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ABSTRACT

Using Support Vector Machines in Anomaly Intrusion Detection

Eric M Nyakundi Advisor:
University of Guelph, 2015 Dr. Charlie Obimbo

Recent increase in hacks and computer network attacks around the world, includ-

ing Sony Pictures (2014), Home Depot (2014), and Target (2014) gives a compelling

need to develop better Intrusion Detection and Prevention systems. Network intru-

sions have become larger and more pervasive in nature. However, most anomaly

intrusion detection systems are plagued by large number of false positives thus limit-

ing their use. In this Thesis as a contribution to building better Intrusion Detection

Systems, we classify intrusions using Support Vector Machines and perform exper-

iments to determine their performance and compare them to other classifiers e.g

näıve-Bayes, multilayer perceptrons on the network intrusion detection classification

task. The classifiers are evaluated on the ISCX2012 dataset. The proposed Support

Vector Machine classifier achieves 99.1% average detection accuracy which demon-

strates better performance compared to the modified gravitational search algorithm

(MGSA) neural network which achieved 97.8% accuracy and the multi-objective ge-

netic algorithm (MOGA) multilayer perceptron which achieved 97% average detection

accuracy.
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Chapter 1

Introduction

The Internet and the improved computer technologies has revolutionized business

and information system trends. The Internet has brought the ability to do business

online and improved the availability of information to the masses. Improved com-

puter technology has increased the ability of organizations to hold vast amounts of

information and data that is worth a lot of money. There is a heavy reliance on the

Internet and computer networks for the day to day activities of people. Services like

online banking, online shopping and many more other services require to be safe and

protected in order to avert financial losses.

The protection of computer systems and networks is of great importance to keep

information safe from hackers. Current victims of hackers and data breaches include

Sony Corporation [17], Home depot [34], and Minecraft [24]. A comprehensive list

that contain attacks from 2014 and the beginning of 2015 with the entities name,

number of records compromised, the kind of organization attacked is contained in

appendix A.2.

Data breaches and hacking cause a lot of financial losses to businesses, organi-

zations and institutions. Big corporations are not the only targets of data breaches

but also health institutions, governments, and financial firms due to the vast amounts
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of valuable information that they store like credit card information, Social Security

numbers, bank account information. The losses arise from security costs after the fact,

loss of customers due to reduced consumer confidence. Most companies withhold the

amount of financial losses incurred from such breaches to protect their reputations.

The Table of black market prizes for data in appendix A.1 can give a rough idea of the

financial losses a company might suffer from data breaches. These kinds of intrusions

make intrusion detection a key area in preventing future attacks.

The goal of intrusion detection is to identify, preferably in real time, unautho-

rized use, misuse and abuse of computer systems by both system insiders and external

penetrators [50]. The intrusion detection problem is becoming more challenging due

to the great increase in computer networks connectivity, the thriving technology ad-

vancement and the ease of finding hackers for hire.

Intrusion detection systems (IDSs) are security systems used to monitor, rec-

ognize and report malicious activities or policy violations in computer systems and

networks. IDSs are based on the hypothesis that an intruder’s behavior will be no-

ticeably different from that of a legitimate user and that many unauthorized actions

are detectable. Some of the security violations that would create abnormal patterns

of system usage include unauthorized people trying to get into the system, legitimate

users doing illegal activities, trojan horses, viruses and denial of service [14].

IDSs use a slightly different classification of attack types. They are Probe,

Remote-to-Local(R2L), User-to-Root(U2R) and Denial-of-Service(DoS). A detailed

description is provided in Chapter 2. IDSs are generally categorized as Signature-

based (Misuse detection) systems, Behavior-based (Anomaly detection) systems or

2



Hybrid systems.

Most IDSs that are deployed on networks are misuse IDSs because they are robust

and have low false alarm rates. However, they suffer from one major shortcoming,

they are not able to detect new attacks. Current research is focused on the anomaly

detection approach since it can detect new attacks. Anomaly detection approach

suffer from high false positive rates that render them impractical to be implemented

in live network settings.

The goal is to find a classifier that can accurately detect network intrusions while

at the same time reducing the false positive rates and create systems that do not need

expert knowledge to create and update signatures rather learn and update themselves.

The system should have low false positive rates to make it practical to be deployed in

live network environments so as to improve network security. Accuracy as used in this

Thesis is the overall value of all correctly classified instances i.e both true positives

and true negatives.

1.1 Thesis Statement

By using Support Vector Machines, this Thesis aims to classify intrusions accu-

rately while reducing false positive rates. These network intrusion attacks are SSH

attacks, L2L attacks, Botnet attacks,and DoS attacks. A detailed description of the

attack types is available in Chapter 3.

After completing research into this problem, this Thesis demonstrates that sup-

port vector machines (SVM) produce impressive results and is superior to multilayer

3



perceptron (MLP), radial basis function network (RBF-N), and näıve-Bayes (NB)

classifier. The support vector machines achieve a high detection rate of 99.1% with

low false positive rate of 4.5% in the intrusion classification task on the ISCX2012

dataset. This demonstrates that SVMs can be used successfully as the classifier of

choice in the classification module of a network anomaly intrusion detection system.

1.2 Overview of Thesis

The remainder of the Thesis is organized as follows. Chapter 2, background on

intrusion detection and classification is presented. We will then define Support Vector

Machines. Finally we have a literature review of intrusion detection and intrusion

detection datasets. In Chapter 3, we will look at the dataset used and measurement

metrics that are used. The main results are also provided including the methodology

and implementation. Then in Chapter 4 we analyze the resulting algorithms. The

Thesis concludes in Chapter 5 with a summary and directions for future research.
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Chapter 2

Background

2.1 Intrusion Detection

Prior to our discussion on intrusion detection, we will define a few terms from the

pioneering work of Anderson [5]. Vulnerability is a known or suspected flaw in the

hardware or software or operation of a system that exposes the system to penetration

or accidental disclosure of information. Penetration is obtaining unauthorized (unde-

tected) access to files and programs or the control state of computer system. Attack

is a specific formulation or execution of a plan to carry out a threat. An attack is

successful when a penetration occurs. Lastly, an Intrusion is a set of actions aimed

to compromise the security goals, namely; integrity, confidentiality, or availability of

a computing and networking resource.

Intrusion detection systems (IDSs) are security systems used to monitor, rec-

ognize, and report malicious activities or policy violations in computer systems and

networks. IDSs are based on the hypothesis that an intruder’s behavior will be no-

ticeably different from that of a legitimate user and that many unauthorized actions

are detectable. Some of the security violations that would create abnormal patterns

of system usage include unauthorized users trying to get into the system, legitimate
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users doing illegal activities, trojan horses, viruses and denial of service [14]. IDSs are

generally categorized as Signature-based (Misuse detection) systems, Behavior-based

(Anomaly detection) systems, or Hybrid systems.

2.1.1 Probe Attacks

Probe is the action an attacker takes to gather information about the system or

network. Probe attacks scan for system vulnerabilities which are usually exploited

for other attacks in the future [18]. Probe is similar to a fact finding mission where

the goal is to collect as much information about the targeted system including the

services the system runs.

An example of a probe is port sweep attack. The aim of this attack is to discover

any unsecured open ports that can be used to break into the system. Some ports might

be left open by mistake by the system administrators making the system vulnerable

to attacks. Port sweeping is quite effective on newly deployed untested systems. It

has also become easier to carry out probe attacks because the tools to perform these

tasks are more available.

2.1.2 Remote-to-Local Attacks

Remote-to-Local (R2L) attack occurs when a remote user tries to get local user

privileges. This is a privilege escalation attack. The remote user (does not have

an account on that system) exploits vulnerability of the system to gain local access

to the system. Social engineering is one of the ways used to carry out this attack.

The use of common passwords is a huge problem and to counter that many websites
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recently have a minimum requirement for a strong password that cannot easily be

guessed. Another added vulnerability is the use of the same password to log into

different accounts or websites.

2.1.3 User-to-Root Attacks

User-to-root (U2R) attack occurs when a person with user privileges tries to

acquire root user privileges. It might be carried out by an authorized user who has

malicious intentions or by an intruder who was able to break into the system either

by social engineering, password sniffing, or dictionary attacks. The most common

form of this exploit is the buffer overflow attack [31].

2.1.4 Denial of Service Attacks

Denial of Service (DoS) attacks attempt to interrupt or degrade a service that

a system provides to its intended users. It is the most common type of network

intrusion. A Denial of Service (DoS) attack is carried out by a single person or

system whereas a Distributed Denial of Service (DDoS) attack is carried out by more

than one person or systems (bots). A bot is a Internet robot that performs automated

tasks. DoS attacks are successful if they are able to generate shear volume of network

traffic than the system can handle.

DDoS has been recently used as a form of protest by hacktivists. They target an

entities website and bombard it with so many requests that the service degenerates

or gets crippled completely. DoS are often difficult to prevent actively because they

usually appear as normal network traffic. The FIFA 2014 worldcup website was a
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victim of a DDoS attack [49]. DoS attacks can be implemented in several ways

including; internet control message protocol (ICMP) flood attack, SYN flood attack,

tear drop attacks and peer-to-peer attacks [31].

2.2 Misuse Intrusion Detection

Misuse detection systems use information about known attacks to detect intru-

sions. Advantages of misuse detection include high confidence in detection, low false

positive rates and an unambiguous detailed identification of attack. It is the most

adopted approach in commercial systems because it is well understood and for the

above advantages. Disadvantages include the inability to detect unknown attacks,

need for expert knowledge to create signatures and regular updating of the signature

database to include new attacks. Misuse intrusion detection systems are implemented

using four techniques, namely; pattern matching techniques, rule based techniques,

data mining techniques, and state-based techniques.

2.2.1 Pattern Matching Techniques

Pattern matching techniques are commonly deployed on network intrusion detec-

tion systems. The attack patterns are usually modeled and then the IDS matches and

identifies them. The network IDSs are modeled based on packet headers, packet con-

tents or both of them. Pattern matching is computational expensive since there are

new types and varied forms of attacks emerging everyday. Kumar and Spafford [37]

proposed a generic pattern matching model that used Colored Petri Nets. SNORT
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[60] is an open source IDS that contains a pattern matching module.

2.2.2 Rule-based Techniques

It is one of the earliest used techniques for misuse intrusion detection. The

intrusion scenarios are encoded as a set of rules, which are then matched to network

or host traffic data. Deviations from the matching process are flagged as intrusions.

IDES (Intrusion Detection Expert System) [46] is a rule-based system. The IDES

model was a result of Dorothy Denning seminal paper [14]. IDES is trained to

detect known intrusions, vulnerabilities, and security policies that are site-specific.

IDES has the capability of detecting abuse of privileges by authorized users and also

masquerading of other users by authorized users. NIDES (Next-generation Intrusion

Detection Expert System) [4] is an extension of the IDES system. NIDES is a hybrid

system that has both a rule based component and a statistical model component for

anomaly detection.

MIDAS (Multics Intrusion Detection and Alerting System) [63] is an expert

system that was developed to perform real time intrusion detection and misuse de-

tection for Dockmaster, the National Computer Security Center (NCSC) networked

mainframe system. The rule base is developed in LISP language. The rules in MI-

DAS are in two separate layers. The first layer (lower layer) fires new events based

on a suspicion threshold from matching certain type of user events like number of

logins. The second (higher) layer analyses the suspicious events from the lower layer

and decides whether the events are suspicious enough to raise an alert [18].
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2.2.3 State-based Techniques

State-based techniques use system states and state transitions to detect intru-

sions. They require finite state machine construction for depicting the states and

transitions. The states depict the IDS states and transitions characterize events that

cause IDS states to change. An automation is flagged as intrusive when it reaches

a state that is flagged as intrusive. USTAT (Unix State Transition Analysis Tool)

[28] was the first system that proposed this technique.It was developed in UC Santa

Barbara. All known intrusion scenarios and vulnerabilities are represented in the

form of a state transition diagram. USTAT then monitors the system transition from

safe to unsafe using the representations. NETSTAT(Network-based State Transition

Analysis Tool) [76] uses the USTAT approach on computer networks.

2.2.4 Techniques based on Data Mining

In data mining techniques for misuse intrusion detection the data set is labeled as

normal or attack and a learning algorithm is trained using the labeled dataset. Data

mining techniques are able retrain intrusion systems automatically based on different

types of input data. The data mining models have an edge over pattern based systems

by the fact they can be trained automatically which gets rid of the issue of manually

creating signatures. There are several different data mining algorithms that have

been applied to the misuse detection problem.

Wenke Lee et al [39, 40, 41] proposed a data mining framework. They used

a data-centric approach and reported that classification, link analysis (how features
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are linked), and sequence analysis (sequence of patterns in the system) are useful in

the mining of audit data. They experimented on the sendmail system call data and

the network tcpdump data using association rules algorithm and frequent episode

algorithms.

Data mining based techniques performed well in the 1999 KDD classification cup

by classifying known attacks but their performance was fairly poor on new attacks.

Data mining techniques require labeled datasets for successful training. Labeling

datasets is costly, time consuming, and it is prone to errors. Errors in labeling the

datasets causes high false positive rates.

2.3 Anomaly Intrusion Detection

Anomaly intrusion detection systems model the normal behavior of the system,

compares it with the current behavior and reports any deviation from the normal

behavior. The main advantage is the ability detect unknown attacks. This approach

has not been adopted mostly in commercial systems because it works on the assump-

tion that any deviation from the normal behavior is an intrusion which leads to high

false positive rates. The high false positive rate is due to the fact that some nor-

mal activities can be flagged as anomalous if they deviate from the normal modeled

behavior. The current research work that is ongoing is to reduce the high rate of

false positives. The ability of anomaly detection systems to correctly classify the four

types of attacks DoS, U2R, R2L and probes will greatly reduce the false alarm rates.

Development of an anomaly intrusion detection system consists of two phases: a
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training phase and a testing phase. In the training phase, the normal profile model

is generated. The generated profile model is applied to new data in the testing phase

to evaluate the performance. Different techniques and methods have been proposed

for anomaly detection such as statistical models, data-mining based methods, and

machine learning based techniques.

2.3.1 Statistical based Techniques

Statistical based models observe the activity of subjects and generates profiles

to represent their behavior. Profiles include different measures such as activity inten-

sity measure, categorical measures (the distribution of an activity over categories),

audit record distribution measure, and ordinal measure (such as CPU usage) [54].

Advantages include it can detect new attacks and can provide specific notification

of malicious activities that occur over prolonged time durations. Drawbacks are; it

is difficult to determine thresholds that balance the likelihood of false positives with

the likelihood of false negatives, they need accurate statistical distributions and not

all behaviors can be modeled using pure statistical methods [54]. Some examples of

statistical based systems are Haystack [67], and NIDES (Next-generation Intrusion

Detection Expert System) [4].

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMER-

ALD) [57] is a hybrid system used for anomaly and misuse detection. It has two

components, a signature analysis component and a statistical based anomaly detec-

tion component based on profiles. The statistical anomaly detector labels events as

intrusive if they deviate largely from the expected behavior.
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2.3.2 Rule-based Techniques

Rule based techniques have also been implemented in some anomaly detection

models. Wisdom and Sense [75] is an anomaly detection system that has two com-

ponents: wisdom component and sense component. The wisdom component of the

system consists of historical audit data based set of rules that describe the system

normal behavior. The wisdom component creates its own set of rules. The sense

component analyzes subsequent audit data to determine whether it violates the rule

base created by the wisdom component of the system. Other systems include; Net-

work Security Monitor (NSM) [23], Time-based Inductive Machine (TIM) [72] and

NADIR (Network Anomaly Detection and Intrusion Reporter) [25].

2.3.3 Learning Models

Machine learning based techniques are attracting a lot of research work since they

can be used to develop anomaly intrusion detection systems that require less human

intervention. This is an attractive capability given that attacks are becoming more

complex and varying in nature. Machine learning techniques generate models based

on a provided training dataset with instances that are labeled normal or anomalous.

Some datasets label the anomalous instances with the specific attack type. For ex-

ample, probe, DoS, U2R or R2L. The labeling of training datasets used in machine

learning is performed manually by human experts which makes it expensive to obtain

an accurate labeled dataset.

Machine learning based techniques used in anomaly detection operate in three
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learning modes; Supervised, semi-supervised and unsupervised techniques. Super-

vised methods (classification methods), require a training dataset that contains both

normal and anomalous labeled instances to generate the predictive model. Semi-

supervised methods use a combination of unlabeled data and small amounts of la-

beled data. This reduces the labeling cost and also harnesses the good performance

achieved by supervised methods. Unsupervised learning techniques (clustering meth-

ods) do not require training data. Unsupervised approach assumes that most of the

network connection instances are normal traffic and that only a very small number of

the traffic instances are anomalous. The approach also assumes that there is a statis-

tical difference between the anomalous traffic and the normal traffic [44]. Using the

assumptions above, data instances are clustered into groups of similar instances. The

cluster with frequent data instances represent normal traffic while cluster with less

frequent instances are considered anomalous. Research on machine learning has been

carried out using the following techniques; Fuzzy logic [16], Bayes Theory, Support

Vector Machine (SVM) [52], Evolutionary computation, Association rules, Clustering

and Artificial Neural Networks (ANN) [45].

2.4 Hybrid Systems

Hybrid intrusion detection systems combine both misuse detection and anomaly

detection approaches to get the advantages of both approaches. The misuse detection

system detects known attacks and anomaly detection approach is utilized for novel or

unknown attacks. Hwang et al. [27] proposed to combine a signature based IDS and
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an anomaly detection system to get the advantages of low false positive rate and also

an ability to detect novel attacks. Their anomaly detection system mined anomalous

traffic from internet connections and used them to supplement the known signature

base of the SNORT [60]. They compared their hybrid detection system with SNORT

and BRO [55] systems and achieved 60% positive detection rate compared to 30%

and 22% of the SNORT and BRO IDS respectively.

Zhang and Zulkernine [84] proposed a serial hybrid detection system that uses

misuse detection method followed by the anomaly detection method. They use ran-

dom forest technique for the misuse detection system to detect known intrusions and

the outliers that result from the random forest algorithm are then utilized by the

anomaly detection system. Their hybrid system achieved an overall detection rate of

94.7% and a small false positive rate of 2%.

A novel hybrid system was proposed by Depren et al. [15] that utilized both

misuse and anomaly detection approaches. They added a decision system that com-

bined the results of the two approaches. Their anomaly detection system used the

Self-organizing Map (SOM) to model user behavior and the misuse detection system

used J.48 decision tree for classifying the various attack types. Their experiments

showed they achieved better performance from the hybrid system compared to using

each of the other systems individually.

Kim et al. [32] proposed a hybrid system that integrated misuse detection

system hierarchically with an anomaly detection system. Their misuse detection

system is based on the C4.5 decision tree algorithm. The misuse detection system

is used to decompose the training dataset for the anomaly detection system into
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smaller subsets. The anomaly detection model is then created using the one class

SVM on every decomposed region of the training subset. They showed that the

decomposed training of the anomaly detection model took 50% -60% less time than

the conventional models.

2.5 Other Classification

There are a number of other concepts used to classify IDSs [13] as seen on Figure

2.1. Behavior on detection describes the response of the IDS during an attack; active

systems take active or proactive measures to counter the attack while passive systems

merely generate alarms. Most of the IDSs are passive. The few active systems

implement measures such as cutting connections that carry attacks, blocking traffic

from attacking host, throttling bandwidth, or reconfiguring equipment such as routers

or firewalls.

Audit source location distinguishes IDSs based on the kind of information that

is analyzed. Host-based IDSs reside on a single system and monitor activity on that

machine using audit trails or system logs to detect possible attacks. Research on

Host-based intrusion detection include [81, 82]. Network-based IDSs are placed at an

important point or points within the network to analyze passing network traffic for

signs of intrusion.

Locus of detection describes where the monitoring, detection, and reporting are

controlled from. In centralized IDSs, monitoring, detection, and reporting are con-

trolled directly from a central location. In distributed IDSs, monitoring and detection
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Figure 2.1: Characteristics of Intrusion Detection Systems.

are controlled from a local control node with hierarchical reporting to one or more

central location(s). The IDSs can also be off-line or on-line based. Off-line IDSs

analyze the data off-line at a later time while the on-line systems analyze the data

when the system is still working.

2.6 Support Vector Machines

Support Vector Machines (SVMs) were introduced by Vapnik [11]. SVMs have

strong theoretical foundations and they have shown excellent empirical successes in

classification tasks such as text classification and digit recognition. SVM separates

data into different classes by a hyperplane or hyperplanes since it has the ability

to handle multidimensional data. SVMs minimizes empirical classification error and
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maximizes the margin. It also known as maximum margin classifier.

Suppose we have N training data points{(x1, y1), . . . , (xN , yN)}, where xi ∈ Rd

and yi ∈ {+1,−1}. The hyperplane equation in d dimensions becomes:

(wT · x) + b = 0 (2.1)

where w ∈ Rn is weight vector, b ∈ R is a bias value and x is an input vector. The

decision function becomes

f(x) = sign(wT · x) + b (2.2)

From the structural risk minimization principle, the optimal separating hyper-

plane of a linear classification is constructed by solving equation (2.3)

Min
1

2
||w||2, (2.3)

subject to

yi(w
T · xi + b) ≥ 1, i = 1, . . . , N (2.4)

The soft margin SVMs are used to reduce the effects of outliers and mislabeled exam-

ples. The method introduces a non-negative slack variable to (2.3) as shown below

Min
1

2
||w||2 + C

N∑
i=1

ξi, (2.5)

subject to

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N (2.6)
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Figure 2.2: Nonlinear Transformation into Higher Dimension Linear Separable Func-
tion Using Kernel Trick [78]

where ξi is the slack variable and C is a penalty parameter that controls the trade-

off between the cost of misclassification error and the classification margin. The dual

form of the optimization problem becomes

Max
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(xi, xj), (2.7)

subject to
N∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , N (2.8)

where K(xi, xj) is the kernel function and αi are Lagrange Multipliers. The kernel

function is one of the important elements attributed to the success of SVMs. The

‘kernel trick’ which transforms a nonlinear form of SVM to linear form as shown in

Figure 2.2 without explicitly computing the products in the high-dimensional feature

spaces.

There are three common kernel functions:
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Polynomial Kernel function:

K(xi, xj) = [(xi · xj) + 1]p,

where p is the dimension and p ≥ 1.

RBF Kernel function:

K(xi, xj) = exp(−||x− xi||
2

σ2
),

where σ is the kernel width.

Sigmoid kernel function:

K(xi, xj) = tanh[v(xi · xj) + c]

The decision function of the non linear SVM is given by the following function

f(x) = sign(
N∑
i

αiyi(xi · xj) + b) (2.9)

Figure 2.3 shows the support vectors, maximum margin, hyperplane and the

slack variables.

2.7 Literature Review

2.7.1 Review of Intrusion Detection Literature

Ghosh, Wanken and Charron [19] presented an intrusion detection system that

built profiles of software behavior using backpropagation neural network. They

showed that neural networks could be used to detect the misuse of programs. They
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Figure 2.3: Maximum Margin Hyperplanes [3]

trained their neural networks with randomly generated data and this showed the best

performance in discovery of novel types of misuse. They demonstrated the advan-

tage of applying the anomaly detection on the process behavior rather than the user

behavior. The 5 different neural networks they used showed an average accuracy of

between 80.2% and 99.1%.

Lei and Ghorbani [42] used an improved competitive learning neural network

(ICLN) for anomaly detection. They compared it to the self organizing maps (SOM).

Their proposed algorithm achieved similar accuracy to the SOM but required less

computation time during the training phase when tested on the KDDCUP‘99 dataset.

Their experiment also confirmed that the ICLN performance was not affected by the

number of initial output neurons. Their ICLN achieved an accuracy of 97%. In

2012 [43]they developed a supervised improved competitive learning neural network

(SICLN) which was an improvement of the ICLN algorithm. The SICLN achieved
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higher detection rates(99.66%) compared to SOM (99.62%), ICLN (99.58%) and K-

means (99.57%) clustering when tested on the KDDCUP‘99 dataset.

Ghosh and Schwartzbard [20] used a multilayer perceptron (MLP) for anomaly

detection in 1999. They used a single hidden layer neural network and also the leaky

bucket algorithm in order to provide memory of recent events to the neural networks

so as to capture the temporal locality of anomalous events, the events are used for

recognizing intrusive behavior. The performance of their proposed model for anomaly

detection produced detection accuracy of 77% with 2.2% false alarm rate when tested

on the DARPA 1998 dataset. Their misuse detection model produced 90% detection

accuracy but a higher false positive rate of 18.7% compared to other misuse detection

systems which had the same detection accuracy .

Lee and Heinbuch [38] proposed an IDS made up of hierarchy of neural net-

works that only monitored selected areas of network behavior (protocols) that are

predictable in advance. Their IDS had two level of hierarchy with all packet and

queue statistics as the input. Their neural network of choice was the Back Propa-

gation Neural network (BP-NN). Their system was tested on a simulated dataset.

When applied to specific areas of the network whose behavior could be predicted a

priori they achieved up to 100% detection rates.

Zhang, Jiang and Kamel [83] proposed two hierarchical neural networks that

used Radial Basis Functions (RBF). The first one was a serial hierarchical intrusion

detection system (SHIDS) which updated the structure automatically and adaptively

according to how the clustering program identified novel intrusions. They also pro-

posed a parallel hierarchical intrusion detection system (PHIDS) to counter the weak-
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ness of the SHIDS. The SHIDS detection errors accumulated since it worked serially

and would affect the classifiers downstream and also increase the detection time. The

PHIDS would enhance the abilities of the SHIDS by being able to handle the single

point failure vulnerability of the SHIDS. They also compared a Back Propagation

learner (BPL) with a Radial Basis Functions (RBF). Their results showed the RBF

was better with a detection rate of 99.2% and a false positive rate of 1.2% compared

to a detection rate of 93.7% and a false positive rate of 7.2% of the BPL. Their SHIDS

was able to monitor real-time network traffic and modify its structures adaptively and

they discovered that PHIDS runs faster that SHIDS.

In [77], Wang et al proposed use of artificial neural networks and fuzzy clustering

in their approach. Firstly, they used the fuzzy clustering technique to generate the

training subsets. They then used the different training sets to train different ANNs in

the second stage. In the last stage they introduced a fuzzy aggregation meta-learner

which they trained using the whole training set. The results of the meta-learner are

then combined with the results from the ANNs trained by the subsets and finally

they train another ANN from the combined results. Their proposed method achieved

a detection accuracy of 96.71% which was slightly better than näıve-Bayes 96.11%

and back propagation neural networks 96.65% when tested on the KDD CUP 1999

dataset.

Puttini, Marrakchi and Ludovic [58] introduced a behavior model that uses

Bayesian techniques to obtain model parameters with maximal a-posteriori proba-

bilities. The Bayesian technique is used on the detection phase after the behavior

model has already been fitted. The Bayesian classification inference is used together
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with a cluster pertinence inference.

Näıve Bayesian networks are much simpler Bayesian networks where the network

is restricted to two layers and it assumes complete independence between the infor-

mation nodes. Sebyala et al. described a system in [64] that uses a näıve Bayesian

network to detect malicious third party executable codes (proxylet) that are used for

provision of new services in the current telecommunication infrastructure.

Kruegel et al [35] use a full Bayesian network to overcome the shortfalls of the

näıve Bayesian network being identical to a threshold-based system that uses outputs

from child nodes in sum computation. Näıve-Bayes also has the restrictions of having

a single parent node which complicates the incorporation of additional information.

The use of a full Bayesian network allows them to model inter-model dependencies

and integrate additional data in order to improve the decision making of the classifier.

Barbara, Ningning and Sushil [7] proposed a pseudo-Bayes estimator that was

based on a näıve-Bayes probabilistic model to reduce the false alarm rate on an

anomaly detection system called Audit Data Analysis and Mining (ADAM) that

they had developed at Center for Secure Information Systems of George Mason Uni-

versity. Mining association rules techniques were used on the network traffic data to

detect abnormal events. Their näıve-Bayes classifier was used on the detected ab-

normal traffic to further classify them into normal instances that had already been

encountered by ADAM, known attacks (attacks contained in training dataset) and

new attacks. This filtering reduced the number of false alarms greatly. They used the

pseudo-Bayes estimators to derive the prior and posterior probabilities of new attacks

based on normal instances and known attacks information.
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In 2004, Steven Scott [62] proposed a Bayesian paradigm for designing IDS for

network systems. He proposed the intrusion detection problem should be modeled

stochastically and the models should be split into hierarchical components. He pro-

posed combining competing intrusion detection approaches such as anomaly detection

with pattern recognition. The fact that Bayesian methods present evidence of intru-

sion as probabilities makes it easier to be understood and interpreted by the system

administrators who the IDSs report to.

In [33], Koc et al. augmented the näıve-Bayes and structurally extended näıve-

Bayes methods with the leading discretization and feature selection methods in order

to improve the accuracy and reduce the resources required in the intrusion detection

problem. Their results which used the KDD99 dataset, showed that the hidden

näıve-Bayes multi-class classification model augmented with various discretization

and feature selection methods showed better results in the accuracy of detection,

error rate and misclassification cost than the traditional näıve-Bayes model,which

was the leading Bayes model in the KDD99 cup winner.

Sheikhan and Jadidi [65] used a modified gravitational search algorithm (MGSA)

as a heuristic to optimize a neural anomaly detector. They demonstrated that their

proposed approach was able to monitor abnormal traffic flows with an accuracy of

97.8% on the ISCX2012 dataset. They used different metrics to calculate the accuracy.

They compared their proposed approach to a particle swarm optimization method.

Kumar and Kumar [36] proposed a multi-objective genetic algorithm (MOGA)

approach for effective intrusion detection. The MOGA used had three phases; the first

phase entailed designing of a simple chromosome, the second phase obtained ensemble
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solutions from refining the solutions from phase one. Finally majority voting was used

to compute final prediction of the ensemble. The proposed method was evaluated

on the KDD Cup 99 dataset and the ISCX2012 dataset. They used a multilayer

perceptron (MLP) as the base classifier and they were able to achieve a detection

accuracy of 97%.

2.7.2 Literature Review of SVMs in Intrusion Detection

Mukkamala et al [51] were among the first researchers to experiment on anomaly

intrusion detection using neural networks and SVMs. They tested the performance of

their classifiers on the KDDCUP’99 DARPA dataset [30]. Their classifiers achieved

highly accurate results which were greater than 99%. Their SVMs outperformed the

neural networks in both training time and detection accuracy. The high detection

accuracy might be attributed to the insufficiency of the dataset that they used. In

their paper Tavallaee et al. [70] observed that the KDDCUP’99 dataset had redundant

records and it is difficult to compare the IDSs that had been evaluated using this

dataset. Mukkamala and Sung [69] used the SVMs and neural networks for important

feature selection and they still demonstrated high detection accuracies. Mukkamala,

Sung and Ribeiro [52] performed evaluations of impact kernels on the accuracy

of the SVM classifier in intrusion classification. Their experiments still exhibited

high detection accuracy rates similar to the ones mentioned in [51]. They also

determined that the ability of SVM classifiers is highly dependent on the kernel type

and parameter settings.

In their paper [61], Salem and Stolfo utilize user search behavior to create their
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model. They hypothesize that each file system is well know by the individual user for

them to search in a finite, direct and unique pattern to retrieve information needed

to carry out their tasks. However, a masquerader is not expected to know the file

system and layout of the system he is masquerading from and would likely have a

search pattern that is divergent from the victim or user being impersonated. User

activity volume and frequency related to searches and information was audited and

used to create the models.

The user behavior models are developed using the one-class support vector ma-

chines. The support vector machines (SVMs) is a modern machine learning algorithm

that has the best masquerade attack detection accuracy. SVM models are easy to

update and are suitable for block-by-block incremental learning. Their focus is on

the features that are modeled, limiting number of features chosen so as to reduce

sampling time in training data collection.

They developed a new dataset that is more suitable for the masquerade detection

problem and they named it RUU dataset and made it publicly available for future

research. In their experiment they achieved 100% detection rate with only 1.1% false

positives. The use of a small set of features allows for real-time masquerade attack

detection since the model requires little system resources. It is also easily deployed

since the amount of sampling required is reduced by the fact that profiling is done in

a low dimensional space. There is a 74% performance gain when the one class SVM

models search behavior compared to the application frequency model that had been

used for prior work. The user search behavior model proposed produced far better

accuracy compared to prior work that modeled user commands which had high false
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positive rates with moderate true positive rates.

Nassar et al [53] used SVMs to monitor Voice over Internet Protocol (VoIP) in

order to distinguish between attacks and normal activity. Their area of focus was the

Session Initiation Protocol (SIP) usually used in Internet telephony. They divided

the SIP traffic into small slices, extracted vectors of defined features that charac-

terized each slice, the features were then classified using SVMs. Their experiments

demonstrated real time performance and high detection accuracy of flooding attacks

and SPAM over Internet Telephony (SPIT). They also compared the performance

of different kernels with the Radial Basis Function emerging as the better kernel of

choice.

Khan et al [6] presented a way of improving the training time for SVMs espe-

cially when used in large datasets using hierarchical clustering analysis. They used

the DGSOT algorithm for clustering because it has been shown to overcome the

drawbacks of traditional hierarchical clustering algorithms (e.g hierachical agglom-

erative clustering). The clustering analysis they carried out among the two classes

assisted in the discovery of capable boundary points that were used to train the SVM.

In order to counter the issue of accuracy degradation of the classifier due to the fact

they did not use the original dataset, they repeatedly trained the classifier followed by

de-clustering and adding new training examples which are the children of the support

vectors.

Chen, Hsu and Shen [9] used SVM and artificial neural networks (ANN) to

classify host audit data to detect intrusive program behavior. They chose a frequency-

based encoding method over the sequence-based method since it reduces the overhead
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by checking for attacks at the end of the process rather than after every sequence.

Both the SVM with tf ∗ idf (term frequency∗ inverse document frequency) and ANN

with tf ∗ idf achieved 100% accuracy but the SVM had a lower false positive rate of

8.53% compared to 39.25% for the ANN.

Hu, Liao and Vemuri applied Robust SVM (RSVM) [68] to the anomaly detection

problem where there was presence of noise in the training data. Noisy data introduces

the problem of over-fitting in SVMs. They added noise to the 1998 DARPA BSM

dataset [1] and then compared the performance of the RSVM to normal SVMs and k-

Nearest Neighbor (kNN). When tested on the clean dataset RSVM and SVM achieved

accuracy levels of 81.8% while the kNN achieved 63.6%, the false positive rate was

less then 1%. When tested on the noisy dataset RSVM, SVM and kNN achieved

accuracy levels of 81.8%, 54.2% and 57.6% respectively with a reported false positive

rate of less than 3%. They also showed RSVMs had less support vectors 15 compared

to normal SVMs 40 on the noisy dataset.

Horng et al [26] proposed an IDS that combined hierarchical clustering and

SVMs. The clustering algorithm was used to preprocess the KDDCUP‘99 dataset

[30] before training the SVMs. They chose the Balanced Iterative Reducing and

Clustering using Hierarchies (BIRCH) as their clustering algorithm. They achieved a

detection accuracy of 95.7% and a false positive rate of 0.7%. The detection accuracy

was better than the KDD’99 cup winner [56] but the false positive rate was higher.
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Table 2.1: Summary of Popular Datasets in the Intrusion Detection Domain [79].

Data source Dataset name Abbreviation

Network traffic DARPA 1998 TCPDump Files DARPA98 [1]

DARPA 1999 TCPDump Files DARPA99 [2]
KDD99 Dataset KDDCUP’99 [30]
10 KDD99 Dataset KDD99-10 [30]
NSL KDD Dataset NSL-KDD [73]
Information Security Centre of Excellence
2012 evaluation dataset

ISCX2012 [66]

Internet Exploration Shootout Dataset IES [29]

User behavior UNIX User Dataset UNIXDS [74]

System call sequences DARPA 1998 BSM Files BSM98 [1]
DARPA 1999 BSM Files BSM99 [2]
University of New Mexico Dataset UNM [10]

2.8 Intrusion Detection Datasets

Datasets used to evaluate the performance of the IDSs is a controversial area

with the different challenges associated with datasets. Data used in intrusion detec-

tion research work is normally amassed from three sources: network data packets,

user input command sequences, or low-level system information, such as system call

sequences, log files, and CPU/memory usage. Table 2.1 lists some commonly used

benchmark datasets [79]. These are the publicly available datasets that have been

used to evaluate either misuse detection or anomaly detection systems. Most IDSs

are usually tested using the KDDCUP‘99 and DARPA 1998 datasets to test their

effectiveness.

In 2000 McHugh [48] did a critique of the 1998 and 1999 DARPA intrusion

detection system that had been carried the previous year by Lippmann et al [45] at
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the Lincoln Laboratory MIT. The two datasets used DARPA98 [1] and DARPA99 [2]

were criticized for their shortcomings in as far as how the data was generated. The

background data which is normal data free of any attack scenarios was only superfi-

cially described and they claimed it was similar to data from Air Force bases. The

attack data was also criticized for being synthetic and not realistically distributed in

the background noise. The architecture of the network from where the dataset was

generated might not be similar to that of a typical Air Force base. He suggested for

better traffic characterization and validation of future datasets to handle the dataset

shortcomings.

The NSL-KDD dataset [73] addresses some of the problems that were in the

KDDCUP’99 dataset. In their paper Tavallaee et al. [70] observed that the KD-

DCUP’99 [30] dataset had redundant records in the training set which biased the

classifiers towards records appearing more frequently. The NSL-KDD train sets con-

tains no duplicate records.The NSL-KDD test sets does not contain duplicate records

which removes the possibility of performance bias by learners which have better de-

tection rates on the frequent records. They also reduced the size of the dataset to

a reasonable size which would enable researchers to carry experiments on the com-

plete set without need to trim the datasets. This makes it possible for comparison of

different research work consistent.

Tavallaee, Stakhanova and Ghorbani [71] in 2010 reviewed the state of exper-

imental practice in the anomaly intrusion detection area and they looked at 276

studies published between the year 2000 and 2008. They found out the most preva-

lent approach to evaluation of anomaly IDSs was based on fully or partially synthetic
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datasets. 70% of the studies used publicly available datasets, 32% created their own

datasets, 9% used simulation tools and only 7% attempted to test their proposed

systems on a real network. They pointed out that privacy was among the main is-

sues in the criticism of existing publicly available datasets since most of them have

been sanitized and anonymized to protect privacy. Real traffic on the other hand is

usually not guaranteed to be reliable. The other issues pointed out about the data

sets include the definition of anomaly, data normalization, feature omission and data

reduction.

There are researchers who have opted to create their own datasets to carry out

their own research. Salem and Stolfo [61] collected their own dataset and named it

RUU (Are you you?) They gathered the data from Windows platform using a host

sensor. The gathered data consisted of process name and ID, process path, process

parent, process action type (e.g., type of registry access, process creation, process

destruction, window title change, etc.), process command arguments, action flags,

and registry activity results.

Research is also carried out on datasets that are not available to the public due to

privacy issues and or for business secrets. In their paper [47], Mathew et al. use a real

Graduate Admission database (University at Buffalo) for their research problem on

inside attacker threat against database management systems. Insider attacks occur

when authorized users abuse legitimate privileges to masquerade as other users or

maliciously harvest data.

Anomaly detectors also use simulated data to test them. Cucurull et al. [12]

described an anomaly and mitigation approach for disaster area networks. The mo-
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bile ad hoc network (MANET) in their disaster area network was intermittently

connected. Intermittently connected MANET (IC-MANET) have contemporaneous

routes among the nodes. The focus of their study was on the impact of intrusions on

the dissemination protocol. They used a simulation to run their experiments since

it should depict a situation of disaster area. In a situation like a disaster dataset

collection for mobile ad hoc networks is not possible because of the obvious reasons.

The dataset used in this study is the Information Security Centre of Excellence

2012 intrusion detection evaluation dataset (ISCX2012) [66] from the University of

New Brunswick created by Ali Ghorbani and his group. The dataset was chosen

because it was generated from a framework that uses guidelines that are important in

making a dataset effective in terms of realism, evaluation capabilities, total capture,

completeness and malicious activity. The framework that they proposed to generate

a benchmark dataset is modifiable, extensible and can be reproduced to reflect the

traffic composition and intrusions of a specific time. It is not anonymized due to

privacy issues since it was generated in an environment where there is no risk of

anyones privacy being compromised. The specifics of the dataset are discussed in the

next Chapter.

2.9 The Software Suite

The software suite used is the open source data mining suite Weka from the

University of Waikato. The software components used are developed in Java. The

machine algorithms packages contained on the suite can be applied directly on a
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dataset or called from code. Weka was the chosen suite because of its capability

of having different preprocessing tools and visualization tools. The multilayer per-

ceptron classifier, näıve Bayes classifier, and RBF network classifier algorithms are

available with Weka software suite.

2.9.1 SVM Package

The package used for SVM experiments is the LibSVM tool [8]. The LibSVM

gives users the ability to experiment with One-class SVM, Regressing SVM, and

nu-SVM. LibSVM has the capability of reporting many useful statistics about the

classifier (e.g., confusion matrix,precision, recall, ROC score, etc.).
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Chapter 3

Methodology and Implementation

3.1 ISCX2012 Dataset

The dataset used to test the classifiers is the Information Security Centre of Ex-

cellence (ISCX 2012) dataset created by Shiravi Ali, Shiravi Hadi, Tavallaee Mahbod

and Ghorbani Ali from University of Brunswick ISCX [66]. The dataset was de-

signed specifically for the purpose of developing, testing and evaluation of network

intrusion and anomaly detection algorithms. It is among the few datasets that are

public and not anonymized for privacy issues. It reflects the current trend of network

data. The dataset was generated to address the shortfalls of most of the datasets

used in anomaly Intrusion detection [70]. Most of the datasets used to test, evaluate

and compare IDSs are internal and cannot be released to other researchers, or are

outdated, or suffer from statistical inefficiencies. The dataset contains 17 features

and the tag value indicates whether the flow is normal or attack. The features are

shown in the Table 3.1

The entire ISCX labeled dataset comprises nearly 1512000 packets with 19 fea-

tures and collected over seven days of network activity (i.e. normal and intrusion).
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Table 3.1: List of Dataset Features.

Attributes
appName sourceTCPFlagsDescription
totalSourceBytes destinationTCPFlagsDescription
totalDestinationBytes source
totalDestinationPackets protocolName
totalSourcePackets sourcePort
sourcePayloadAsBase64 destination
destinationPayloadAsBase64 destinationPort
direction startDateTime
Tag stopDateTime

The feature descriptions are explained in Appendix A.3.

3.1.1 Data Preparation

The size of the data means it has to be preprocessed to reduce the size and change

the data types for it to work with the chosen algorithm. The dataset is inclusive of

a labeled flow file that supports the use of supervised machine learning algorithms.

The flow file is labeled with a ‘Normal’ and ‘Attack’ tag. The intrusions were carried

out on specific days which enables us to rename the attack instances to the specific

attack types which are Botnet attacks, Denial of Service attacks, brute force SSH

attacks and internal infiltration (L2L) attacks.

The labeled flow is in XML format and it had to be transformed to a format that

could be used to train the SVMs. Due to the large size of the dataset we picked 10%

of all the labeled data as the test set. The training set is 1% of the entire labeled

dataset. The split of ’Normal’ and ’Attack’ of the whole dataset is as shown on Table

3.3 the chosen from the specific days that had attack files. The days that no attack
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did not have a labeled data. The normal class data was chosen randomly from the

labeled dataset. High frequency attacks like L2L and SSH were also randomly chosen.

Due to the low frequency of Botnet and DoS attacks in the dataset all of them were

picked from the dataset and occur in both the training and testing dataset.

The L2L attack is an infiltration of the network from the inside of the network.

It entails a combination of attacks including a probing attack, a buffer overflow attack

and SQL injection. The DoS attack was carried out on the web server to deny HTTP

service. The Botnet is a DDoS attack and it was carried out using an IRC botnet.

The SSH labeled attack is a probe attack that brute forces the main server using a

dictionary with the goal of acquiring a SSH account. The different attack scenarios

are further explained in [66].

Further adjustments had to be made to make the data fit for use. Reduction of

the number of attributes from all the possible attributes had to be carried out. The

following attributes were chosen for the experiment; Application Name, Total Source

Bytes, Total Destination Bytes, Total Destination Packets, Total Source Packets, Di-

rection, source TCP Flags Description, Destination TCP Flags Description, Protocol

Name, Source Port, Destination Port, and Tag. Some accumulative or redundant

attributes, such as Time Start, Time End, and Base64 format payload were removed.

3.2 Accuracy Measurement Metrics

The accuracy of the classifier is determined by different measures. Some of the

measures used are false positives and negative rates, confusion matrix, precision, recall
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Table 3.2: Dataset Attributes Statistics.

Training set Test Set
Normal 1227 12285
L2L 60 605
SSH 46 463
Botnet 3 2
DoS 4 36
Total 1340 13391

Table 3.3: Normal vs Attack Distribution.

Flow % Normal % Attack
37870 100 0
13320 98.45 1.55
27555 92.61 7.39
17138 97.8 2.2
57170 93.46 6.54
52226 100 0
39760 98.7 1.3

and F-Measure and also ROC curves. True positive (TP) is an attack that is correctly

classified as an intrusion and true negative (TN) normal traffic correctly classified as

normal traffic. False positive (FP) is when normal traffic is classified as an intrusion

and false negatives (FN) is when an intrusion is classified as normal traffic as shown

in Table 3.4. A classifiers goal is to yield as many TP and TN as possible while

reducing the FP and FN [18].

Table 3.4: Intrusion Detection System Classification.

Actual data class IDS prediction
True Positive(TP) Attack Attack
False Positive(FP) Normal Attack
True Negative(TN) Normal Normal
False Negative(FN) Attack Normal
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3.2.1 Confusion Matrix

The Confusion Matrix is an evaluating technique applied to any kind of classifica-

tion problem. The matrix size is dependent on the number of distinct classes that are

to be classified. Its used to compare the information visually about the actual class

labels against the predicted class labels [18] from classifier . The confusion matrix

displays the four values (i.e TN, TP, FN, FP) in a manner the relationship between

them is easily comprehensible as shown in Table 3.5.

Table 3.5: Confusion Matrix Table.

Predicted class
Normal Abnormal

Actual class
Normal TN FP

Abnormal FN TP

The other metrics used are precision and recall which are calculated using TP,

FN, FP. F-measure is calculated from precision and recall. ROC curves are used to

visualize the relation between the TP and FP rates [18].

3.2.2 Precision

Precision is calculated with respect to the intrusion class. It shows how many

intrusions predicted by an IDS are actual intrusions [18, 80]. A practical IDS should

aim for high precision. A high precision means false alarms are minimized.

Precision =
TP

TP + FP
where precision ∈ [0, 1]. (3.1)

Precision cannot be used as the only metric because it does not express the
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percentage of predicted intrusions compared to all the intrusions in the present in the

whole dataset.

3.2.3 Recall

Recall is a metric that shows the percentage of predicted intrusions versus all

intrusions present. An IDS classifier should have a high recall value for it to be

practical [80, 18].

Recall =
TP

TP + FN
where recall ∈ [0, 1]. (3.2)

Recall too has a disadvantage as it does not take into consideration false alarms

so an IDS might have a high recall value and a high false alarm rate.

3.2.4 F- Measure

F-Measure is a metric that gives a better measure of accuracy of an IDS. It

uses a combination of precision and recall. It is the harmonic mean of precision and

recall [80]. An IDS classifier’s F-Measure is desired to be high, which implies high

precision and high recall values [18].

F −Measure =
2

1

precision
+

1

recall

where F −Measure ∈ [0, 1]. (3.3)

3.2.5 ROC curves

Receiver Operating Characteristics (ROC) curve is an alternative measure of

evaluating a models performance. Signal detection theory is the origin of ROC curves.
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ROC curve is a plot of true positive rate (y-axis) against the false positive rate (x -

axis) [80]. It is used to visualize the relationship between TP and FP rate as seen in

Figure 3.1. Its used to help tune a classifier and also compare two or more different

classifier models. When comparing two classifiers the one with a higher area under

the curve is the better classifier.

Figure 3.1: ROC Curve Example [78]

3.3 DESCRIPTION OF THE TESTS

Five tests were performed to compare the performance of the Support Vector

Machines (SVM) with Multi Layer Perceptron (MLP), näıve-Bayes (NB) and RBF
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Network (RBF-N). Two tests were further done to determine the better kernel be-

tween the polynomial kernel and RBF kernel. The SVMs were tuned to obtain the

best gamma and cost values. The tests were carried on the ISCX2012 data. 1% of

the data randomly sampled from the whole data set was used as the training set. The

test set contains 10% of the entire data set.

3.3.1 Objective of the Tests

The first test evaluates the performance of the RBF kernel function and polyno-

mial kernel function to determine the better of the two functions when the SVM is

applied to the train and test dataset. The SVM that performs better between SVM-

RBF and SVM-Poly will be used to compare with the performance of MLP, RBF-N

and näıve-Bayes classifier.

3.3.2 General Steps of the Tests

The following steps were followed in the tests that were performed. The training

dataset was loaded into the software suite. Depending on the classifier the data was

preprocessed accordingly and will be stated in each tests description. The classifier is

then applied to the dataset and tuning of the parameters to obtain the best detection

rate was carried out. The models are then tested on the testing dataset. All the tests

were carried out on the same training and testing dataset.
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3.3.3 Test 1: Intrusion Detection Using SVM-Poly

This test is used to demonstrate intrusion detection each class of scenario using

SVM classifier that uses a polynomial kernel on a subset of the ISCX dataset. The

effect of data normalization is also inspected on the classifier performance.

3.3.4 Test 2: Intrusion Detection Using SVM-RBF

This test is used to demonstrate intrusion detection each class of scenario using

SVM classifier that uses a RBF kernel on a subset of the ISCX2012 labeled dataset.

The effect of data normalization is also inspected.

3.3.5 Test 3: Intrusion Detection Using MLP

This test is used to demonstrate intrusion detection each class of scenario using

Multi Layer Perceptron (MLP) classifier on a subset of the ISCX dataset and the

performance compared to the SVM. The effect of data normalization is also inspected

on the classifier performance.

3.3.6 Test 4: Intrusion Detection Using RBF-N

This test is used to demonstrate intrusion detection each class of scenario using

RBF network classifier on a subset of the ISCX dataset and the performance com-

pared to the SVM. The effect of data normalization is also inspected on the classifier

performance.
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3.3.7 Test 5: Intrusion Detection Using Näıve-Bayes Classifier

This test is used to demonstrate intrusion detection each class of scenario using

näıve-Bayes classifier on a subset of the ISCX dataset and the performance com-

pared to the SVM. The effect of data normalization is also inspected on the classifier

performance. Discretization of the dataset will also be investigated.

3.4 PARAMETERS F0R THE TESTS

3.4.1 Parameters for the MultiLayer Perceptron Experiment

A multilayer perceptron neural network requires a number of parameters. There

are no strict rules for setting this parameters. A working combination of these pa-

rameters were selected based on different tests that were made to test their effect on

the classifiers performance. Figure 3.2 shows the layers of the network used in this

test. The parameters are listed below.

Input Nodes

The input is divided into the 11 attributes present in the dataset which are: app-

Name, totalSourceBytes, totalDestinationBytes, totalDestinationPackets, totalSour-

cePackets, direction, sourceTCPFlagsDescription, destinationTCPFlagsDescription,

protocolName, sourcePort and destinationPort. The Tag attribute is the only used

as a label.
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Momentum

This parameter is used for speeding up the learning rate. When several consec-

utive input patterns have the same general bias momentum value allows the neural

net to have large weight adjustments that are reasonable. It also prevents a large

oscillation from any one single training pattern. It speeds up the learning rate as

long as the error rate is decreasing. This study used a momentum rate of 0.2.

Learning Rate

The learning rate parameter is used to determine the rate at which the weight

values of the layers are modified. A higher learning rate translates to faster net-

work training. However, if the learning rate is too high the network might become

unstable [22]. We use a learning rate of 0.3 in this study.

Output Nodes

The output is five nodes which represent the different classes, namely; Normal,

L2L, SSH, Botnet and DoS.

Number of Hidden Nodes

The number of hidden nodes for our study are 8 calculated by the formula given

below.

HiddenNodes =
(attributes+ classes)

2
. (3.4)
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3.4.2 Näıve-Bayes Classifier

The näıve-Bayes classifier is based on the Bayes theorem. It operates on a strong

independence assumption that the attribute values of the classes are not dependent

on the values of other attributes. This assumption is known as the class conditional

independence. The assumption, even though unrealistic makes the näıve-Bayes clas-

sifier remarkably successful in practice, often competing with other classifiers like

decision trees and some selected neural network classifiers in terms of performance.

The following steps explain the basic working principle of the näıve-Bayes clas-

sifier:

• Consider a set T , of training samples, having their respective class labels,

C1,....,Cm.

• Let each sample be represented by a vector X = x1, ..., xn, characterizing n

measured values of attributes A1, ..., An, respectively.

• Thus if X is a sample from a different set of data, then it would be classified as

belonging to Ci iff

max
ci

P (Ci|X) (3.5)

• We call Ci, the class for which P (Ci|X) is maximized, posterior hypothesis.

From Bayes theorem

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
. (3.6)

• Only P (X|Ci)P (Ci) is required to be maximized because P (X) is equal for

all classes. The classes P (C1) = P (C2) = ... = P (Ck) are assumed to be
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equally likely whenever probabilities are unknown a priori, hence only P (X|Ci)

is maximized.

• It is computationally costly to compute P (X|Ci) for a dataset containing many

attributes. The computation cost of evaluating P (X|Ci)P (Ci), is reduced by

the simple assumption that all attributes are independent. The likelihood can

be decomposed into a product of dimension-wise probabilities because of the

independence assumption.

P (X|Ci) ≈
n∏

k=1

P (xk|Ci). (3.7)

The probabilities P (x1|Ci), P (x2|Ci), ..., P (xn|Ci) are approximated from the

training set T .

• Every class Ci has its P (X|Ci)P (Ci) evaluated to predict the class label of X.

Thus the label of X is Ci iff it is the class maximized by P (X|Ci)P (Ci).

The näıve-Bayes used in this study is from the WEKA software suite [21].

Näıve-Bayes Parameters

There are only two available parameters for the näıve-Bayes implementation in

the software suite;

1. Type of estimator. A kernel estimator is preferred for numeric attributes oth-

erwise a normal distribution is used. The normal distribution was used.

2. Supervised discretization was used as it produced better classification accuracy

compared to the non-discretized form.
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3.4.3 RBF Network

A radial basis function network is an artificial neural network. It uses radial basis

functions as the activation functions for the neurons. This test uses a normalized

Gaussian RBF network. The k-means clustering algorithm is used to provide the

basis functions.

RBF Networks Parameters

There are only two available parameters for the RBF network implementation in

the software suite;

1. number of clusters. It determines the number of clusters that will be generated

by the k-Means clustering algorithm.

2. minimum standard deviation. Sets the minimum standard deviation for the

clusters.

3.4.4 Parameters for the SVM Experiments

The following are the available parameters for the implementation in the software

suite.

Kernel Type

It sets the type of kernel that will be used by the SVM. The radial basis function

(RBF) and polynomial kernels will be used in the tests.
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Cost Function

The cost function is known as the penalty factor. It controls the trade-off between

complexity of decision rule and frequency of error [11]. Different values of the cost

function were tested. 1.0 was the value chosen for the study.

Gamma

It is the parameter used in the RBF kernel to vary the under fitting and over

fitting of the model. A small value of Gamma gives low bias and high variance and

large value of gamma has the opposite effect of high bias and low variance. A gamma

value of 0.1 was chosen for this study.

Normalize

It determines whether the data will be normalized or not before training. The

option that will improve the classifiers performance will be chosen.

50



Chapter 4

EVALUATION

The primary objective of an Intrusion Detection system is to detect intrusions

that occur in the system, while maximizing detection accuracy and reducing the false

positive rate. The ideal scenario of a practical Intrusion Detection system classifier is

a high precision, a high recall, and a high F-value for all attack types and the entire

system and with minimal false positive rates.

The proposed SVM classifier achieves 99.1% detection accuracy when evaluated

on the ISCX2012 dataset which shows better performance compared to the modi-

fied gravitational search algorithm (MGSA) neural network used in [65] with 97.8%

detection accuracy and the multi-objective genetic algorithm (MOGA) multilayer

perceptron used by [36] with 97% average detection accuracy.

For all the graphs displayed on this Chapter, the vertical axis represents per-

centages of the different metrics used to evaluate the different classifiers used. The

legends indicate the different metrics; precision, recall and F-value. The horizontal

axis varies and will be specified for each graph.
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Recall that

1. Precision (P) (page 39) gives the accuracy of intrusion prediction

P =
TP

TP + FP
where P ∈ [0, 1]. (4.1)

2. Recall (R) (page 40) gives the percentage of correctly determined intrusions in

the specific class

R =
TP

TP + FN
where R ∈ [0, 1]. (4.2)

3. F-Value (F) (page 40) is the harmonic mean of P and R

F =
2

1

P
+

1

R

=
2PR

P +R
where F ∈ [0, 1]. (4.3)

4.1 SVM Algorithm Results

The first simulation run was carried out to find the performance of the SVM

classifier. Both the polynomial kernel and the radial basis function kernel were tested.

Table 4.1 shows the performance of the two kernels. There is a small difference in

performance in all the 3 metrics. The metrics used for comparison are defined in

Chapter 3.2.

The average performance of the SVM with polynomial kernel (SVM-P) is better

than the average performance of the SVM with radial basis function kernel (SVM-

RBF). All the other classifiers performances will be compared to the SVM-P classifier

in this study. SVM-P had an average precision, an average recall, and an average F-

value of 99.1% across all classes compared to an average precision of 98%, an average
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recall of 98.2%, and an average F-value of 98.1% across all classes. The individual

results are discussed in the following sections.

Table 4.1: SVM-P and SVM-RBF Performance Comparison.

SVM-P SVM-RBF
Precision 99.1 98
Recall 99.1 98.2
F-value 99.1 98.1

4.1.1 SVM-Polynomial Algorithm Results

After reviewing results the SVM with polynomial kernel (SVM-P) is found to

be the better performing kernel. The process of tuning the classifier is carried out.

Different values of the cost function were tested and a value of 1.0 was chosen. Nor-

malization of the data sometimes improves the performance of some classifiers. Nor-

malization was found not to have an effect on the SVM-P classifier.

Support vector machines with the polynomial kernel achieved an average pre-

cision value of 99.1%, an average recall value of 99.1%, and an average F-value of

99.1% over all the classes of the dataset. Normalization of the data does not affect

the performance of the classifier. The classifier achieves high precision, recall and

F-value for high frequency classes normal, L2L and SSH. It performs poorly on the

low frequency botnet and DoS classes as seen in Figure 4.1. The Botnet class has a

precision of 18.2% but a recall of 100%. The reason why the recall for the Botnet

class is high is because the formula of calculating recall does not take into account

the false positives (i.e 9 normal instances were predicted as Botnet attacks) as seen

on the confusion matrix Table 4.2 (Confusion matrix table was defined on page 39).
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The DoS class achieves a precision of 60% and a recall of 25%. A high number of

DoS instances were misclassified as Normal, L2L, and SSH instances.

Figure 4.1: SVM Polynomial Results

Table 4.2: SVM-P Confusion Matrix Table.

Predicted class
Normal L2L SSH Botnet DoS

Actual class

Normal 12224 27 19 9 6
L2L 31 574 0 0 0
SSH 0 0 463 0 0

Botnet 0 0 0 2 0
DoS 23 3 1 0 9

4.1.2 SVM-RBF Algorithm Results

Support vector machine with the radial basis function kernel (SVM-RBF) is also

implemented and all the parameters tuned. The same cost function of 1.0 chosen for
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the SVM-P is also used here. Different values of gamma are also tested to vary the

effect of under-fitting and over-fitting. A gamma value of 0.1 is used.

SVM-RBF with normalization achieved an average precision value of 98%, an

average recall value of 98.2%, and an average F-value of 98.1% over all the classes of

the dataset. Without normalization it achieved an average precision value of 93.3%,

an average recall value of 93.1%, and an average F-value of 90.7% over all the classes

of the dataset. Normalization of the data increases precision, recall and F-value by

4.7%, 5.1% and 8.4% respectively. The SVM-RBF classifier has no precision, recall

and F-value for the low frequency DoS class of attacks.

Figure 4.2: Comparison of SVM-RBF and SVM-RBF Normalized
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The results from the normalization of the data shows increase in the performance

of the high frequency classes normal, L2L and SSH as seen on Figure 4.3. Normal-

ization has an effect on the low frequency Botnet class, the performance gets worse

for the class from 66.7% to 0%. As observed before, the normalization has no effect

on the Botnet class as the classifier is still unable to detect the DoS attack.

Table 4.3: SVM-RBF Confusion Matrix Table.

Predicted class
Normal L2L SSH Botnet DoS

Actual class

Normal 12164 37 84 0 0
L2L 527 78 0 0 0
SSH 0 0 463 0 0

Botnet 0 0 2 0 0
DOS 17 18 1 0 0

4.1.3 SVM-P Comparison to SVM-RBF Results

After conducting the simulations it is evident that the SVM with polynomial

kernel (SVM-P) has better F-values than support vector machine with the radial basis

function kernel (SVM-RBF) on all classes of the data. SVM-RBF does not detect the

low frequency classes of Botnet and DoS as seen on Table 4.3. The polynomial kernel

becomes the clear kernel choice and will be utilized for the rest of the experiments of

the support vector machines.
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Figure 4.3: Comparison of SVM-P and SVM-RBF

4.2 MLP Algorithm Results

The goal of implementing this algorithm is to do a comparative study on the

detection accuracy between the multilayer perceptron (MLP) classifier and our choice

classifier (SVM). The classifier is initially trained on the dataset to get the base results.

The parameters are then adjusted to achieve the best intrusion detection accuracy.

A momentum rate of 0.2 was found to be optimum. The learning rate of 0.3 is also

used for the training. The MLP uses 8 hidden nodes which are calculated as shown

in Equation 3.4. The dataset is normalized.
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The MLP classifier is only able to classify the high frequency Normal and L2L

class as seen on Figure 4.4. Normal class had a precision of 95.2%, a recall of 100%,

and an F-Value of 97.5%. L2L class had a precision of 100%, a recall of 71.6% and

an F-Value of 83.4%. All the other classes were misclassified as seen on the confusion

matrix on Table 4.4.

Figure 4.4: MLP Results

Table 4.4: MLP Confusion Matrix Table.

Predicted class
Normal L2L SSH Botnet DoS

Actual class

Normal 12281 0 2 0 2
L2L 433 114 0 0 58
SSH 0 0 463 0 0

Botnet 0 2 0 0 0
DoS 0 36 0 0 0
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4.3 Näıve-Bayes Algorithm Results

In this simulation, the näıve-Bayes classifier is first trained to determine the base

results on the provided dataset. It achieves a detection accuracy of 94.1% and a false

positive rate of 35%. The classifier is tuned and the data is discretized to handle

continuous data. The performance improves to 96.6% detection accuracy and 1.5%

false positive rate. That is an improvement of 33.5% on the false positive rate showing

that the näıve-Bayes classifier performs better on discretized data.

The results show that the näıve-Bayes classifier performed well on the high fre-

quency Normal, L2L and SSH classes as seen on Figure 4.5. Normal class has a

precision of 99.8%, a recall of 96.5%, and an F-Value of 98.1%. L2L class has a pre-

cision of 100%, a recall of 98.7%, and an F-Value of 99.3%. SSH class has a precision

of 99.6%, a recall of 100% and an F-Value of 99.8%. The näıve-Bayes classifier has a

low precision value for the Botnet class of 0.5% but a high recall value of 100%.

There is an interesting observation when it comes to the low frequency class

DoS. The classifier achieved a precision of 54.1%, a recall of 55.6%, and an F-Value of

54.8%. This is the best performance of this low class even though it was not an ideal

result. The confusion matrix on Table 4.5 shows how many attributes were correctly

and incorrectly classified.
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Figure 4.5: Näıve-Bayes Results

Table 4.5: NB Confusion Matrix Table.

Predicted class
Normal L2L SSH Botnet DoS

Actual class

Normal 11853 0 1 416 15
L2L 4 597 0 2 2
SSH 0 0 463 0 0

Botnet 0 0 0 2 0
DoS 14 0 1 1 20

4.4 RBF Network Algorithm Results

The radial basis function network (RBF-N) is the last algorithm implemented

to compare its detection accuracy to our choice classifier (SVM). The classifier is

initially trained on the dataset to get the base results. The parameters are then

adjusted to achieve the best intrusion detection accuracy. Two clusters are used by
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the k -means clustering algorithm. A standard deviation value of 0.1 is chosen. The

classifier performs very poorly on normalized data. The results discussed below are

on non-normalized data.

The RBF network classifier performance of the different classes is seen on Figure

4.6. Normal class has a precision of 98.9%, a recall of 98.8%, and an F-Value of 98.9%.

SSH class has a precision of 85%, a recall of 100%, and an F-Value of 91.9%.

There are two interesting results observed from this classifiers performance. The

L2L class achieves a precision of 87.5%, a recall of 82.5%, and an F-Value of 84.9%.

All the other classifiers achieve a relatively high accuracy detection of the high fre-

quency classes except this classifier. Also the RBF network classifier achieved 100%

classification on the low frequency class Botnet with a precision, recall and F-Value

of 100%.

The low frequency class DoS achieved a precision of 100%, a recall of 25%, and

an F-Value of 40%. The confusion matrix on Table 4.6 shows how many attributes

were correctly and incorrectly classified by the RBF network classifier.

Table 4.6: RBF-N Confusion Matrix Table.

Predicted class
Normal L2L SSH Botnet DoS

Actual class

Normal 12134 70 81 0 2
L2L 106 499 0 0 58
SSH 0 0 463 0 0

Botnet 0 0 0 2 0
DoS 25 1 1 0 9
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Figure 4.6: RBF Network Results

4.5 Results Comparison

The dataset used contains five different classes; the normal class and four attack

type classes. It is important to analyze and understand how each class is handled by

the different classifiers used.

Support Vector Machines (SVM-P) with a polynomial kernel produced the high-

est detection rates compared to the Multilayer Perceptrons (MLP), näıve-Bayes (NB),

and radial basis function network (RBF-N). Figure 4.7 shows the average detection

rates of the tested classifiers over all the classes. The detection rate of the SVM-P

was 99.11%, average detection rate of the MLP was 94.94%, average detection rate

using NB was 94.12%, and the average detection rate for the RBF-N was 97.87%.

It is evident that the classifiers perform differently on the different classes. The
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performance of the classifiers on each class will be compared in the next Section.

Figure 4.7: True Positive Detection.

The SVM classifier still performed better than the other classifiers when it came

to false positive rates. It achieved an overall false positive rate of 4.5% compared to

10.9%, 35% and 51% of the RBF network, näıve-Bayes and MLP respectively. From

observation of the results obtained the SVM classifier is the better classifier overall

even though it is outperformed by some of the classifiers on some classes like L2L,
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SSH, and DoS. It can also be deduced that the classifiers do not perform very well

on the low attribute frequency classes like DoS and botnet. The MLP especially

performed poorly on the low frequency classes SSH, DoS and Botnet.

4.5.1 Normal Class

The normal class contains the normal network flow of the data. The wrong

classification of this class as an attack produces a false positive. An IDS that generates

a high number of false positives is not practical. The false positive is also used in the

calculation of the precision metric Equation 3.1 on page 39.

All the classifiers were able to achieve high detection rates on the normal class.

SVM outperformed all the others with a precision value of 99.6%, a recall value

of 99.5%, and F-value of 99.5%. These values were even higher than the average

precision, average recall, and average F-value of the SVM classifier. The RBF network

classifier was the second best with a precision value of 98.9%, a recall value of 98.8%,

and F-value of 98.9%. It was followed by näıve-Bayes and then MLP as shown in

Figure 4.8.

The normal class has the highest attribute frequency. The normal class is 91%

of both the training and testing dataset. The good performance might be attributed

to this fact.
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Figure 4.8: Normal Class Performance.

4.5.2 L2L Class

The Local-2-Local (L2L) attack type is the most prevalent attack type on the

dataset. A wrong classification of this class as normal produces a false negative. High

false negatives affect the recall value of the classifier.

In the L2L class the näıve-Bayes classifier outperformed all the other classifiers

with a precision value of 100%, a recall value of 98.7%, and F-value of 99.3%. The

SVM classifier is the second best with a precision value of 95%, a recall value of

94.9%, and F-value of 95%. The RBF network and the MLP did not perform as well

with F-Value of 84.9% and 83.4% as seen on Figure 4.9

The L2L class has the second highest attribute frequency. The training data and

the testing data contains 4.5% of L2L class.
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Figure 4.9: L2L Class Performance.

4.5.3 SSH Class

The SSH attack type is the second most prevalent attack type on the dataset.

This intrusion will also affect the recall value if it is misclassified as normal class.

Another interesting observation as the näıve-Bayes classifier again outperforms

the other classifiers in this attack class. It has a precision value of 99.6%, a recall

value of 100%, and F-value of 99.8%. It achieved an almost perfect detection rate.

The SVM classifier was the second best with a precision value of 95.9%, a recall

value of 100%, and F-value of 97.9%. The RBF network has a precision value of

85%, a recall value of 100%, and F-value of 91.9%. The MLP classifier is not able to

classify any of the SSH attacks hence a value of 0% for precision, recall and F-Value.

66



Figure 4.10: SSH Class Performance.

The SSH class is the third highest attribute frequency class. The testing and

training data contains 3.4% of the SSH class. The poor performance of the MLP

classifier can be attributed to this fact.

4.5.4 Botnet Class

The Botnet attack type is the least prevalent attack type on the dataset. This

intrusion will also affect the recall value if it is misclassified as normal class. This class

produces interesting observations of how the classifiers handle low frequency classes.

The two instances of this attack are contained in both the training and testing set.
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Figure 4.11: Botnet Class Performance.

The RBF network classifier achieved perfect detection of the botnet class. The

MLP classifier again is not able to classify the botnet attack. All the other classifiers

achieved 100% recall, this might be attributed to the issue of over-fitting because

the same attributes are contained in both the training and testing data. The SVM

classifier can only manage a precision value of 18.2%, a recall value of 100%, and

F-value of 30.8%. The näıve-Bayes classifier only achieves a precision of 0.5% and

F-Value of 0.9% as seen on Figure 4.11. The entire data from the seven days that

traffic was collected had only 2 instances of the Botnet attack.
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4.5.5 DoS Class

The DoS attack type is the second least prevalent attack type on the dataset.

This intrusion will affect the recall value if it is misclassified as normal class. All the

other classes classified as DoS class will also affect the precision of the classifier.

The DoS class is a low frequency class with only 0.2% of the data in both the

training and testing data. The näıve-Bayes classifier again outperforms the other

classifiers in this attack class as seen on Figure 4.12. Even though it is the better

classifier, a precision value of 54.1%, a recall value of 55.6%, and F-value of 54.8%

is not good when it comes to intrusion detection. The MLP was not able to classify

the DoS attacks. RBF network was the second best classifier in this class with an

F-Value of 40%, followed by the SVM with 35.3%. This is the second class that two

classifiers outperform the SVM classifier.

Figure 4.12: DoS Class Performance.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In summary, we explored the problem of classification in anomaly network in-

trusion detection. Anomaly network intrusion detection systems are plagued by high

false positive rates which make them impractical to be deployed on live network

settings. The high false positive rates are due to misclassification errors. A sup-

port vector machine (SVM) classifier is implemented to handle the classification of

network attacks and its performance is compared to other classifiers i.e. multilayer

perceptrons, näıve-Bayes, and radial basis function network (RBF-N) classifier.

After completing the evaluation of results in Chapter 4, the following conclusions

can be drawn. The results show that the SVM classifier is a viable classifier for the

problem of classification in anomaly network intrusion detection. We have shown

it outperforms multilayer perceptron (MLP), näıve-Bayes, and radial basis function

network (RBF-N) in the classification problem of intrusions.

The 99.1% average detection rate and a false positive rate of 4.5% on the testing

dataset shows promise for the SVM to be implemented as a classifier of choice for

anomaly intrusion detection. The SVM classifier has high detection rates on the SSH
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and L2L attack types but the successful detection of the DoS and Botnet leave a lot

of questions.

It can be concluded that the classifier performance is also affected by the fre-

quency distribution of the attack types in the dataset. Most of the classifiers tested

performed poorly on the low attribute frequency classes. This is a worrying trend

since some of the low frequency attacks are the most disruptive like DoS and DDoS.

The SVM classifier shows better performance compared to the modified gravita-

tional search algorithm (MGSA) neural network used in [65] with 97.8% detection

accuracy and the multi-objective genetic algorithm (MOGA) multilayer perceptron

used by [36] with 97% average detection accuracy. The SVM classifier was tested

on the ISCX dataset which is the most current dataset that is used in the evaluation

of intrusion detection systems. Most of the classifiers tested before used the old out-

dated KDDCUP‘99 dataset. These two are some of the few classifiers that have been

evaluated on the ISCX2012 dataset.

5.2 Future Work

There are a few ideas that have come up during this work that can be explored

in future work.

5.2.1 Feature Correlation and Dependence

It would be interesting to explore and find out how some of the individual features

do not have an effect on the performance of the classifier but when combined with
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another feature they greatly affect the classifier performance. This knowledge can

further be used in the reduction and selection of features.

5.2.2 Feature Selection and Reduction

Most datasets have lots of features and some of these features have little or

no impact on the performance of the classifier. For a classifier to be able to be

implemented in a live setting of network traffic it should be able to train fast and also

analyze the incoming traffic successfully. If a classifier can have almost comparable

performance when trained on a reduced feature dataset as in a full feature dataset it

might be viable to forgo the performance degradation for speed.

5.2.3 Incremental Learning

The idea of incremental learning can be explored. In incremental learning there

is no need for retraining the classifier when there is new information available hence

updating profiles or signatures dynamically as they are encountered. The incremental

approach would probably make the system faster in terms of training as well as testing

of the instances. Incremental learning might also improve real time performance.

5.2.4 Classifier Ensembles

The idea of combining two or more classifier that have high accuracy perfor-

mance on specific attack classes can be explored. The evaluation of the results showed

that some classifiers performed better than others in the different data classes. The
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strengths of the different classifiers can be merged together to achieve better classifi-

cation accuracy for a network anomaly intrusion detection system.
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Appendix A

Data Breaches

A.1 Stolen Data Black Market Prize

Form of Data Black Market Price,(USD)

CVV 2
Credit card, stale data 2-7
Full personal information 3
Bank account details 5
Health credentials 10
Credit card, market flooded 10-12
PayPal / eBay account 27
Credit card, freshly acquired 20-45
Spam email list 100
“Executive” credit card 8000
Zero-day up to 250,000

Table A.1: Black Market Data Price [59]
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A.2 Data Breaches

ENTITY YEAR ORG METHOD
OF LEAK

STOLEN
RECORDS

DS1

Australian
Immigration
Department

2015 government accidentally
published

500000 5

British Airways 2015 retail hacked 500000 1
Slack 2015 tech poor security 500000 1
Twitch.tv 2015 health hacked 10000000 1
Premera 2015 health hacked 11000000 5
Uber 2015 tech poor security 50000 1
Anthem 2015 healthcare hacked 80000000 20
Sony Pictures 2014 media hacked 10000000 20
JP Morgan
Chase

2014 financial hacked 76000000 300

Gmail 2014 web hacked 5000000 1
Home Depot 2014 retail hacked 56000000 300
Mozilla 2014 web poor security 760000 20
Community
Health Services

2014 healthcare hacked 4500000 20

Dominios Pizzas
(France)

2014 web hacked 600000 1

LexisNexis 2014 tech hacked 1000000 300
AOL 2014 web hacked 24000000 1
Korea Credit
Bureau

2014 financial inside job 20000000 50000

Target 2014 retail hacked 70000000 200
Ebay 2014 web hacked 145000000 1
Adobe 2014 tech hacked 152000000 50000
Neiman Marcus 2014 retail hacked 1100100 20

Table A.2: Data Breaches [59]

11: Just email address/Online information, 20: SSN/Personal details, 300: Credit card information, 4000:
Email password/Health records, 50000: Full bank account details.
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A.3 Dataset Feature Description

Feature Name Feature Description

1 appName Name of application used
2 totalSourceBytes Amount of total bytes sent from the

source
3 totalDestinationBytes Amount of total bytes received at the des-

tination
4 totalDestinationPackets Amount of total packets received at the

destination
5 totalSourcePackets Amount of total packets sent from the

source
6 sourcePayloadAsBase64 Payload from the source in Base64 char-

acter encoding
7 sourcePayloadAsUTF Payload from the source in UTF charac-

ter encoding
8 destinationPayloadAsBase64 Payload at the destination in Base64

character encoding
9 destinationPayloadAsUTF Payload at the destination in UTF char-

acter encoding
10 direction Direction of the flow e.g remote to local
11 sourceTCPFlagsDescription Action TCP source requests e.g Push,

Synchronize, Finish, Acknowledge, Reset
12 destinationTCPFlagsDescription Action TCP destination performs
13 source Source IP address
14 protocolName Protocol used by the flow e.g TCP-IP
15 sourcePort Port number of the source
16 destination Destination IP address
17 destinationPort Port number of the destination
18 startDateTime Time flow starts
19 stopDateTime Time flow stops
20 Tag Label of flow as either normal or attack

Table A.3: Data Description
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