For the pipeline parallelism scheme, a total of 6 mini-batches of data are processed,

which is equivalent to the SIMD approach. However, the pipeline parallelism strategy, which is possible

on FPGAs, has a max throughput of 5 work-items per 10 clock cycles, which is higher than both the

SIMD and SISD approach. Though SIMD and pipeline parallelism processed the same amount of data in

this example, since the pipeline parallelism experiences a higher throughput it would become much more

efficient as additional mini-batches are processed.

37

Norm

1

ReLU

1
Conv
1

Pool

1
Full
1

Conv
2

ReLU
2

Norm
2

Pool
2

Full
2

Full

6

Pool

1

ReLU

1

Conv

1

Norm

1
Full
1

Conv
4

ReLU
4

Norm
4

Pool
4

Full
4

Full

5

Pool

5

Norm

5

ReLU

5

Conv

5

Conv

6

ReLU

6

Norm

6

Pool

6

Full

3

Full

2

Pool

2

Pool

3

Norm

3

Norm

2

ReLU

2

ReLU

3

Conv

3

Conv

2

Conv

1

Conv

2

Conv

3
Conv
4

Conv
5

Conv
6

ReLU

1

ReLU

2

ReLU

3

ReLU

4

ReLU

5

ReLU

6

Norm

1
Norm
2

Norm
3

Norm
4

Norm
5

Norm
6

Pool
1

Pool

2
Pool
3

Pool
4

Pool
5

Pool
6

Full
1

Full
2

Full
3

Full
4

Full
5

Full
6

SISD
 (e.g. GPP)

Clock Cycles

W
o

rk
 I

te
m

s

SIMD
Parallelism
(e.g. GPU)

Pipeline
Parallelism
(e.g. FPGA)

Figure 4.2: Consider a simple 5-layer CNN. Let each block represent one layer and each group of coloured
blocks represent one “mini-batch” of data. In 10 units of time, both the FPGA and GPU complete 6
“mini-batches” of data compared to 2 on the GPP. The FPGA, using pipeline parallelism, achieves the
highest maximum throughput of 5 work-items.

Figure 4.3 shows a visualization of how this example is implemented on an FPGA to achieve pipeline

parallelism. Notice that, while the computational graph is identical to that of the GPU-based approach,

the FPGA is able to execute multiple layers concurrently, while performing fewer memory transactions

38

with the host. Kernel to kernel communication is accomplished using FIFOs local to the FPGA. Another

interesting feature is the ability for FPGAs to replicate circuits in hardware to achieve another level of

parallelism. To use SDAccel terminology, we can instantiate multiple compute units, where each compute

unit contains an identical copy of the circuit, including its own local memory. To relate to the previous

example, each compute unit containing a full copy of the network could each handle one separate image

concurrently. In practice, one must explore the tradeoff of exhausting parallelism within a circuit compared

to across replications of that circuit. Further discussion of this parallelism strategy, as well as best practices,

is found in section 4.2.4 discussing pipeline layers in the FPGA Caffe framework.

Computational

Graph

Conv
Data

Data

Hardware Device (FPGA)

ReLU

Norm

Pool

Full

Host (GPP)

Conv FIFO ReLU FIFO Norm FIFO Pool FIFO Full

Conv FIFO ReLU FIFO Norm FIFO Pool FIFO Full

Conv FIFO ReLU FIFO Norm FIFO Pool FIFO Full

Conv FIFO ReLU FIFO Norm FIFO Pool FIFO Full

Compute Unit 0

Compute Unit 1

Compute Unit 2

Compute Unit 3

Figure 4.3: For FPGA acceleration, computational graphs are broken down into modules (e.g. layers of a
CNN), which can be grouped together in a single binary. To maximize throughput, circuits can also be
replicated (compute units in SDAccel). In contrast to GPUs, several unique modules can be executing
at any given time and data can be exchanged between modules on the FPGA using local data structures
(i.e. FIFOs), alleviating the need for each module to exchange data with the host.

Pipeline parallelism is commonly applied at the loop level, where instructions can be pipelined across loop

iterations to keep resources busy. On GPUs, the most efficient SIMD parallelism is achieved when loops

carry no dependencies across loop iterations. It is often difficult to avoid loop-carried dependencies, and so

GPU resources may remain idle leading to suboptimal performance. However, FPGAs are able to achieve

39

more performance by executing the next iteration of the loop concurrently as soon as the dependency is

fulfilled. This is called loop pipeline parallelism, and is typically accessed through vendor extensions of

the OpenCL framework, such as the command xcl_pipeline_loop.

4.1.3 FPGA Challenges

Recent work on using FPGAs for deep learning has shown promising results for metrics such as throughput

and performance per watt [10]. However, much of this work does not focus on the practicality of FPGAs

compared to GPUs for typical deep learning workflows. Some of the commonly ignored challenges specific

to FPGAs are listed below.

1. Design Effort: Many current solutions for deep learning on FPGAs involve a large amount of

hardware design effort using FPGA-specific languages at a high-level such as HLS, or a low-level

such as HDL or RTL. These languages require hardware-specific knowledge to use effectively, and

are not accessible to deep learning scientists who are accustomed to software designs. In addition,

these languages do not integrate well with deep learning frameworks, and so this work is often not

useful for practical deep learning. For current GPU-based solutions, the CUDA framework provides

an accessible software interface to the underlying hardware.

To address this issue, this work uses OpenCL as an interface between the deep learning software

and FPGA hardware. As a high-level parallel programming language, this interface is much more

familiar to software programmers who are accustomed to the CUDA interface. In this work, both the

host and device kernel code are written using OpenCL, meaning much of the convenience of using

deep learning frameworks is retained.

2. Design Iteration: The synthesis time for complex FPGA designs can be very large (tens of min-

utes to hours), making it unsuitable for just-in-time compilation methods employed in some deep

learning frameworks. For current GPU-based solutions, CUDA code has a very small compile time

(milliseconds) which makes just-in-time compilation practical.

To address this issue, this work employs an offline compilation strategy, where device binaries are

40

created in a one-time offline compilation. At runtime these binaries are used to program the FPGA

with a very small latency (tens of milliseconds), allowing a similar workflow experience to that of using

a GPU with just-in-time compilation. Since certain hyper-parameter settings are fixed within each

binary (e.g. convolution filter size), several binaries are compiled for each popular hyper-parameter

setting. We argue that, since input and layer sizes are still variable in these binaries, and only a few

hyper-parameter combinations are commonly used (e.g. convolution filter size of 3×3, 5×5, 7×7),

this design choice is practical.

3. Model Exploration: Most current work focuses only on deployment on FPGAs, and does not

address training. Deployment is a much simpler problem at the hardware level as model parameters

are fixed, but training is also an important problem in acceleration as models grow in size and com-

plexity. For current GPU-based solutions, frameworks that implement both training and deployment

techniques are used in practice.

While this work focuses only on deployment, both training and deployment are easily supportable,

since this work extends the Caffe architecture. Currently, we have implemented the deployment

(forward) kernels necessary for common CNNs architectures such as Alexnet [6] and will implement

training (backward) support in the future. Given the modularity between the solver, network,

and layer in Caffe, only the layers need to be modified to accommodate backward propagation.

Each layer class has a forward and backward method for supporting multiple hardware devices

(e.g. forward_cpu, forward_gpu). For example, when executing training on an FPGA, the solver

(e.g. stochastic gradient descent, RMSprop) calls the forward_fpga method for each layer of the

network to produce the output and loss, then calls the backward_fpga methods of each layer to

generate gradients, and produce a weight update which minimizes the loss. Given the implementation

of the forward_fpga methods, supporting training involves implementing the backward_fpga

methods, with the infrastructure needed for defining the network and performing weight updates

already in place.

4. Multi-Device Parallelism: With the scaling of deep learning continuing to grow, multi-device

acceleration schemes are becoming essential. The issue of limited memory on GPUs to support model

parallelism is addressed by scaling to using multiple-GPUs. Even with simple data parallelism, it is

often desirable to scale up to an amount of GPUs larger than what would traditionally fit in a single

node (e.g. 4 or 8 GPUs). While multi-GPU in a single node allows high performance, technologies

41

such as NVIDIA GPUDirect allows high performance across nodes by allowing GPU-GPU memory

transfers between GPUs on different nodes without host memory intervention. Largely, the challenges

of multi-GPU support are algorithmic given the standardization of networking infrastructure. For

current GPU solutions, the use of multi-GPU clusters with Infiniband interconnects and MPI is a

common approach [1]. However, there is no consensus technology enabling multi-FPGA systems that

is available to deep learning scientists.

This work does not address the issue of multi-FPGA parallelism, but acknowledges the importance

of this functionality moving forward. On the FPGA side, the problem is mainly in hardware, as

interconnects and multi-FPGA technologies are non-standard. Once this hardware is standardized,

FPGAs can exploit the parallel algorithms that have been developed on GPPs and GPUs.

5. Economic Factors: While both FPGA and GPU technologies have a range of devices which appeal

to the trade-off of performance and cost, it is typically the case that FPGAs tend to be more expensive

than GPUs for a given computational capability [58]. This makes the justification of FPGAs for cost-

sensitive applications difficult, as the initial investment for FPGAs can be greater than for GPUs.

This work addresses the economic factors of FPGA practicality through the assessment of perfor-

mance metrics which include a measure of power consumption. This assessment is most important for

data center applications, where the ongoing electricity costs affected by power consumption greatly

outweigh the initial investment for long term economic decisions.

4.2 FPGA Caffe Framework

We demonstrate a practical deep learning framework which addresses the challenges of integrating FPGAs

into a deep learning design flow. This framework, FPGA Caffe, is an extension of the popular Caffe

deep learning framework. While CUDA provides support for GPPs and GPUs, we extend this support

to include FPGAs through OpenCL. Specifically, we use the Xilinx SDAccel v2015.1 [27] tool to facilitate

this support.

42

4.2.1 Deployment Architecture

The structure of support for hardware devices is mirrored after the existing Caffe support for GPP and GPU

execution. In addition to the CUDA backend, an OpenCL backend is used to support FPGA execution.

The OpenCL backend includes both host code for handling memory synchronization between the host and

FPGA, and device code which implements the required deep learning operations on the FPGA. For each

layer type used in AlexNet, an OpenCL device kernel implementation was created which accelerates that

layer on the FPGA. This is done through implementing forward_fpga forward propagation functions

in addition to the existing forward_cpu and forward_gpu functions. As such, there exist three sets

of implementations for each layer type in AlexNet: a C++ implementation for GPP execution, a CUDA

implementation for GPU execution, and an OpenCL implementation for FPGA execution. At runtime,

the user can specify the desired hardware execution device. For example, assuming the user is using the

command line interface, the GPU is specified using -gpu=1, and the FPGA is specified using -ocl=1,

where the numeric value indexes the hardware device in the case of multiple devices on the same system.

If no flag is specified, the GPP is used by default. Figure 4.4 shows an overview of this architecture for an

example where a user wishes to classify an image using an FPGA to accelerate deployment.

4.2.2 Memory Architecture

In Caffe, data is stored in a wrapper called a blob, which is a unified memory interface abstracting away the

synchronization details between the host and hardware device. Blobs are used to store batches of images,

parameters, and gradients, and pass them between layers. While a blob is an N-dimensional array stored

in a C-contiguous fashion, blobs are typically 4-dimensional (number of images × number of channels ×

height × width) and row-major. While this interpretation is specific to image data, blobs in Caffe can be

reinterpreted to represent non-image data. For each layer in a Caffe model, there is a bottom blob, which

represents data being passed from the previous layer, and a top blob, which represents data being passed

to the next layer. For the Caffe GPU backend, to facilitate synchronization each blob uses a synchronized

memory class SyncedMem which has both mutable and static access methods, depending on whether or

not one wishes to change the values of the blob. If the blob is located on the GPP, and the blob is requested

43

Deep Learning
Practitioner

Deep Neural Network
AlexNet (CNN)

C++ CUDA OpenCL

 cat

FPGA Caffe

Device Kernels
Forward_GPP

Device Kernels
Forward_GPU

Device Kernels
Forward_FPGA

GPP
Acceleration

GPP + GPU
Acceleration

GPP + FPGA
Acceleration

.xclbin.cubin.o

Thesis Contributions

Network
Definition

Parallel Computing
Backend

Device Kernels

Compilation
Strategy

Hardware
Acceleration

Input

Output

Computational Graph
Convolution Layer, Pooling Layer, etc...

GPP
Optimizations

BLAS

GPU
Optimizations

cuDNN

FPGA
Optimizations

Pipelining

Computational
Graph

Hardware-Specific
Optimizations

Selects Task
Defines Network

Selects Accelerator

Figure 4.4: This figure demonstrates a more complete picture of the FPGA Caffe framework compared
to Figure 1.1 in Chapter 1. We see that each hardware-specific data path shares the same computational
graph, which is composed of layers specific to the AlexNet CNN. Hardware-specific optimizations for
FPGAs are achieved through strategies such as pipelining, while for GPPs this can be achieved through
different linear algebra (BLAS) packages, and for GPUs this can be achieved through optimized deep
learning libraries (cuDNN). It should be noted that FPGA the device kernel binaries (.xclbin) are compiled
offline, and are used to program the FPGA at runtime.

44

for a GPU operation, the SyncedMem class will use CUDA API calls to copy the data from GPP to GPU.

For the FPGA Caffe implementation, memory synchronization is achieved in a similar fashion. Instead

of CUDA API calls for data transfers, OpenCL API calls are used to regulate memory transfers between

the host and FPGA. Specifically, the location of a blob is tracked using a pointer, which can either be in

the state called HEAD_AT_OCL indicating that it is residing on the FPGA, or SYNCED meaning that the

data has been synchronized with the host and is located on the GPP. For example, if calling the method

to_cpu (indicating a desired memory transfer of FPGA to host GPP) host memory is allocated and the

OpenCL API function clEnqueueReadBuffer will be executed, which reads memory from the FPGA

to the host GPP.

4.2.3 Device Kernel Design

By using OpenCL for design, software programmers are able to create FPGA kernels through our frame-

work with little or no hardware knowledge required. In this work, we restrict ourself to optimizations

that are achieved through SDAccel vendor extensions, such as loop unrolling and loop pipelining. To

demonstrate the design effort of these vendor extensions, consider an example where the summation of all

pixel values in a image is required. When using OpenCL to design this kernel for a GPU, a typical design

would use tiling and kernel concurrency. Since the work-item is indexed using get_global_id(0), and

the size of the work-group is given using get_global_size(0), we could express the loop as follows:

for (int i = get_global_id(0); i < IMG_SIZE; i += get_global_size(0)) {

SUM += IMG[i];

}

For regular image sizes, where IMG_SIZE = get_global_size(0), the compiler will create as many

work-items as needed to index the entire image, and if the number of GPU cores available is greater than

or equal to the image size, these work-items will execute concurrently. If the image size is irregular and

45

IMG_SIZE != get_global_size(0), the compiler will tile kernels over the problem space as necessary.

The approach for FPGAs is very simple. By simply using the SDAccel vendor extension __attribute_

_((opencl_unroll_hint)) for unrolling a loop fully, the compiler will execute each iteration of the

loop concurrently on the FPGA:

__attribute__((opencl_unroll_hint))

for (int i = 0; i < IMG_SIZE; i += 1) {

SUM += IMG[i]

}

For GPUs the kernel is designed from the perspective of the work-item, while for FPGAs the kernel is

designed from the perspective of the entire problem space. The device kernel designs used in this work,

described below, make heavy use of these vendor extensions for optimization.

Fully Connected Layers

Since fully connected layers can be expressed as a simple general matrix to matrix multiplication (GEMM),

the device kernel design for this layer is fairly straightforward, and is usually done in a single nested loop.

However, this logic becomes slightly complicated when using vectorization data types available in OpenCL

which improve performance. Vector data types are data types which create a wide computation data

path by allowing each element in a buffer to represent a vector, as opposed to a scalar which is typically

represented by a single buffer element. For example, a float8 data type handles a vector of 8 floating

point values at each element of the buffer, where each of the 8 elements can be accessed as: buffer.s0,

buffer.s1 . . . buffer.s7. This vector data type greatly improves performance over unvectorized code,

as each element of each vector can be accessed in the same clock cycle. For a given loop which requires

accessing each element of a buffer, this would amount in 8× fewer loop iterations. However, this complicates

our logic for computing fully connected layers, as we need a separate step to perform summations on each

vector element. Algorithm 1 shows pseudocode for the fully connected OpenCL device kernel, where the

46

GEMM is broken down into two seperate loops, one for calculating the product, and one for calculating

the sum. It should be noted that each of these loops have an SDAccel directive xcl_pipeline_loop,

which tells the SDAccel compiler to look to optimize these loops by both full unrolling and pipelining

instructions within iterations. This algorithm uses float8 vector data types, meaning loop bounds are

reduced by a factor of 8.

Algorithm 1 Fully Connected OpenCL Device Kernel Pseudocode

define K as input layer size, N as output layer size

function FC(float8* A (in), float8* B (weights), float8* OUT (out))

local float8 product[N*K/8]

local float8 sum[N*K/8]

// Copy A from global memory to local memory

// Copy B from global memory to local memory

xcl pipeline loop:

for i=0 to i= N*K/8 do

prod[i] = A[i]*B[i]

end for

xcl pipeline loop:

for i=0 to i= N*K/8 do

sum[i] += product[i].s0 + ... + product[i].s7

end for

// Copy results from local memory (sum[N*K]) to global memory (OUT)

end function

In addition to vector data types, the other interesting things to note about this kernel is that buffers which

are required as function parameters (namely input, weights, and output data) are copied to local memory

when being accessed. This is crucially important, as if these buffers are not copied to local memory,

they are copied from global memory each time they are required. This would cause serious performance

limitations, and global memory accesses are much slower than local memory.

47

Convolutional Layers

In terms of computational requirements, convolution is the most expensive layer in CNNs. Algorithmically,

convolution involves looping over both the input image and convolution filter, performing multiplications

and additions at each step. While the convolution implementation used in this work is far from optimal, it

demonstrates a viable solution that tailors optimizations to the FPGA device. Similar to fully connected

layers, the input, convolution filters (weights), and output are all copied from global to local memory while

being accessed inside of this kernel. One interesting design choice to notice is that the loop pipelining

directive and a local memory copy are applied not at the outermost loop, but towards the inside of the

4-dimensional nested loop. This is largely due to the fact that the loop dimensions grow rapidly given the

size of the images and filters, and so pipelining and unrolling all iterations of the loops makes synthesis of

the circuit impossible. Given how SDAccel pipelined loops cannot also be partially unrolled, this design

choice was largely a limitation of the current state of the tools and hardware. While we cannot determine

exact speed-up of unrolling the entire loop due to these synthesis issues, we can assume that the speed-up

is proportional to the number of sequential loop iterations that are unrolled, given our experiences with

full unrolling of loops for other layers. The convolution pseudocode is found in Algorithm 2.

ReLU Activation

ReLU activations are a very straightforward computation, requiring only a condition statement which

retains the value if greater than 0, or outputs a 0 otherwise. This logic is only slightly complicated by the

vector data types used in OpenCL to improve performance, as seen in Algorithm 3. It should be noted

that since we cannot compute the conditional on all vector elements at the same time, they need to be

split apart within our pipelined loop.

48

Algorithm 2 Convolution OpenCL Device Kernel Pseudocode

define IN ROWS as number of rows in input, IN COLS as number of columns

define FILT ROWS as number of rows in filters, FILT COLS as number of columns

define OUT ROWS as number of rows in output, OUT COLS as number of columns

define PAD as padding, STRIDE as stride

function Conv(float* A (input), float* B (filters), float* OUT (output))

local int idx out, idx in, idx filt

// Copy B from global memory to local memory

OUT COLS = ((IN COLS-FIL COLS+(2*PAD))/STRIDE))+1

OUT ROWS = ((IN ROWS-FIL ROWS+(2*PAD))/STRIDE))+1

for i=0 to i= OUT ROWS do

for j=0 to j= OUT COLS do

// Copy A from global memory to local memory

xcl pipeline loop:

for k=0 to k= FILT ROWS do

for l=0 to l= FILT COLS do

idx y = i * STRIDE - PAD + k

idx y = j * STRIDE - PAD + l

if 0 ≤ idx y ≤ IN ROWS and 0 ≤ idx x ≤ IN COLS then

idx out = i * OUT COLS + j

idx in = in y * IN COLS + in x

idx filt = k * FILT COLS + k

OUT[idx out] += A[idx in] * B[idx filt]

end if

end for

end for

end for

end for

// Copy OUT from local memory to global memory

end function

49

Algorithm 3 ReLU Activation OpenCL Device Kernel Pseudocode

define N as output size

function ReLU(float8* A (input), float8* OUT (output))

// Copy A from global memory to local memory

xcl pipeline loop:

for i=0 to i= N*/8 do

OUT[i].s0 = (A[i].s0 < 0) ? 0: A[i].s0)

. . .

OUT[i].s7 = (A[i].s7 < 0) ? 0: A[i].s7)

end for

// Copy OUT from local memory to global memory

end function

Pooling Layers

The max pooling device kernel in this work uses similar techniques to other kernels, using local memory

copies and pipelined loops. It should be noted that, since there exists some logic inside loops that are

not the innermost loop, this nested loop is considered imperfect and is not ideal for optimization. We

use the definition of perfect loop as defined in the Xilinx HLS tool, where only the innermost loop has

contents, there is no logic between loop statements, and loop bounds are constant. Further improvements

to Algorithm 4 would come from finding a way to ensure the entire nested loop is perfect.

Local Response Normalization Layers

The implementation of local response normalization layers is similar to previous examples, with local

memory copies and pipelined loops being used. We can conclude, from the pseudocode seen in Algorithm

5, that since each mathematical expression relies on the previous, the compiler will be unable to fully

pipeline many of these expressions.

50

Algorithm 4 Max Pooling OpenCL Device Kernel Pseudocode

define IN ROWS as number of rows in input,IN COLS as number of columns

define OUT ROWS as number of output rows, OUT COLS as number of columns

define POOL ROWS as number of filter rows, POOL COLS as number of columns

function Pool(float8 A (input), float8 OUT (output))

local int value, maximum

// Copy A from global memory to local memory

xcl pipeline loop:

for i=0 to i= OUT ROWS do

for j=0 to j= OUT COLS do

in x = i * STRIDE

in y = j * STRIDE

for k=0 to k= POOL ROWS do

for l=0 to l= POOL COLS do

value = A[(in y + k) * IN COLS + in x + l]

if value < maximum then

maximum = value

end if

end for

end for

OUT[i * OUT COLS + j] = maximum

end for

end for

// Copy OUT from local memory to global memory

end function

51

Algorithm 5 LRN OpenCL Device Kernel Pseudocode

define IN ROW as number of input rows,IN COL as number of columns

define LOCAL SIZE as the number of neighbouring images to normalize

define ALPHA, BETA, INV SIZE as LRN parameters

function LRN(float* A (input), float* OUT (output))

// Copy A from global memory to local memory

xcl pipeline loop:

for i=0 to i=IN ROW do

for j=0 to j=IN COL do

for k=0 to k=LOCAL SIZE do

value = A[(k * IN ROW + i) * IN COL + j]

scale = value * value

end for

scale = scale * ALPHA * INV SIZE + 1

arg = -1 * BETA * log(scale)

OUT[i * OUT COL + j] = A[(IN ROW + i) * IN COL + j] * exp(arg)

end for

end for

// Copy OUT from local memory to global memory

end function

52

4.2.4 Layer Extensions

In addition to improving design effort at the kernel level, the proposed framework attempts to make

optimizations easier at the layer level. To realize this, we introduce layer extensions as a part of the FPGA

Caffe framework. To demonstrate why these are used, consider the standard approach, where GPU kernels

are exchanged for FPGA kernels. Where each GPU kernel takes fractions of a millisecond to compile and

execute at runtime, programming the FPGA over PCIe can take anywhere from 150 - 300 ms for kernels

of small to medium complexity. This is a significant bottleneck in performance, as for small kernels the

time to program the FPGA can be as much as 20x larger than the time to complete the computation. To

deal with this bottleneck, we introduce two layer-based extensions to the Caffe framework; programming

layers and pipeline layers.

Programming layers are introduced as a method to allow explicit control of how the FPGA is programmed

at the model level. These layers are created as any other layer in a Caffe model declaration, but with

only the binary and kernel names as arguments. This layer simply passes through the data untouched,

programs the FPGA with the indicated binary over PCIe, and creates pointers in memory to the kernels

now residing on the FPGA. For benchmarking, the timing of this layer indicates how long it took to

program the FPGA.

Pipeline layers are introduced as a method for reducing the amount of times the FPGA is programmed,

reducing the number of global memory reads, and increasing throughput. The primary motivation is to

reduce the number of programming layers by packaging multiple kernels into a single binary container.

Figure 4.5 demonstrates a simple example with one convolution and one pooling layer.

In the standard GPU-based approach, the FPGA is programmed once before the convolution layer Conv,

and once before the pooling layer Pool. In addition, global memory operations are performed before and

after the execution of each kernel. The logical improvement is the single kernel non-pipeline approach,

where both convolution and pooling are combined sequentially into a single kernel inside of a single binary

container. This reduces both the amount of required programming layers and global memory operations

by half, as the data shared between each operation stays in private memory on the FPGA. However,

53

Conv

Convolution Layer

M
E

M
 R

/
W

M
E

M
 R

/
W

Conv

XCLProgram Layer

Program
FPGA

(Conv)
Conv

Pooling Layer

M
E

M
 R

/
W

M
E

M
 R

/
W

Pool

XCLProgram Layer

Program
FPGA

(Pool)

Conv

Convolution + Pooling Layer

M
E

M
 R

/
W

Conv Pool

Program
FPGA

(Conv+Pool)

XCLProgram Layer

Conv

Convolution + Pooling Pipeline Layer

M
E

M
 R

/
W

M
E

M
 R

/
WProgram

FPGA

(Pipeline)

XCLProgram Layer

Conv PoolFIFO

GPU-Based
Approach

(a)

Non-Pipeline
Approach

(b)

Pipeline
Approach

(c)

M
E

M
 R

/
W

Figure 4.5: Consider a simple network using one convolution and one pooling layer. (a) The GPU-based
approach requires 2 program layers and 4 global memory operations (MEM R/W). (b) Using a single
kernel, the non-pipeline approach requires only 1 program layer and 2 global memory operations, but
the kernels cannot execute concurrently. (c) The pipeline approach is similar but kernels can execute
concurrently and exchange data using a FIFO.

since operations are organized sequentially in a single kernel, there is no ability to execute each operation

concurrently. This can be further improved with a pipeline approach, where each kernel exists separately

within the same binary container, but can execute concurrently. In this approach, data is exchanged

between kernels using a FIFO in private memory. Experimental results for the pipeline layers compared

to other approaches are introduced in Chapter 5.

54

4.2.5 Design Iteration

A key contributor to fast and efficient design iteration is the ability to quickly design, compile, and debug

kernels. When designing for GPUs, kernels are compiled into instructions, meaning compile time is short.

However, when designing for FPGAs kernels are synthesized into hardware circuits, which is a much

more computationally-intensive task. To deal with this, our framework uses a staged offline compilation

strategy to more closely mimic the compilation strategy used for GPUs and GPPs. By “compiling”

kernels offline, the binary can then be used to program the FPGA at runtime. The stages are important

for kernel development, as the hardware does not have to be fully synthesized to perform function or

application debugging. The stages used for compilation are software emulation (for functional debugging),

hardware emulation (for application debugging), and hardware synthesis (for performance debugging).

The compilation times for typical kernels used in the FPGA Caffe framework are presented in Table 4.1.

Table 4.1: Experimental results for FPGA kernel compilation times.

Stage Purpose Device Time (s)

Software Emulation Functional debugging CPU Host 5-8
Hardware Emulation Application debugging Virtual FPGA 25-50
Hardware Synthesis Performance debugging FPGA 1800 - 7200

During the software emulation stage, kernel logic is compiled for a GPP host, and both semantic and

functional errors can be found quickly as the compilation time is very small. During hardware emulation,

kernel logic is synthesized for a virtual FPGA fabric, and detailed reports are given which allow the designer

to see efficiency estimations, as well as identify potential performance bottlenecks. A virtual FPGA fabric

is equivalent to a hardware simulator which emulates the structure of the FPGA for fast testing. In

SDAccel, this allows the functional verification of having multiple circuit replications (compute units).

Software emulation alone cannot simulate a design with multiple compute units (it only understands a

single compute unit), so hardware emulation is needed to verify functional correctness of designs with

multiple compute units. Since the compilation time for hardware emulation is also small, it is easy to

iterate through multiple kernel designs very fast. Finally, during the hardware synthesis stage a full circuit

is synthesized for the FPGA, and the generated reports give real performance values. Since the compile

time for this stage is very slow, it is only advised as a final step [57].

55

4.3 Summary

In this chapter, we discussed the methodology employed in this thesis, which included an overview of

the FPGA Caffe framework structure and functionality. As well, we compare the use of FPGAs in deep

learning frameworks directly to the GPU-based approach, by discussing how it affects the deep learning

practitioner, how parallelism is achieved, and the challenges of using FPGAs for deep learning. Throughout

this chapter, as well as the remainder of the thesis, we commonly refer back to these challenges as we discuss

our efforts to to address them.

56

Chapter 5

Results

In order to validate the functionality of this framework, and justify design choices from a performance

perspective, we provide an empirical assessment using common benchmarking techniques. This is accom-

plished through the integration of benchmarking functionality within the framework itself, which allows

software consistency when comparing across different hardware. Performance is evaluated across execu-

tion time, throughput, and power consumption using synthetic data, and is restricted to the AlexNet

CNN architecture [6]. Additionally, profiling information such as FPGA resource usage is provided for

consideration and discussion. We organize our results first by layer in Section 5.2, by model in Section

5.3, isolate our pipeline layer results in Section 5.4, and finally we present our power consumption results

in Section 5.5. Given the generous amount of profiling information available from these experiments, we

attempt to include only the most relevant information in this chapter.

57

5.1 Experimental Setup

The class of techniques belonging to deep learning is large and complex, and so it is difficult to develop and

validate a framework which captures this breadth. We therefore limit our development in this framework to

one popular architecture, the CNN, as its success in both industry and academia has made it one of the most

widely used deep learning architectures today. Specifically, we choose the AlexNet CNN architecture as a

reference for benchmarking. This model is frequently used as a benchmarking reference across many types

of high performance computing tasks, as it has high accuracy for classification, contains a high amount

of complexity requiring hardware acceleration, and is familiar to many deep learning practitioners. Our

investigation looks at each layer of AlexNet individually, as well as the full architecture.

This work compares FPGA performance to that of both a GPP and GPU. The FPGA board used is an

Alpha Data ADM-PCIE-7V3 based on the Xilinx Virtex-7 XC7VX690T FPGA running at 200 MHz. It

has two independent channels of 8GB DDR3 memory, and uses a PCIe x8 form factor. This FPGA was

chosen mainly for its support of OpenCL, as very few FPGAs today support OpenCL. The GPP used

is a Intel Xeon E5-2637 v2 running at 3.50 GHz with 8 cores. The GPU used is an NVIDIA Quadro

K600 GK107GL running at 876 MHz. It has 2 GB of DDR3 memory, and uses a PCIe x16 form factor.

While none of these devices are considered state-of-the-art at the time of this work, we believe that they

give reasonable performance estimations which allow us to make broad conclusions about each type of

architecture. All three of these devices are connected through PCIe slots of the same host workstation.

The OpenCL environment used is the Xilinx SDAccel 2015.1 software tool, and for both GPP and GPU

execution, CUDA 7.0 was used. For GPP device kernel execution, the ATLAS linear algebra (BLAS)

package was used, which restricts multi-threading on our CentOS release 6.8 workstation.

Timing is measured using the Caffe timer benchmarking functions, accessed through the command line.

The timer uses the POSIX time standard, meaning that time is recorded using a sub-second resolution

clock based off the unix wall clock of the host system. For profiling, the SDAccel runtime profiler was

used to collect information. The resource utilization is expressed in terms of compute units (CU), flip-

flops (FF), look-up tables (LUT), digital signal processing blocks (DSP), and block RAM (BRAM). Power

consumption is measured using an electricity usage meter (Kill A Watt) which claims accuracy to within

58

0.2 %. This meter is placed between the host computer and wall power source, and power consumption

is tracked during the continuous usage of a hardware device for accelerating the Caffe AlexNet model,

averaged over time. While hardware-specific methods of measuring power consumption can be used, this

method was deemed most appropriate for these experiments as the method remained constant and fair

across all hardware devices used. Finally, throughput is reported in terms of floating point operations per

second (FLOPS). This value is estimated using careful assessment of the underlying implementation. For

example, in the fully connected layer implementation, the main logic loops over each of the input (N) and

output (M) units, performing a multiply and sum at each iteration. As a result, since two floating point

operations are performed per iteration, we can estimate the FLOP count as 2 ∗N ∗M , and simply divide

by the execution time to find the FLOPS. More detailed FLOP calculations are found in Appendix A.

5.1.1 FPGA Hardware

The Alpha Data ADM-PCIE-7V3 was chosen largely for its official support of OpenCL, namely the Xil-

inx SDAccel development environment which compiles OpenCL programs to execute on a Xilinx FPGA

(Virtex-7 XC7VX690T). To enable support for the SDAccel environment, this FPGA contains two dis-

tinct regions, the static and programmable region. The static region contains the entire PCIe core, as well

as global memory interfaces, and is required to facilitate communication between the host and OpenCL

device kernels. The programmable region contains the general programmable fabric, where device kernels

are implemented and executed. As a result, while the entire FPGA resources are contained within both

the static and programmable region, the device kernels only have access to the programmable region. The

resource statistics of these regions are collected in Table 5.1.

Table 5.1: Alpha Data ADM-PCIE-7V3 FPGA Resource Statistics

ADM-PCIE-7V3

Region FF LUT DSP BRAM

Static 315,360 157,680 1,224 1,000
Programmable 551,040 275,520 2,376 1,940

Total 866,400 433,200 3,600 2,940

59

5.2 Layer Benchmarking

We first look at performance in a layer-wise fashion, by implementing several important layers common to

CNN architectures, and comparing these implementations running on FPGAs to those created for GPP

and GPU execution. The layers chosen are the fundamental layers required to create the full AlexNet

architecture. While these layers do not fully encompass all possible CNN architectures, we believe that

it offers reasonable complexity and performance which matches many real-world applications. For each

layer type, an OpenCL implementation was created and deployed using a Caffe model to facilitate bench-

marking. Benchmark timings were recorded using the Caffe time command, run on synthetic data and

averaged over 10 iterations. For each GPP and GPU implementation, the corresponding C++ and CUDA

implementations distributed in the offical Caffe distribution were used. For each layer type, we implement

all the corresponding sizes (hyper-parameter configurations) found in the AlexNet model, and report values

± one standard deviation. Resource statistics are found using the SDAccel compiler tool, and presented

as a percentage of total resources available in the programmable region.

Fully Connected Layers

Benchmark timings for the fully-connected layer implementations are seen in Table 5.2. Fully-connected

layers are parametrized by the input and output sizes, which describe the number of units in the previous

and next layer to which full connections exist, known as the “fan-in” and “fan-out”, respectively.

Table 5.2: Fully-Connected Layer Benchmark Results

AlexNet Fully-Connected Layers

Layer Input Size Output Size GPP (ms) GPU (ms) FPGA (ms)

FC6 9216 4096 47.39 ± 0.3 10.89 ± 0.3 23.43 ± 0.2
FC7 4096 4096 20.27 ± 0.2 4.72 ± 0.2 10.52 ± 0.1
FC8 4096 1000 4.92 ± 0.1 1.19 ± 0.1 2.49 ± 0.1

60

FPGA resource utilization statistics for each fully-connected layer implementation are seen in Table 5.3.

To recall, compute units describe the number of replicated copies of the device kernel which are created

on the FPGA. A work-group is mapped to a single compute unit (CU). As such, to calculate the resources

required for a single copy of the device kernel, we simply divide the total resource usage by the number of

compute units.

Table 5.3: Fully-Connected Layer Resource Utilization

Fully-Connected Layer

Layer CU FF FF% LUT LUT% DSP DSP% BRAM BRAM%

FC6 8 58392 10.6 45608 16.6 608 25.6 888 45.8
FC7 8 56736 10.2 42800 15.6 304 12.7 296 15.3
FC8 8 61816 11.2 44648 16.2 320 13.4 232 11.9

From the benchmark timings, we see that for all layers considered, the GPU provides the highest perfor-

mance in terms of execution time, followed by the FPGA, and finally the GPP. This result is as expected,

given the simplicity of the fully-connected layers and the parallel architecture of both the GPU and FPGA.

In terms of resource utilization, it is interesting to note that while most resources are used similarly across

the three layers, the much bigger FC6 required a heavier usage of BRAM to store the additional weights.

As well, although a maximum of 10 compute units are allowed by the SDAccel compiler, in practice, only

8 were able to be successfully synthesized.

Convolutional Layers

Benchmark timings for the convolution layer implementations are seen in Table 5.4. Convolutional layers

are parametrized by the input size, filter size, output (number of output feature map channels), padding,

stride, and groups (number of filter groups). Padding refers to the number of pixels to implicitly add to

each side of the input (zeros), while stride refers to the number of pixels the filter moves as it slides across

the input. Filter groups refer to a Caffe function which can restrict the connections of each filter to a

subset of the input, so the ith input group channels are connected only to the ith output group channels.

61

Table 5.4: Convolution results

AlexNet Convolutional Layers

Layer Input Filter Output Pad Stride Group GPP (ms) GPU (ms) FPGA (ms)

Conv1 227*227 11*11 96 0 1 0 13.52 ± 0.1 2.89 ± 0.1 188.85 ± 0.6
Conv2 27*27 5*5 256 2 2 2 27.53 ± 0.2 3.80 ± 0.1 134.24 ± 0.4
Conv3 13*13 3*3 384 1 1 0 14.54 ± 0.1 2.41 ± 0.1 83.92 ± 0.3
Conv4 13*13 3*3 384 1 1 2 11.71 ± 0.1 2.10 ± 0.0 63.23 ± 0.3
Conv5 13*13 3*3 256 1 2 2 8.37 ± 0.0 1.47 ± 0.0 42.95 ± 0.2

FPGA resource utilization statistics for each convolution layer implementation are seen in Table 5.5.

Table 5.5: Convolutional Layer Resource Utilization

AlexNet Convolutional Layers

Layer CU FF FF% LUT LUT% DSP DSP% BRAM BRAM%

Conv1 6 24258 4.4 21078 7.7 90 3.8 78 4.0
Conv2 6 19410 3.5 21474 7.8 102 4.3 48 2.5
Conv3 6 42108 7.6 35604 12.9 174 7.3 72 3.7
Conv4 6 37674 6.8 26640 9.7 132 5.5 48 2.5
Conv5 6 37698 6.8 26604 9.7 132 5.5 48 2.5

From the benchmark timings, we see that the GPU greatly outperformed the CPU and FPGA in terms of

execution time, with the FPGA falling far behind the other two. This result is mainly due to the difficulty

of created a highly optimized design for the FPGA given the SDAccel tool limitations with respect to

a relatively complex algorithm such as convolution. A more optimized design using HLS and winograd

convolution is seen in [12]. In terms of resource utilization, it is interesting to note that the heavier

convolution design resulted in the ability to synthesize only a maximum of 6 compute units successfully.

Though all of these convolution layers have different requirements, we notice that unsuccessful synthesis

typically occurs during the routing and timing closure stages, meaning that the issue is likely related to

the complexity of the logic rather than the amount of resources needed.

62

ReLU Activation

Benchmark timings for the ReLU activation layer implementations are provided in Table 5.6. ReLU layers

are not typically considered an independent layer, but rather simply activations applied to every unit in

the previous layer. However, given the Caffe implementation of ReLU, they are considered a layer in this

context. Each ReLU layer is parametrized by the number units in the previous layer, which we denote as

the input.

Table 5.6: ReLU results

AlexNet ReLU Layers

Layer Input GPP (ms) GPU (ms) FPGA (ms)

ReLU1 290400 0.24 ± 0.0 0.18 ± 0.0 1.78 ± 0.0
ReLU2 186624 0.15 ± 0.0 0.12 ± 0.0 0.97 ± 0.0
ReLU3 64896 0.05 ± 0.0 0.05 ± 0.0 0.41 ± 0.0
ReLU4 43264 0.04 ± 0.0 0.03 ± 0.0 0.31 ± 0.0
ReLU5 64896 0.05 ± 0.0 0.05 ± 0.0 0.41 ± 0.0
ReLU6 4096 0.01 ± 0.0 0.02 ± 0.0 0.11 ± 0.0
ReLU7 4096 0.01 ± 0.0 0.02 ± 0.0 0.11 ± 0.0

FPGA resource utilization statistics for each ReLU layer implementation are seen in Table 5.7.

Table 5.7: ReLU Layer Resource Utilization

AlexNet ReLU Layers

Layer CU FF FF% LUT LUT% DSP DSP% BRAM BRAM%

ReLU1-7 8 33,768 6.1 28,520 10.4 0 0 256 13.2

From the benchmark timings, we see that the GPU outperforms both the GPP and FPGA in terms of

execution time, with the GPP having a slight edge over the FPGA for all layer configurations considered.

This result is interesting, as one would expect the FPGA to outperform the GPP for such a simple and

inherently parallel algorithm. However, in practice we learned that for small computations, the overhead

63

of writing and reading from the FPGA is large enough to overcome the advantage of parallel computation.

The benefit is only experienced for algorithms of substantial complexity. In terms of resource utilization,

it should be noted that all layers used the same resources because they were all implemented using the

same binary. For ReLU, we were able to simply compile one binary of maximal size (to accommodate the

biggest layer ReLU1), and use partial computations to compute the other layers which divided easily into

this size. This concept is one of fundamental importance to future work which may look to accommodate

changes in hyper-parameters without recompiling an FPGA binary.

Pooling Layers

Benchmark timings for the max pooling layer implementations are provided in Table 5.8. Convolutional

layers are parametrized by the input size, filter size, stride, and output (number of output feature map

channels).

Table 5.8: Max pooling results

AlexNet Max Pooling Layers

Layer Input Filter Stride Output GPP (ms) GPU (ms) FPGA (ms)

Pool1 55*55 3*3 2 96 1.08 ± 0.0 0.33 ± 0.0 1.98 ± 0.0
Pool2 27*27 3*3 2 256 0.71 ± 0.0 0.24 ± 0.0 1.14 ± 0.0
Pool3 13*13 3*3 2 256 0.18 ± 0.0 0.07 ± 0.0 0.46 ± 0.0

FPGA resource utilization statistics for each convolution layer implementation are provided in Table 5.9.

Table 5.9: Max Pooling Layer Resource Utilization

AlexNet Max Pooling Layers

Layer CU FF FF% LUT LUT% DSP DSP% BRAM BRAM%

Pool1 6 11328 2.1 13620 4.9 54 2.3 336 17.3
Pool2 6 33840 6.1 60473 21.9 64 2.7 168 8.7
Pool3 6 57344 10.4 101284 36.7 36 1.5 84 4.3

64

From the benchmark timings, we see that the GPU outperforms both the GPP and FPGA in terms of

execution time, with the GPP having a slight edge over the FPGA for all layer configurations considered.

This result likely comes from a sub-optimal design of the FPGA device kernel, where it is likely that

sequential operations are happening in place of parallel ones. In terms of resource utilization, the results

are as expected for layers of increasing memory and logic requirements.

Local Response Normalization Layers

Benchmark timings for the local response normalization layer (LRN) implementations are provided in Ta-

ble 5.10. LRN layers are parametrized by the input size, filter size, stride, and output (number of output

feature map channels).

Table 5.10: Local response normalization layer results

AlexNet Local Response Normalization Layers

Layer Input Alpha Beta Local Size Output GPP (ms) GPU (ms) FPGA (ms)

Norm1 55*55 0.0001 0.75 5 96 10.80 ± 0.1 0.44 ± 0.0 6.78 ± 0.1
Norm2 27*27 0.0001 0.75 5 256 6.96 ± 0.1 0.36 ± 0.0 5.14 ± 0.1

FPGA resource utilization statistics for each LRN layer implementation are seen in Table 5.11.

Table 5.11: Local Response Normalization Layer Resource Utilization

AlexNet Local Response Normalization Layers

Layer CU FF FF% LUT LUT% DSP DSP% BRAM BRAM%

Norm1 8 35680 6.5 42040 15.3 336 14.1 320 16.4
Norm2 8 35304 6.4 41608 15.1 336 14.1 80 4.1

From the benchmark timings, we see that the GPU outperforms both the GPP and FPGA in terms of

execution time, with the FPGA outperforming the GPP for all layer configurations considered. This

65

result is in agreement with expectations, however since a few of the dependent mathematical operations

needed to calculate LRN were performed sequentially on the FPGA, additional work would be required to

improve this result. In terms of resource utilization, Norm1 required many more BRAM to accommodate

the additional memory size resulting from handling larger input dimensions.

5.3 Model Benchmarking

The benchmarking results for the full AlexNet model are provided in Table 5.12. These benchmarks

correspond to the original AlexNet deployment architecture, where only the dropout layers are ignored for

this implementation. Dropout layers are especially difficult to implement on FPGAs given the heavy use

of stochastic operations, and contemporary work tends to focus on the most common CNN layers such as

convolution, pooling, normalization, and fully connected layers [50]. It should be noted that the program

layers refer to the program layer extensions from FPGA Caffe introduced in this work, and denote the

time needed to program the FPGA. Since Caffe does not include functionality to measure the time to

program the GPU and GPP, the time was extracted by running empty kernels on these two architectures,

and assuming this value for all layers.

Table 5.12: AlexNet Model Benchmarking

Layer Type GPP (ms) GPU (ms) FPGA (ms)

Program1 0.00 ± 0.0 0.01 ± 0.0 142.56 ± 0.5

Conv1 13.52 ± 0.1 2.89 ± 0.1 188.85 ± 0.6

Program2 0.00 ± 0.0 0.01 ± 0.0 198.79 ± 0.5

Relu1 0.24 ± 0.0 0.18 ± 0.0 1.78 ± 0.0

Program3 0.00 ± 0.0 0.01 ± 0.0 142.12 ± 0.4

Norm1 10.80 ± 0.1 0.44 ± 0.0 6.78 ± 0.1

Program4 0.00 ± 0.0 0.01 ± 0.0 158.67 ± 0.5

Pool1 1.08 ± 0.0 0.33 ± 0.0 1.98 ± 0.0

Program5 0.00 ± 0.0 0.01 ± 0.0 141.39 ± 0.5

Continued on next page

66

Table 5.12 – Continued from previous page

Layer Type GPP (ms) GPU (ms) FPGA (ms)

Conv2 27.53 ± 0.2 3.80 ± 0.1 134.24 ± 0.4

Program6 0.00 ± 0.0 0.01 ± 0.0 199.87 ± 0.6

Relu2 0.15 ± 0.0 0.12 ± 0.0 0.97 ± 0.0

Program7 0.00 ± 0.0 0.01 ± 0.0 136.74 ± 0.4

Norm2 6.96 ± 0.1 0.36 ± 0.0 5.14 ± 0.1

Program8 0.00 ± 0.0 0.01 ± 0.0 144.00 ± 0.4

Pool2 0.71 ± 0.0 0.24 ± 0.0 1.14 ± 0.0

Program9 0.00 ± 0.0 0.01 ± 0.0 182.93 ± 0.6

Conv3 14.54 ± 0.1 2.41 ± 0.1 83.92 ± 0.3

Program10 0.00 ± 0.0 0.01 ± 0.0 198.69 ± 0.6

Relu3 0.05 ± 0.0 0.05 ± 0.0 0.41 ± 0.0

Program11 0.00 ± 0.0 0.01 ± 0.0 171.07 ± 0.5

Conv4 11.71 ± 0.1 2.10 ± 0.0 63.23 ± 0.3

Program12 0.00 ± 0.0 0.01 ± 0.0 198.71 ± 0.6

Relu4 0.04 ± 0.0 0.03 ± 0.0 0.31 ± 0.0

Program13 0.00 ± 0.0 0.01 ± 0.0 175.08 ± 0.5

Conv5 8.37 ± 0.0 1.47 ± 0.0 42.95 ± 0.2

Program14 0.00 ± 0.0 0.01 ± 0.0 198.78 ± 0.6

Relu5 0.05 ± 0.0 0.05 ± 0.0 0.41 ± 0.0

Program15 0.00 ± 0.0 0.01 ± 0.0 161.57 ± 0.5

Pool3 0.18 ± 0.0 0.07 ± 0.0 0.46 ± 0.0

Program16 0.00 ± 0.0 0.01 ± 0.0 253.83 ± 0.9

Full6 47.39 ± 0.3 10.89 ± 0.3 23.43 ± 0.2

Program17 0.00 ± 0.0 0.01 ± 0.0 198.68 ± 0.6

Relu6 0.01 ± 0.0 0.02 ± 0.0 0.11 ± 0.0

Program18 0.00 ± 0.0 0.01 ± 0.0 224.42 ± 0.7

Full7 20.27 ± 0.2 4.72 ± 0.2 10.52 ± 0.1

Program19 0.00 ± 0.0 0.01 ± 0.0 198.58 ± 0.6

Continued on next page

67

Table 5.12 – Continued from previous page

Layer Type GPP (ms) GPU (ms) FPGA (ms)

Relu7 0.01 ± 0.0 0.02 ± 0.0 0.11 ± 0.0

Program20 0.00 ± 0.0 0.01 ± 0.0 135.27 ± 0.4

Full8 4.92 ± 0.1 1.19 ± 0.1 2.49 ± 0.1

Total 168.52 ± 1.3 33.38 ± 0.9 4130.98 ± 13.3

From the benchmark timings, we see that the GPU is much faster than both the GPP and FPGA for

deploying the full AlexNet model. It is important to note that the main reason why the FPGA is so slow

in this context, is that the time to program the FPGA at each layer is very large compared to the GPU

and GPP. Even assuming all operations on the FPGA were computed instantaneously, due to this issue the

FPGA would still be much slower. To address this issue, we introduce pipeline layer benchmarks below.

5.4 Pipeline Layer Benchmarking

The motivation for pipeline layers was born out of the results seen in Table 5.12. When implementing

FPGA support in Caffe, the logical starting point is to mimic the GPU approach, where before the execu-

tion of each layer the GPU is programmed with the appropriate device kernel and memory is synchronized

with the host. However, the bottleneck in deploying full CNN models on FPGAs, using a GPU-based

approach, is the time to program the FPGA between each layer. The logical improvement to this strategy

is to combine all logic into a large single kernel inside of a binary container with sequential execution

(non-pipeline approach), so that the FPGA only has to be programmed once between layers. However,

this approach is non-ideal, as layers organized sequentially within a kernel cannot execute concurrently.

The ideal solution to this problem is the pipeline approach, where multiple layers are combined into a

single binary container, but exist as separate device kernels which can execute concurrently, and exchange

data using local memory structures on the FPGA. To demonstrate this, we create an example of a small

CNN with a convolution, ReLU, and max pooling layer. The benchmark results for this model using a

GPU-based approach, a non-pipeline approach, and pipeline layer approach, are provided in Table 5.13.

68

Table 5.13: Experimental results for a small example CNN comparing the GPU-based, non-pipeline, and
pipeline layer design approach. This model processes 5 feature maps for 1 input image of size 227 × 227
with 3 colour channels.

GPU-Based Approach

Layer Time (ms)

Program1 89.5
Conv 42.2
Program2 95.7
Relu 45.3
Program3 92.1
Pool 0.4

TOTAL 365.2

Non-Pipeline Approach

Layer Time (ms)

Program1 109.7
Conv+ReLU+Pool 72.8

TOTAL 182.5

Pipeline Approach

Layer Time (ms)

Program1 109.7
Conv+ReLU+Pool 70.5

TOTAL 180.2

It is seen from the experiments that the pipeline approach completes the fastest, offering a substantial

increase in performance compared with the GPU-based approach. The modest improvement over the non-

pipeline approach is a result of scaling. Consistent with Figure 4.2, the effective increase in performance

grows as more data is processed, and device kernels are able to overlap more. However, due to tight

restrictions in local memory (FIFO) sizes and compute unit functionality in the current SDAccel version,

we limited our investigation to an amount of data that could be processed using a single maximal size

FIFO. The effect of scaling pipeline layers to include more feature maps is provided in Figure 5.1.

We see that as more feature maps are processed, the performance improvement of using pipeline layers

increases linearly. Further testing of this result is restricted by the SDAccel tool, which limits our ex-

periments to using only 5 feature maps (each work-group process a single feature map) with the pipeline

layers. However, we can expect this trend to continue until the data size approaches the maximum allowed

by SDAccel FIFOs (roughly equivalent to 10 feature maps of size 55 × 55). At this point the overhead

of having multiple FIFOs may interfere with this linear trend, although testing could not be done at this

time due to current limitations of FIFOs in SDAccel.

In justifying the practicality of pipelining layers, we argue that combinations of layer groups are very

69

Figure 5.1: Pipeline Layer Execution Time Improvement vs. Number of Input Images

1 2 3 4 5

1.4

1.6

1.8

2

Number of Feature Maps

E
x
ec

u
ti

o
n

T
im

e
Im

p
ro

ve
m

en
t

(m
s)

Benchmark Values
0.16 · x+ 1.16

predictable in practice. For example, In CNNs convolution layers are very commonly followed by pooling

layers, with the most common variability coming from hyper-parameter selection. As such, it is practical

to package common combinations of layer groups as a pipeline binary.

5.5 Power Consumption

Though FPGAs are typically considered low power devices compared to GPPs and GPUs, the FPGA Caffe

framework is functionally heterogeneous, which complicates the way power consumption is measured and

interpreted. The execution of host code, device code, memory synchronization, and device programming

ensure that the framework is frequently changing between GPP and FPGA/GPU operation. To best

capture the practical power consumption of this framework, and institute a fair comparison between the

GPP, GPU, and FPGA, we measure power consumption of the host system through an electricity usage

meter for deployment of the full AlexNet model. The configuration of the host system remains constant

throughout these experiments, with only the accelerator configuration changing at runtime. We believe

that the use of an electricity usage meter in these experiments gives a practical value which describes the

systematic power consumption effect of using one accelerator in place of another. Due to this configuration,

power consumption of the FPGA may seem high compared to work which uses similar FPGAs. However,

70

it is important to note that most related work uses FPGA cards powered externally (not through PCIe)

which operate without the use of a host GPP [50]. These configurations are optimal for power consumption,

but do not reflect real practical deep learning work flows which require frequent communication with a

host GPP.

We measure power consumption for three configurations (GPP only, GPP + GPU, GPP + FPGA) as an

average while deploying the entire AlexNet model for 100 iterations, and report values ± one standard

deviation. The results for this are provided in Table 5.14. Theoretical averages are reported according to

rough datasheet guidelines, and estimated for typical workloads [59, 60, 61].

Table 5.14: Power Consumption Measurements

GPP (W) GPU (W) FPGA (W)

Theoretical Average ≈ 140.00 ≈ 41.00 ≈ 26.00

GPP (W) GPP + GPU (W) GPP + FPGA (W)

AlexNet Average 154.20 ± 4.3 161.30 ± 4.4 157.10 ± 6.3

During experimentation it was noticed that power consumption for the FPGA spikes while the FPGA

was being programmed, which led to an increase in average power consumption. Since non-pipeline layers

were used for the full AlexNet measurements, pipeline layers would provide an improvement in power

consumption. This effect is seen in Table 5.15, which uses the small CNN model from Table 5.13 which

processes 5 feature maps using 1 input image of size 227 × 227 with 3 colour channels. It is interesting

to note that during run-time these values varied less aggressively than the AlexNet measurements, due to

the faster iteration speed relative to the measurement frequency of the electricity usage meter.

Table 5.15: Pipeline Layer Power Consumption

Model
GPU-Based Approach

GPP + FPGA (W)
Pipeline Approach

GPP + FPGA (W)

Conv+ReLU+Pool 157.05 ± 0.5 154.35 ± 0.5

71

It is useful to now re-evaluate our AlexNet model benchmarks to include a measure of power efficiency

per layer. To do this, we calculate the MFLOPS/W (mega floating point operations per watt), a more

meaningful value that encompasses a well rounded view of computational efficiency which includes both

throughput and power consumption. The results are provided in Table 5.16.

Table 5.16: AlexNet Model Benchmarking

Layer
GPP

(MFLOPS/W)
GPP+GPU

(MFLOPS/W)
GPP+FPGA
(MFLOPS/W)

Full 1.03 ± 0.0 4.32 ± 0.1 2.06 ± 0.0
Conv 11.60 ± 1.3 64.90 ± 12.3 1.91 ± 0.7
ReLU 1.31 ± 0.6 1.40 ± 0.9 0.16 ± 0.1
Pool 1.34 ± 0.1 3.76 ± 0.7 0.70 ± 0.2
Norm 0.08 ± 0.0 1.83 ± 0.3 0.13 ± 0.0

From the results, it is seen that the GPU performed best in terms of MFLOPS/W for all layers considered.

The FPGA ranked second for the fully connected and LRN layers, while the GPP ranked second for

convolution, ReLU, and pooling layers. It is interesting to note that for very simple layers, such as ReLU,

the efficiency improvement of the GPU over the GPP was very small, indicating that for small simple

layers the overhead of writing memory to the accelerator almost negates the pure computational speed

improvement. While these results may seem underwhelming, they would be drastically improved by the

ability to use pipeline layers for the full AlexNet model, which improves both execution time and power

consumption. Future work for implementing full pipelined models is highly encouraged.

5.5.1 Economic Considerations

To interpret the power consumption results in a practical context, it is important to include a discussion

of how economics affect these results. Table 5.17 shows the retail values (USD) of the GPP, GPU, and

FPGA used for benchmarking.

72

Table 5.17: Benchmarking Hardware Costs (USD) [62, 63, 64]

GPP GPU FPGA

$ 996 $ 128 $ 3,200

Given the superior results of the GPU in terms of performance per Watt of power consumption and up

front investment cost, these results would indicate that the GPU is currently a better practical choice

than the FPGA in both the short and long term. However, these results are presented in a worst case

scenario for FPGAs, as the small execution time of deployment (milliseconds) allows the minimal host GPP

interaction to remain relatively significant, meaning the GPP power consumption significantly affects the

overall average power consumption, as seen in Table 5.14. As a result, the average power consumption

of the FPGA is only slightly better than the GPU for the AlexNet model. In training situations where

the execution time is much longer (hours) the FPGA would run in isolation for much longer periods of

time, greatly lowering the average power consumption, and likely providing a significant advantage over

the GPU in terms of performance per Watt of power consumption. Coupled with future improvements

in FPGA optimizations for deep learning, as well as reduced costs as FPGAs become more popular in

consumer applications, the economic considerations may likely change in favour of FPGAs in the future,

though the advantage will likely remain with GPUs for the present.

5.6 Summary

In this chapter, we discussed the results of an empirical benchmarking analysis of our work. We discussed

the performance of the AlexNet layers, AlexNet model, and pipeline layers, in terms of execution time,

resource usage, and power consumption. We observed that the GPU achieved the best performance in

most performance metrics considered, which is expected given the maturity of the GPU-based optimizations

used for comparison. However, we noticed that the FPGA outperformed the GPP for many criteria, which

gives hope that further development of the FPGA-based optimizations presented in this thesis may lead

to competitive performance with the GPU in the future.

73

Chapter 6

Conclusions

In this work, we introduce a practical design flow for deep learning on FPGAs, demonstrate this flow

through the development of the FPGA Caffe framework, and support this framework with an empirical

performance assessment. When introducing the design flow, we show how current technologies enable

the support of FPGAs in common deep learning frameworks, and justify why this integration makes

sense from the perspective of deep learning practitioners. To demonstrate this, we contribute to the

development of the FPGA Caffe framework as a proof of concept, showing how this design flow can be

used in practice. To address a few pitfalls of using FPGAs in this way, we introduce layer extensions to

the FPGA Caffe framework which appeal to the needs of FPGAs, while not affecting the usability of the

framework. Programming layers are used to ensure more control over the way the FPGA is programmed at

runtime, and pipeline layers alleviate many of the problems associated with using FPGAs in a GPU-based

framework. When evaluating performance, it is clear that the GPU is currently most efficient in terms

of execution time and throughput, though the FPGA is best in terms of power consumption and eclipses

GPP execution time performance in several CNN layers. We believe that, since this work is not as mature

as equivalent GPU work, these results may change in the future as more effort is dedicated to improving

performance of deep learning on FPGAs.

74

In closing, we believe that we have answered our objective question by showing that FPGAs can be used as

a practical acceleration platform for deep learning. While, in its current state, this work does not convince

deep learning practitioners to use FPGAs instead of GPUs, we believe that the directions which make this

reality have been identified. We believe that this work is valuable in acting as a guide to future researchers

who wish to continue efforts in this field, and encourage the future development of FPGA Caffe.

6.1 Future Work

The future of deep learning on FPGAs, and in general, is largely dependent on scalability. For these

techniques to succeed on the problems of tomorrow, they must scale to accommodate data sizes and

architectures that continue to grow at an incredible rate. Recent work has shown that increasing the

depth of neural networks can result in increased performance, and neural networks with as many as

1000 layers have been trained successfully [9]. FPGA technology is adapting to support this trend, as

the hardware is headed toward larger memory, smaller feature sizes, and interconnect improvements to

accommodate multi-FPGA configurations. The Intel acquisition of Altera, along with the partnership of

IBM and Xilinx, indicates a change in the FPGA landscape which may also see the integration of FPGAs

in consumer and data center applications in the very near future. In addition, design tools will likely tend

toward higher levels of abstraction and software-like experiences, in an effort to attract a wider technical

range of users.

Increasing Degrees of Freedom for Training

While one may expect the process of training machine learning algorithms to be fully autonomous, in

practice, there are tunable hyper-parameters that need to be adjusted. This is especially true for deep

learning, where complexity of the model in terms of number of parameters is often accompanied by many

possible combinations of hyper-parameters. The number of training iterations, the learning rate, mini-

batch size, number of hidden units, and number of layers are all examples of hyper-parameters that

75

can be adjusted. The act of tuning these values is equivalent to selecting which model, among the set

of all possible models, is best for a particular problem. Traditionally, hyper-parameters have been set

by experience or systematically by grid search or more effectively, random search [65]. Very recently,

researchers have turned to adaptive methods, which exploit the results of hyper-parameter attempts.

Among these, Bayesian Optimization [66, 67] is the most popular.

Regardless of the method selected to tune hyper-parameters, current training procedures using fixed ar-

chitectures are somewhat limited in their ability to grow these sets of possible models, meaning that we

may be viewing the solution space through a very narrow lens. Fixed architectures make it much easier

to explore hyper-parameter settings within models (e.g. number of hidden units, number of layers) but

difficult to explore settings between models (i.e. different types of models) as the training of models which

do not conveniently conform to a particular fixed architecture may be very slow. The flexible architec-

ture of FPGAs, however, may be better suited for these types of optimizations, as a completely different

hardware structure can be programmed and accelerated at runtime.

Low Power Compute Clusters

One of the most intriguing aspects of deep learning models is the ability to scale. Whether the purpose is to

discover complex high level features in data, or to increase performance for data center applications, deep

learning techniques are often scaled up across multi-node computing infrastructures. Current solutions to

this problem involve using clusters of GPUs with Infiniband interconnects and MPI to allow high levels of

parallel computing power and fast data transfer between nodes [1, 68]. However, as the workloads of these

large scale applications become increasingly heterogeneous, the use of FPGAs may prove to be a superior

alternative. The programmability of FPGAs would allow reconfiguration based on the application and

workload, and FPGAs provide an attractive performance per watt that would lower costs for the next

generation of data centers.

76

References

[1] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep learning with COTS

HPC systems,” in Proceedings of the 30th international conference on machine learning, pp. 1337–

1345, 2013.

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, “cudnn:

Efficient primitives for deep learning,” arXiv preprint arXiv:1410.0759, 2014.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell,

“Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-

Farley, and Y. Bengio, “Theano: A CPU and GPU math compiler in python,” in Proc. 9th Python

in Science Conf, pp. 1–7, 2010.

[5] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine learning software library,”

tech. rep., IDIAP, 2002.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-

binovich, “Going deeper with convolutions,” in Computer Vision and Pattern Recognition (CVPR),

2015.

77

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”

CoRR, vol. abs/1409.1556, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,

vol. abs/1512.03385, 2015.

[10] G. Lacey, G. W. Taylor, and S. Areibi, “Deep learning on FPGAs: Past, present, and future,” arXiv

preprint arXiv:1602.04283, 2016.

[11] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech

recognition,” Signal Processing Magazine, 2012.

[12] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. W. Taylor, and S. Areibi, “Caffeinated FPGAs:

FPGA framework for convolutional neural networks,” 2016. In preparation.

[13] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy comparison of FPGAs, GPUs,

and multicores for sliding-window applications,” in Proceedings of the ACM/SIGDA international

symposium on Field Programmable Gate Arrays, pp. 47–56, ACM, 2012.

[14] B. Betkaoui, D. B. Thomas, and W. Luk, “Comparing performance and energy efficiency of FP-

GAs and GPUs for high productivity computing,” in Field-Programmable Technology (FPT), 2010

International Conference on, pp. 94–101, IEEE, 2010.

[15] Y. Bengio and O. Delalleau, “On the expressive power of deep architectures,” in Algorithmic Learning

Theory, pp. 18–36, Springer, 2011.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015. Nature

Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

[17] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–

117, 2015. Published online 2014; based on TR arXiv:1404.7828 [cs.NE].

[18] Y. Bengio, “Learning deep architectures for AI,” Foundations and trends R© in Machine Learning,

vol. 2, no. 1, pp. 1–127, 2009.

78

[19] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” CoRR,

vol. abs/1404.5997, 2014.

[20] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning.” Book in preparation for MIT Press,

2015.

[21] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,”

The Journal of physiology, vol. 195, no. 1, pp. 215–243, 1968.

[22] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11) (G. J.

Gordon and D. B. Dunson, eds.), vol. 15, pp. 315–323, Journal of Machine Learning Research -

Workshop and Conference Proceedings, 2011.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[24] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA programming for the masses,” Communications of

the ACM, vol. 56, no. 4, pp. 56–63, 2013.

[25] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance comparison of CUDA and

OpenCL,” in Parallel Processing (ICPP), 2011 International Conference on, pp. 216–225, IEEE, 2011.

[26] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong, P. Yian-

nacouras, and D. P. Singh, “From opencl to high-performance hardware on FPGAs,” in Field Pro-

grammable Logic and Applications (FPL), 2012 22nd International Conference on, pp. 531–534, IEEE,

2012.

[27] “Xilinx SDAccel.” http://www.xilinx.com/products/design-tools/software-zone/

sdaccel.html, 2015.

[28] “Khronos OpenCL.” https://www.khronos.org/opencl/, 2016.

[29] I. G. Y. Bengio and A. Courville, “Deep learning.” Book in preparation for MIT Press, 2016.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, and Others, “TensorFlow: Large-scale machine learning on heterogeneous systems, 2015,”

Software available from tensorflow. org, vol. 1, 2015.

79

http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.khronos.org/opencl/

[31] C. E. Cox and W. E. Blanz, “Ganglion-a fast field-programmable gate array implementation of a

connectionist classifier,” Solid-State Circuits, IEEE Journal of, vol. 27, no. 3, pp. 288–299, 1992.

[32] J. G. Eldredge and B. L. Hutchings, “Density enhancement of a neural network using FPGAs and

run-time reconfiguration,” in FPGAs for Custom Computing Machines, 1994. Proceedings. IEEE

Workshop on, pp. 180–188, IEEE, 1994.

[33] P. Lysaght, J. Stockwood, J. Law, and D. Girma, “Artificial neural network implementation on a fine-

grained FPGA,” in Field-Programmable Logic Architectures, Synthesis and Applications, pp. 421–431,

Springer, 1994.

[34] A. Pérez-Uribe and E. Sanchez, “FPGA implementation of an adaptable-size neural network,” in

Artificial Neural NetworksICANN 96, pp. 383–388, Springer, 1996.

[35] Y. Taright and M. Hubin, “FPGA implementation of a multilayer perceptron neural network using

VHDL,” in Signal Processing Proceedings, 1998. ICSP’98. 1998 Fourth International Conference on,

vol. 2, pp. 1311–1314, IEEE, 1998.

[36] J. Zhu and P. Sutton, “FPGA implementations of neural networks–a survey of a decade of progress,”

in Field Programmable Logic and Application, pp. 1062–1066, Springer, 2003.

[37] A. R. Omondi and J. C. Rajapakse, FPGA implementations of neural networks, vol. 365. Springer,

2006.

[38] A. Canas, E. M. Ortigosa, E. Ros, and P. M. Ortigosa, “FPGA implementation of a fully and partially

connected MLP,” in FPGA Implementations of Neural Networks, pp. 271–296, Springer, 2006.

[39] K. Paul and S. Rajopadhye, “Back-propagation algorithm achieving 5 gops on the virtex-e,” in FPGA

Implementations of Neural Networks, pp. 137–165, Springer, 2006.

[40] R. Gadea, J. Cerdá, F. Ballester, and A. Mochoĺı, “Artificial neural network implementation on a single

FPGA of a pipelined on-line backpropagation,” in Proceedings of the 13th international symposium

on System synthesis, pp. 225–230, IEEE Computer Society, 2000.

[41] A. W. Savich, M. Moussa, and S. Areibi, “The impact of arithmetic representation on implementing

MLP-BP on FPGAs: A study,” Neural Networks, IEEE Transactions on, vol. 18, no. 1, pp. 240–252,

2007.

80

[42] S. Vitabile, V. Conti, F. Gennaro, and F. Sorbello, “Efficient MLP digital implementation on FPGA,”

in Digital System Design, 2005. Proceedings. 8th Euromicro Conference on, pp. 218–222, IEEE, 2005.

[43] E. Ordoñez-Cardenas and R. d. J. Romero-Troncoso, “MLP neural network and on-line backpropa-

gation learning implementation in a low-cost FPGA,” in Proceedings of the 18th ACM Great Lakes

symposium on VLSI, pp. 333–338, ACM, 2008.

[44] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two decades of progress,”

Neurocomputing, vol. 74, no. 1, pp. 239–255, 2010.

[45] K. P. Lakshmi and M. Subadra, “A survey on FPGA based MLP realization for on-chip learning,”

Int. J. Sci. & Eng. Res, vol. 4, no. 1, pp. 1–9, 2013.

[46] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implementation of parameterized FPGA-

based general purpose neural networks for online applications,” Industrial Informatics, IEEE Trans-

actions on, vol. 7, no. 1, pp. 78–89, 2011.

[47] J. Cloutier, S. Pigeon, F. R. Boyer, E. Cosatto, and P. Y. Simard, “VIP: An FPGA-based processor

for image processing and neural networks,” in microneuro, p. 330, IEEE, 1996.

[48] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung, “Accelerating deep

convolutional neural networks using specialized hardware,” Microsoft Research Whitepaper, vol. 2,

2015.

[49] “Microsoft Research: catapult,” 2015.

[50] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based accelerator

design for deep convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pp. 161–170, ACM, 2015.

[51] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf, “A programmable parallel

accelerator for learning and classification,” in Proceedings of the 19th international conference on

Parallel architectures and compilation techniques, pp. 273–284, ACM, 2010.

[52] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynamically configurable coprocessor

for convolutional neural networks,” in ACM SIGARCH Computer Architecture News, vol. 38, pp. 247–

257, ACM, 2010.

81

[53] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An FPGA-based processor for convolutional

networks,” in Field Programmable Logic and Applications, 2009. FPL 2009. International Conference

on, pp. 32–37, IEEE, 2009.

[54] M. Peemen, A. Setio, B. Mesman, H. Corporaal, et al., “Memory-centric accelerator design for con-

volutional neural networks,” in Computer Design (ICCD), 2013 IEEE 31st International Conference

on, pp. 13–19, IEEE, 2013.

[55] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto, and H. P. Graf,

“A massively parallel coprocessor for convolutional neural networks,” in Application-specific Systems,

Architectures and Processors, 2009. ASAP 2009. 20th IEEE International Conference on, pp. 53–60,

IEEE, 2009.

[56] A. Savich, M. Moussa, and S. Areibi, “A scalable pipelined architecture for real-time computation of

MLP-BP neural networks,” Microprocessors and Microsystems, vol. 36, no. 2, pp. 138–150, 2012.

[57] “Opencl on FPGAs for GPU programmers.” https://www.altera.

com/content/dam/altera-www/global/en_US/pdfs/literature/wp/

wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdf, 2015.

[58] “GPU vs FPGA performance comparison,” tech. rep., Berten Digital Signal Processing, 2016.

[59] Intel, Intel Xeon Processor E5 v2 Family: Datasheet, 3 2014. Vol. 2.

[60] NVIDIA, Quadro K600 Datsheet, 10 2013. Rev. 1.0.

[61] Alpha Data, Alpha Data ADM-PCIE-7V3 User Guide, 6 2016. Rev. 1.4.

[62] “Intel ARK.” http://ark.intel.com/products/75792/Intel-Xeon-Processor-E5-2637-v2-15M-Cache-3_

50-GHz, 2016.

[63] “Futuremark Graphics Cards.” http://www.futuremark.com/hardware/gpu/NVIDIA+

Quadro+K600/review, 2016.

[64] “Alpha Data US Store.” https://usastore.alpha-data.com/ADM-PCIE-7V3?search=7v3,

2016.

82

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-201406-acceleware-opencl-on-fpgas-for-gpu-programmers.pdf
http://ark.intel.com/products/75792/Intel-Xeon-Processor-E5-2637-v2-15M-Cache-3_50-GHz
http://ark.intel.com/products/75792/Intel-Xeon-Processor-E5-2637-v2-15M-Cache-3_50-GHz
http://www.futuremark.com/hardware/gpu/NVIDIA+Quadro+K600/review
http://www.futuremark.com/hardware/gpu/NVIDIA+Quadro+K600/review
https://usastore.alpha-data.com/ADM-PCIE-7V3?search=7v3

[65] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” The Journal of Ma-

chine Learning Research, vol. 13, no. 1, pp. 281–305, 2012.

[66] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human out of the

loop: A review of Bayesian optimization,” Proc. IEEE, vol. 104, pp. 148–175, Jan. 2016.

[67] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning

algorithms,” in Advances in neural information processing systems, pp. 2951–2959, 2012.

[68] H. Ma, F. Mao, and G. W. Taylor, “Theano-MPI: a Theano-based distributed training framework,”

in Euro-Par Workshop on Unconventional High Performance Computing, 2016.

83

Appendix A

FLOP Calculations

To calculate the number of floating point operations (FLOP) in each AlexNet layer, let us first define

shorthand for describing the sizes of the input, output, and filters:

Input: INsize = number of input units (Ni) × channels (Nc) × input width (Wi) × input height (Hi)

Filter: FILTsize = number of filter units (Nf) × filter width (Wf) × filter height (Hf)

Output: OUTsize = number of output units (No) × output width (Wo) × output height (Ho)

For these calculations, filters are used to describe both convolution and pooling filters. For these layers,

the output size can be calculated using layer-specific choices of stride, padding, filter width, and filter

height.

84

Fully Connected Layers

Since fully connected layers take as input vectors as opposed to images, they are parametrized by the

number of input and output units. In Caffe, input and output blobs would have the width and height set

to 1. For each iteration in the fully connected layer algorithm both a multiply and sum operation are used

(2 FLOP per innermost loop iteration):

FLOPfull = 2×Ni ×No (A.1)

Convolutional Layers

Similar to fully connected layers, for each iteration in the convolutional layer algorithm, both a multiply

and sum operation are used (2 FLOP per inner most loop iteration):

FLOPconv = 2×Ni ×OUTsize(Nc ×Wf ×Hf + 1) (A.2)

ReLU Activation

Each activation in ReLU layers is performed on the input, using 2 FLOP for comparing and setting the

output value:

FLOPrelu = 2×Ni (A.3)

85

Pooling Layers

Since each max operation involves n− 1 comparisons, we can assume that max{x1, x2, ..., xn} accounts for

n− 1 FLOPs:

FLOPpool = (Wf ×Hf − 1)× INsize (A.4)

Local Response Normalization Layers

Finally, in LRN layers we perform 2 FLOP (squaring and accumulating the activation) for each pixel on

each image within a given local size Nl, and perform 4 FLOP (to handle α, β, k, and division) for each

pixel in the input image:

FLOPlrn = (Wi ×Hi ×Nl × 2) + (Wi ×Hi × 4) (A.5)

86

	List of Tables
	List of Figures
	Introduction
	Motivations
	Objectives
	Contributions
	Relationship to Other Work
	Organization

	Background
	Deep Learning
	Multi-Layer Perceptrons
	Convolutional Neural Networks

	FPGAs
	High-Level Synthesis
	OpenCL

	Deep Learning Acceleration using GPUs
	GPU-Based Deep Learning Frameworks
	GPU Parallelism

	Summary

	Literature Review
	Multi-Layer Perceptrons on FPGAs
	Convolutional Neural Networks on FPGAs
	Summary

	Methodology
	Deep Learning Acceleration using FPGAs
	FPGA-Based Deep Learning Frameworks
	FPGA Parallelism
	FPGA Challenges

	FPGA Caffe Framework
	Deployment Architecture
	Memory Architecture
	Device Kernel Design
	Layer Extensions
	Design Iteration

	Summary

	Results
	Experimental Setup
	FPGA Hardware

	Layer Benchmarking
	Model Benchmarking
	Pipeline Layer Benchmarking
	Power Consumption
	Economic Considerations

	Summary

	Conclusions
	Future Work

	References
	FLOP Calculations

