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ABSTRACT

Precipitation Intensities For Design of Buried Municipal Stormwater Systems

Yi Wang Advisor:
University of Guelph, 2014 Professor Edward A. McBean

Extreme rainfall events are likely to be more frequent and intensive, as climate change

occurs. For urban infrastructure, the design rainfall intensities may have changed, or in-

volve considerable uncertainty in their characterization. Historical rainfall records for

southern Ontario are analyzed to characterize design rainfall intensities, for purposes of

determining rainfall intensities for use in municipal stormwater system design.

Using the L-moment diagram and the relative RMSE, the traditionally-used Gumbel

distribution is confirmed as acceptable for modeling Annual Maximum Series (AMS) of

rainfall records. However, the uncertainties involved in design rainfall intensities are com-

monly substantial, both in the Intensity–Duration–Frequency (IDF) curves provided by

Environment Canada and in the estimates derived directly from historical records. The

upper confidence limit of the design rainfall intensity expected value is demonstrated as

an appropriate alternative to the use of the expected value in municipal stormwater system

design, when the uncertainties involved are considerable.

A rainfall model using Partial Duration Series (PDS) is demonstrated to be suitable for

events with recurrence intervals less than 10 years, compared to the model of AMS. The

PDS model rainfall estimates are generally 2 to 5% greater than estimates from the AMS
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model. To improve the design value estimates, partial duration series are analyzed using

regional frequency analysis methods. For 10-year return storms, a 26% reduction in RMSE

in the regional model was obtained, for the first time period (1960-1983), and a 35% decline

for the second time period (1984-2007).

Following the splitting of rainfall records into two segments, all types of rainfall in-

tensity models (AMS, PDS, and Regional) detect consistent changes in design rainfall in-

tensities with statistical significance. Changes occur mostly in southern Ontario, along the

coasts of Lake Erie and Lake Ontario from Windsor to Ottawa. Sensitivity analysis of

changes identified with respect to the year of splitting suggests changes are occurring dur-

ing the 1980s and 1990s; however, no consistent pattern is determined. At the end of this

thesis, recommendations are summarized for assessment of the rainfall intensity estimates

for stormwater system design.
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Chapter 1

Introduction

1.1 Climate Change

1.1.1 Evidence of Global Warming

The IPCC fifth assessment report from work group I (IPCC WG1AR5) confirms that

“warming in the climate system is unequivocal”, with observational evidence of “warming

of the atmosphere and the ocean, diminishing snow and ice, rising sea levels and increasing

concentrations of greenhouse gases. Each of the last three decades has been successively

warmer at the Earth’s surface than any preceding decade since 1850.” (IPCC, 2013)

Evidence of multi-decadal warming are listed in IPCC WG1AR5, such as an increase

of about 0.72

¶
C in the global mean surface temperature over the period of 1950-2012, and

the increase of the maximum and minimum temperature over land since 1950. For average

annual temperature in northern hemisphere, the period 1983-2012 was the warmest 30 years
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in the last 800 years. The troposphere has globally warmed since the mid-20th century, and

the upper ocean (above 700 m) has warmed from 1971 to 2010. (IPCC, 2013, TS 2.2)

1.1.2 Changes in Water Cycle and Total Rainfall

A water cycle describes the movement of water on, above, and below the surface of the

Earth. Since the troposphere is getting warmer, and the saturated vapour pressure increases

with temperature, the amount of water vapour in the atmosphere is expected to increase

with climate warming. Therefore, as part of the water cycle, the precipitation process is

suspected to change as well. Regional precipitation trends are reported in many studies,

but when all land area is counted together, there is little change in the global mean land

precipitation since 1900 (IPCC, 2013, TS TFE.1). The amount of precipitation is only a

small fraction of total water vapour content of air, and the amount of heavy or extreme

rainfall events is an even smaller fraction. As a consequence, the changes in heavy rainfall

events show considerable spatial variability as well.

1.1.3 Evidence of Changes in Extremes

The IPCC WR1AR5 noted changes in daily precipitation extremes are occurring, with

strong regional and sub-regional variations. Both increasing and decreasing trends are ob-

served in precipitation extremes. Since the middle of the 20th century, regional trends are

occurring and varied between continents - increasing trends identified in North and South

America, regional and seasonal variations found in Europe and Mediterranean, mixed re-
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gional trends found in Asia and Oceania, and no significant trends found in Africa. Global

assessment is currently not available for sub-daily trends of precipitation extremes; how-

ever, several regions have identified significant trends, and more increasing trends are dis-

covered than decreasing trends. (IPCC, 2013, 2.6.2)

To clarify, the terms describing precipitation events in this study, “moderate extremes”

or “heavy events” denote events with return periods of 5 or 10 years, and the “extremes” or

“extreme events” denotes events with return periods of 25 years or longer.

1.2 Necessity of Assessing Design Rainfall Intensities

Changes in heavy rainfall events have impacts on urban stormwater systems. If increas-

ing trends are predicted in the future, when heavy rainfall events will occur with greater

frequency or intensity, the rainfall runoff volume and possibility of street flooding will

increase as well. Therefore, design and assessment of stormwater management systems,

adapted to future changes in heavy rainfall events, are of great importance.

One approach to design stormwater systems is the “event-based simulation”, which

simulates the scenarios when design storms of different return periods hit the design area.

Design storms (hyetographs) are developed using the SCS method, the triangular hyeto-

graph method, or the alternating block method. All three methods involve a design rainfall

intensity value, which is estimated from the Intensity–Duration–Frequency (IDF) curve.

IDF curves are developed from regressions of rainfall intensity estimates for durations
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from 5min to 24h and for return periods from 2y to 100y or even longer. These rainfall

intensity estimates are derived from statistical models for historical rainfall records. The

development of statistical models of the rainfall intensity assumes data values in the his-

torical record are independent and identically distributed. The presence of trends in heavy

rainfall events will violate these assumptions and increase uncertainties involved in the de-

sign rainfall intensity. Hence, the assessment of design rainfall intensities under climate

change is necessary for stormwater system design.

1.3 Applications Using AMS Data and Related Uncertain-

ties

Heavy rainfall events in rainfall records are extracted as data series to develop a rainfall

intensity model. The series with all data values above a selected threshold is referred to as

Partial Duration Series (PDS), and the group of all largest values from each year is referred

to as Annual Maximum Series (AMS). The statistical model using PDS is referred to as the

PDS model hereafter, and the model using AMS is referred to as the AMS model.

The development of the AMS model can substantially affect the precision of the rainfall

intensity estimates, including the selection of the frequency distribution, the calculation of

the distribution parameters, and estimates of distribution quantiles and confidence inter-

vals. The Gumbel distribution has been widely used in relation to the AMS model. The

Atmospheric Environment Service (AES, later renamed as the Meteorological Service of
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Canada, MSC) of Environment Canada developed rainfall intensity models using AMS data

and the Gumbel distribution (Hogg et al., 1989). The Ontario Ministry of Transportation

(MTO) provides Intensity–Duration–Frequency (IDF) curves, using the Gumbel distribu-

tion as an extreme value probability density function. Given that the Gumbel distribution

is a two-parameter distribution, this limits the performance when comparing to various

three-parameter distributions, such as the Generalized Extreme Value (GEV) distribution,

the Generalized Pareto (GPA) distribution, and the Pearson Type III (PE3) distribution.

Of interest is to determine the most appropriate frequency distribution to model heavy

rainfall intensities. Alternative methods for selecting frequency distributions include the

Probability Plotting Correlation Coefficient (PPCC) method (after Filliben, 1975) and the

goodness-of-fit measure introduced by Hosking and Wallis (1997).

Using either the MSC IDF curves or the AMS models developed in this thesis, the

uncertainties involved in design rainfall intensity estimates are substantial since models

necessarily rely upon limited rainfall records. The difference between the expected value

and 95% confidence limits can be as large as 25% of the expected value of the rainfall

intensity, which increases the risk of stormwater system failure to cope when assigning the

expected value as the design rainfall intensity. The relationship between the uncertainty

in rainfall intensity estimates and the record length needs to be characterized to find the

circumstances under which a rainfall record can produce precise design rainfall intensity

estimates.
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1.4 PDS Model and Design Value Uncertainties

Rainfall intensity models typically employ AMS data to estimate the probability of a

given value being exceeded. An AMS model focuses on the largest event in a year, ignoring

the 2nd and 3rd largest values in the same year. The AMS model cannot model probabilities

for situations when more than one rainfall event exceeds the predicted rainfall intensity in

the same year, which indicates potential street flooding or basement inundations from an

urban storm water management perspective. On the contrary, the rainfall intensity model

using PDS data estimates the probability of a storm event exceeding the design rainfall

intensity. However, the application of the PDS model has several barriers. There is no

consensus about the selection of a rainfall intensity threshold to extract Partial Duration

Series from historical rainfall records. The relationship between the recurrence interval of

a given event and the non-exceedance probability of the event magnitude in the cumula-

tive frequency distribution needs clarification. In the PDS model development, research is

needed with respect to the sensitivity to missing values and rainfall intensity thresholds,

and the selection of frequency distributions. The accuracy and precision of the PDS model

estimates, in comparison with those from the AMS model, need to be assessed as well.

If use of a PDS model is appropriate for evaluating design rainfall intensities, the time-

frame of the historical rainfall record needs to be examined as well. It follows that the use

of the entire record, regardless of the length and which time period it is covering, is not

always appropriate. For example, a very long record may involve temporal changes, since

the climate when a rainfall record was recorded may include substantial differences from
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the most recent climate. Therefore, an analysis of the design rainfall intensity changes ver-

sus the timeframe of the historical rainfall record used is needed. This can be examined

by splitting the rainfall records into two approximately equal lengths of record to estimate

design rainfall intensities separately, and then comparing to detect if changes are evident.

The time of splitting may be enumerated over a range of years, to identify the sensitivity of

design rainfall intensity changes in response to the split year.

1.5 Use Regional Frequency Analysis to Improve Design

Value Accuracy

For design rainfall intensity estimates where substantial uncertainties exist (i.e. large

magnitude of the confidence interval) due to either climate changing effects or limited rain-

fall records, grouping of adjacent rainfall stations and using regional frequency analyses,

is an alternative to reduce uncertainties. In the aforementioned study of rainfall intensity

changes using the PDS model, rainfall records are split into two segments. The design rain-

fall intensity estimates may involve considerable uncertainty due to limited record length,

which leads to the merit of application of regional frequency analysis.

The regional frequency analysis technique identifies groups of rain gauges that share

statistical similarity, develops a regional frequency distribution model, and calculates the

design rainfall intensity at each rain gauge using the regional frequency distribution curve

and a scale factor particular to individual rain gauges. This method was introduced in
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Hosking and Wallis (1997) and only uses annual maximum series. Therefore, the original

algorithms need to be modified to cope with the partial duration series.

There is need to assess the improvement in relation to the uncertainties involved in

the design rainfall estimates from the regional frequency analysis approach compared with

the PDS model, which only uses rainfall records from the given rain gauge. As well, the

changes in design rainfall intensities identified from the regional frequency analysis, need

to be compared with the changes identified from the PDS model approach, to review the

consistency of the two approaches, and to confirm if changes are occurring in the study

area.

1.6 Study Objectives

This study uses rainfall records from climate stations in the Province of Ontario to

examine the issues and techniques introduced above. The principal research objective is to

improve the understanding of design rainfall intensities pertinent to municipal stormwater

system design. As a paper-based thesis, the major research questions are discussed in each

of the following chapters and papers.

Chapter 2 is a supplementary chapter introducing data availability and data screening.

This chapter is added to facilitate the reproduction of results in this thesis in the future.

Chapter 3, entitled “Improving the Efficiency of Quantile Estimates to Identify Changes

in Heavy Rainfall Events”, introduces the investigation of the use of the Gumbel distribu-
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tion to model AMS data, and changes in design rainfall intensities identified from selected

rain gauges in the Province of Ontario. This paper has been submitted to the Canadian

Journal of Civil Engineering and is in review.

Chapter 4, entitled “Uncertainty Characterization of Rainfall Inputs Used in Design

of Storm Sewer Infrastructure”, shows the analyses of uncertainties involved in the AMS

model and the related IDF curves. This paper has been accepted by the Journal of Urban

and Rural Water Systems Modeling.

Chapter 5 is a paper entitled “Performance Comparisons of Partial Duration and Annual

Maxima Series Models for Rainfall Frequency Analysis of Selected Rain Gauge records,

Ontario, Canada”. It gives a demonstration of the advantages of using partial duration

series instead of annual maximum series in rainfall intensity modeling. It also introduces a

complete procedure to develop the PDS model for selected rain gauges in southern Ontario

is introduced. This paper has been submitted to Hydrological Research and is in review.

Chapter 6, entitled “Identification of Design Rainfall Changes Using Regional Fre-

quency Analysis — A Case Study in Ontario, Canada”, demonstrates the application of

the regional frequency analysis approach using selected rain gauges in southern Ontario,

and assesses the improvement in relation to the model uncertainties. This paper has been

submitted to the Journal of Hydrology and is in review.

Chapter 7 discusses the sensitivity of changes in design rainfall intensities with respect

to the split time point used for the historical rainfall record, using the PDS at-site model.

The last chapter concludes by specifying the contributions of this research, and suggests
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future work.

1.7 Scope of Research

The research scope extends from the study of distribution fitting and quantile estimation

to the identification of step changes and assessment of model uncertainties. This research is

focused on statistical approaches only, and will not assess the physical mechanisms behind

the changes identified in rainfall intensities.

The research scope is limited by the availability of rainfall records. Most rainfall

records obtained are from 1960s until 2000s; therefore, any temporal trend or change that

spreads beyond this range cannot be identified. As well, design rainfall for very long return

periods, e.g. 100 years, cannot be accurately estimated based on a rainfall record of 40

years. Most rain gauges are located in southern Ontario, and the rain gauges in northern

Ontario are sparse. It is inappropriate to develop conclusions about regional changes in

northern Ontario. Rainfall records are the only meteorological data used in this research,

and any relationships with other weather parameters, for example temperature and wind

speed, are not considered.
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Chapter 2

Data Preparation

2.1 Introduction

The data obtained from Environment Canada were primarily over the time period of

1960-2007, with record length ranging from 1 to 65 years, and an average of 13 years. The

rainfall records include daily maximum rainfall amounts over durations of 5, 10, 15, 30min,

and 1, 2, 6, 12h. The rainfall records between April and October are used, and individual,

annual records missing more than 20% were excluded. These data are referred to as “EC

data” to distinguish from data from other sources hereafter. A detailed introduction of data

availability and data preparation processes is provided.

Another set of rainfall data referred to frequently in this research is the “Intensity–

Duration–Frequency (IDF) Files” obtained from the Engineering Climate Datasets of the

Meteorological Service of Canada (MSC) website, which is publicly available at the web-
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page: http://climate.weather.gc.ca/prods_servs/engineering_e.html.

These IDF files will be referred to as “MSC IDF files” or “MSC IDF data” hereafter and, if

not indicated, the term “Data” or “Data file” only refers to the EC data, not the MSC IDF

data.

2.2 Data Format

Data obtained from Environment Canada are the tipping bucket rain gauge records, the

“Rate of Rainfall (DLY03)”. Climate stations are assigned identifications consisting of

seven digits of numbers and letters. For example, the Waterloo Wellington Airport climate

station is assigned an ID of “6149387”. The DLY03 data include the largest amount of

precipitation in a variety of time durations on daily basis. The time durations are indicated

with element numbers, as given in Table 2.1. The data also include flags to indicate freezing

conditions or unadjusted values. Each line in the data record represents the daily maximum

precipitation amount for each day of a month, for a given rainfall duration. It consists of

7 digits of Station ID, 4 digits of Year, 2 digits of Month, 3 digits of Element number,

1 space, and followed by 31 daily data. The daily datum consists of 5 digital integers, a

leading sign field, and a following flag. For months with less than 31 days, the last few days

are recorded as missing values (-99999). In total, a monthly data record has 233 digits.

The MSC IDF data files include text files and graphs for 133 climate stations in the

Province of Ontario. The text file includes metadata of the climate station (e.g. identifica-
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Table 2.1: Element Number, Units, and Description for DLY03 Weather Elements
Element Units Description

124 0.01 Adjustment Factor
125 0.1mm 5 Minutes
126 0.1mm 10 Minutes
127 0.1mm 15 Minutes
128 0.1mm 30 Minutes
129 0.1mm 1 Hours
130 0.1mm 2 Hours
131 0.1mm 6 Hours
132 0.1mm 12 Hours
160 Chart Change Hour (Local Standard Time)

*http://climate.weather.gc.ca/prods_servs/documentation_index_e.html

tion, coordinates, length of record, is composite data, etc.), the tables for annual maximum

series, return period rainfall amounts and rates, and interpolation equations and statistics.

The graph files include the quantile-quantile plot of the annual maximum series, the return

level plots for different durations, and the IDF plot. The MSC IDF data files provide annual

maximum series of daily maximum rainfall amount over durations of 5, 10, 15, 30min, and

1, 2, 6, 12h.

2.3 Data Coverage

The raw data file includes rainfall records for 270 climate stations. The metadata

includes station names, coordinates, elevations, and start/end/total years. As shown in

Fig. 2.1, the climate stations are not spatially, evenly distributed. Approximately, one-third

of the stations are located in northern Ontario, one-third in the Toronto and Hamilton area,

and the reminder of the climate stations are unevenly located from Windsor to Ottawa. In
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Figure 2.1: Spatial Coverage of Climate Stations in the Province of Ontario

Fig. 2.2, the number of climate stations that have rainfall records in a given year, regardless

of missing values, is counted and plotted for the years from 1940 to 2010. The plot shows

that the rainfall records started in 1960 (46 stations), reached a maximum of 125 stations

in 1974, then decreased to 50 stations in 1996, and subsequently increased to 82 stations

in 2006. From the temporal coverage of the rainfall records, the time span in this study is

selected to be from 1960 to 2007. One exception is that the paper that studies the Gumbel

distribution with annual maximum series also includes the 65 years of rainfall record at

the Toronto climate station. Fig. 2.3 shows a histogram of the record length at all climate

stations. One station located in Toronto has the longest rainfall record, 65 years from 1937

to 2002. Regardless of missing values, there are 16 stations having records longer than or

equal to 40 years, and 27 stations having record lengths between 30 and 39 years. Spatially,
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Figure 2.2: The Temporal Coverage of Climate Stations in the Province of Ontario

approximately two-thirds of the stations having records longer than or equal to 30 years are

located in southern Ontario. Fig. 2.4 shows the number of records provided for each month

at all climate stations. The number of records is counted as the number of data lines for

each month in the data file, regardless of missing values in that month. The rainfall record

availability from April to October is substantially higher than the availability of data from

November to the next March.

2.4 Data Combination and Data Homogeneity

Further exploration of rain data finds situations when two or more climate stations

have very close, or even identical coordinates, and most of these stations have rainfall
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Figure 2.3: Histogram of Climate Station Record Lengths

Figure 2.4: Total Number of Records in Each Month
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records in consecutive order. This indicates the potential to combine rainfall records. The

composite rainfall records are seen in the MSC IDF files as well. A list of climate stations

combined in this study is given in Table 2.2, which includes climate stations that are marked

as “Composite” in the MSC IDF files, and other climate stations that are geographically

close. The identification used for a composite station is the same as the identification of

the station with the latest record, with the same for the station names and coordinates. For

example, the 1h rainfall record for the climate station named Chatham Waterworks (ID:

6131416) ended in May 23rd, 1983, and the rainfall record for the climate station named

Chatham WPCP (ID: 6131415) started in Jun 1st, 1983. These two pieces of rainfall record

are combined as one composite record and assigned an ID of 6131415 and a name of

Chatham WPCP. The annual maximum series extracted from this composite rainfall record

is compared with the annual maximum series provided in the MSC IDF files. The two data

series are nearly identical, except the maximum value in 1983, which is 11.5 mm/h from

the composite rainfall record, but marked as a missing value in the MSC IDF data file. The

composite data from all 41 groups of climate stations are compared with MSC IDF data

file, and they are almost identical, except the rainfall record at the Guelph stations for the

time period before 1966. Two stations have rainfall records before 1966: Guelph Harrison

Farm (ID: 6143077) from 1960 to 1966 and Guelph OAC (ID: 6143083) from 1962 to

1973. Neither of the annual maximum series extracted from these two stations is close to

the annual maximum series from the MSC IDF file. Therefore, the rainfall data used in this

research for the Guelph climate station for 1960-1966 is different from the MSC IDF file.
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The comparison of the annual maximum series extracted from both the EC data and the

MSC data files, examines data homogeneity as well. Data non-homogeneity can be intro-

duced into rainfall records when a rain gauge is relocated, or the methodologies or equip-

ment used to collect data are modified. The metadata provided by Environment Canada is

not sufficient to conduct any test of homogeneity. However, the consistence between the

two datasets provides confidence to assume data homogeneity.

Table 2.2: Climate Stations Selected to Combine Rainfall

Records

Station ID Start Year End Year Total Years

6020379 1966 1988 23

6020LPQ 2004 2006 3

6042755 1960 1973 14

6042715 1975 1981 7

6042716 1981 2006 25

6048261 1960 1994 35

6048268 2002 2006 4

6061358 1970 1975 6

6061361 1978 2006 25

6073960 1967 1999 32

6073980 2000 2006 7
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6074209 1979 1995 17

6074211 1997 2006 10

6078290 1960 1969 10

6078285 2002 2006 5

6104025 1969 1996 28

6104027 1998 2007 10

6105976 1960 2001 42

6105978 2002 2007 6

6107835 1964 1982 19

6107836 1983 1989 7

6115820 1965 1992 28

6115811 1992 2004 9

611KBE0 1989 1995 7

6.11E+03 1997 2007 11

6122849 1969 1980 12

6122847 1997 2007 11

6127520 1962 1969 8

6127514 1970 2007 38

6131416 1965 1983 19

6131415 1983 2007 24
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6131982 1962 1995 34

6131983 1997 2007 11

6133360 1966 2001 25

6133362 2002 2007 6

6137147 1960 1985 26

6137154 2003 2007 5

6137301 1960 1964 4

6137287 1971 2005 34

6137361 1960 1980 21

6137362 1980 2007 28

6139145 1963 1989 22

6139148 2002 2007 6

613FN58 1974 1994 21

613P001 2001 2007 6

6142285 1970 1993 19

6142286 2003 2007 5

6144475 1960 2002 43

6144478 2003 2007 5

6150700 1960 1975 16

6150689 1975 2007 33
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6153300 1962 1996 35

6153301 1997 2007 11

6155186 1960 1965 6

6155187 1966 1975 10

6157831 1969 1990 22

6157832 1991 1994 4

6158080 1960 1975 16

6158084 1985 1992 8

6158350 1937 2002 65

6158355 2002 2007 6

61587PP 1966 1979 14

6158406 1980 1993 14

6155746 1964 1969 6

615N745 1970 1977 8

6012198 1960 1997 37

6012199 1999 2006 8

6014350 1971 1989 19

6014353 2004 2006 3

6048231 1999 2003 5

6048235 2004 2006 3
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6075425 1967 2003 30

6075435 2004 2006 3

6111800 1973 1993 9

6111792 1997 2007 11

6112070 1962 1969 8

6112072 1977 2001 24

6122078 1961 1965 5

6122079 1965 1971 7

6145503 1962 1986 25

6145504 2003 2007 5

6143077 1960 1966 7

6143083 1962 1973 12

6143069 1975 1991 17

6143090 1997 2005 9

*The name and location of climate stations are listed in Table 8.1
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Chapter 3

Improving the Efficiency of Quantile

Estimates to Identify Changes in Heavy

Rainfall Events

This paper investigates the use of the Gumbel distribution to model AMS data, and

changes in design rainfall intensities identified from selected rain gauges in the Province of

Ontario.

The frequency distributions are selected using the L-moment ratio diagrams and relative

RMSE for estimates of given return periods. The distribution parameters are estimated

using the L-moment method, and the design rainfall intensities and associated confidence

intervals are estimated using the resampling method.

The design rainfall intensities for two time periods (pre1983 and post1984) are com-
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pared to assess if changes have occurred over time. Rainfall records from several climate

stations show statistically significant changes in design rainfall intensities.

This paper explains the methodology used to identify changes in rainfall intensity esti-

mates by examining if two confidence intervals overlap. This methodology is used through-

out all studies in this thesis, and is one of the most important theoretical bases and major

contributions. This paper proves that changes in design rainfall intensities are evident, and

suggests the necessity of assessing design rainfall intensities under climate change.

3.1 Abstract

To assess whether changes in heavy rainfall events are occurring over time, Annual

Maximum (AM) records from 21 rainfall gauges in Ontario are examined using frequency

analysis methods. Relative RMSE and related boxplots are used to characterize assessment

for selecting distributions; the Gumbel distribution is verified as one of the most suitable

distributions to provide accurate quantile estimates. Records were divided into two periods,

and tested using the Mann-Kendall test and lag-1 autocorrelations to ensure that data in

each period are identically distributed. The confidence intervals of design rainfalls for each

return period (2, 5, 10, and 25-year) are derived by using resampling method, and compared

at 90% confidence levels.

The changes in heavy rainfall intensities are tested at gauges across the Province of

Ontario. Significant decreasing changes in heavy rainfall intensities are identified from
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several gauges in central and southern Ontario. Increases in heavy rainfall intensities are

identified in gauges at Sioux Lookout and Belleville.

3.2 Introduction

3.2.1 Background

Global warming is expected to lead to changes in extreme weather conditions such as

intensive rainfall events, due to the increased energy in the atmosphere (Frei et al., 2006;

Zhai et al., 1999; Fowler and Kilsby, 2003). If storms are increasing in intensity over time,

the implications to water resources infrastructure and soil erosion may be substantial. As

a consequence, it is important to assess changes (if any) in rainfall intensities from gauge

measurements.

Assessment of potential evidence of climate change on rainfall patterns in Canada has

been the subject of widespread investigation. Mladjic et al. (2011) compared the extreme

precipitation event magnitudes of two time periods (1960–90 and 2041–70) in several re-

gions across Canada to identify projected changes using regional frequency analysis and

individual grid box analysis, separately. The results show that there are significant increases

in event magnitudes for 7 out of 10 studied regions, including the Great Lakes region in the

Province of Ontario. Mailhot et al. (2010) assessed the predicted future evolution of heavy

precipitation, by comparing the historical and future grid box values (1850–2100). In Mail-

hot et al. (2010), the Canadian Global Climate Model (CGCM) was used to simulate future
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daily precipitation to predict Annual Maximum series. These results show that future daily

and multi-day events will be more intense and frequent for all regions across Canada ex-

cept the Prairies. The time-of-change analysis indicates that the trend emerged during the

period of 1985–2005, and this is supported by the finding that the number of grid boxes

(approximately 340km◊340km, described in Fig 1. in Mailhot et al. (2010)) with signif-

icant trends is starting to increase during this period of time (1985–2005). Mailhot et al.

(2007) assessed the stationarity of rainfall series in Quebec as the basis of the Intensity–

Duration–Frequency (IDF) curve. Mailhot et al. (2007) compared the annual maximum

series of observed precipitation record (1961–90) with that of Canadian Regional Climate

Model (CRCM) simulations (2041–70) for durations of 2, 6, 12, and 24h. The results show

that the current return periods for 2 and 6h events will be halved in future climate at a grid

box level (45km◊45km resolution). Spatial correlation analysis showed that the spatial

correlation would decrease in future climate, suggesting that annual extreme rainfall events

may occur more frequently in convective weather patterns.

Changes in extreme rainfall have also been identified by others for the past several

decades (Frich et al., 2002; Zhang et al., 2001; Vincent and Mekis, 2006)). Alexander

et al. (2006) documented changes in precipitation in Canada between 1901 and 2003, and

found statistically significant increases in several precipitation indices, including the max

1-day and 5-day precipitation, the very wet days, and the extreme wet days. Heavy events

(less frequently than 5 times per year) in southeastern Canada (including Atlantic coast and

Great Lakes-St. Lawrence area) are reported to be increasing over the period 1920–1970,
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mostly during summer and autumn (April to October, after Stone et al., 2000)). Adamowski

and Bougadis (2003) selected annual maximum records of 44 stations across the Province

of Ontario, each with longer than 20 years of record and spanning from the 1970s to 1990s,

to identify regional and local trends using the Mann-Kendall trend test. Positive trends

are identified for gauges located in northern Ontario for storms of all durations, and for

the central Ontario for storms longer than 15min. However, only four durations (5min,

10min, 2h, and 6h) in the northern Ontario were found to have significant trends. In the St.

Lawrence region, rainfall intensities of all durations are decreasing, and decreasing trends

of short duration storms (5, 10, and 15min) are significant. In the southern region, storms

of 5 and 10 minutes duration are significantly decreasing, and storms of 2 hours duration

are significantly increasing. Vasiljevic et al. (2012) analyzed partial duration series for 13

rain gauges in Ontario to identify trends in rainfall intensities related to urban stormwater

designs. The results show that the storm intensities of 5-year return period have increased

over the last 30 years at a rate of approximately two percent per year. For the Waterloo area,

the storm intensities for both 5-year and 2-year return period have increased for durations

shorter than 2 hours, with confidence of more than 80% (Vasiljevic et al., 2012).

Changes in heavy rainfall intensities are highly relevant to the design of urban infras-

tructure systems (Adamowski et al., 2010; Burn and Taleghani, 2013; Vasiljevic et al.,

2012)). The events with return periods of 2 to 10 years are related to urban sewer infras-

tructure (e.g. swales, culverts, water detention ponds), and the 25 to 100 years events are

related to major stormwater management system that consists of aboveground conveyance
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routes (Chin, 2006, p479). Under changing climate conditions, rainfall rates for infras-

tructure design may be subject to change, and hence it is important to assess whether any

changes are apparent in recent historical records as described below.

3.2.2 Study Objective

This paper examines changes in heavy rainfall events using annual maximum data se-

ries from 21 rainfall records that are longer than 40 years in Ontario by comparing the

confidence intervals on the intensity of design rainfalls for various return periods and du-

rations. Each record is divided into two periods (up to the end of 1983, pre-1983; from the

beginning of 1984, post-1984) and checked with the Mann-Kendall test and lag-1 autocor-

relations to ensure identically distributed data prior to developing a frequency distribution

model. Confidence intervals of heavy rainfall event estimates are derived based on asymp-

totic theory, and the significance levels of this test are also determined to assess the degree

to which heavy rainfall events in Ontario are changing.

3.3 Model Development

3.3.1 Assumptions of Independent and Identically Distributed Data

Data values at the same rain gauge are assumed to be independent since annual maxi-

mum series are extracted as one event within each year. In this study, only rainfall events

occurring between April and October are considered; therefore, it is a good reason to be-
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lieve that the annual maximum series are independent of each other. To make certain of

the independence, the annual maximum series are tested of the lag-1 autocorrelation coef-

ficients against 95% significant level critical values.

Mann-Kendall test (Mann, 1945; Kendall, 1978) is applied to assess whether data values

in the same data series are identically distributed. The Mann-Kendall test is applied to each

period of the record before commencing frequency analysis. The test is implemented in R

project (R Core Team, 2013) using the package “Kendall” (McLeod, 2011).

3.3.2 Parameter and Quantile Estimation

The parameters for candidate distributions were estimated using Linear Moments (L-

moment), a procedure which is reported to be most effective when dealing with hydrologi-

cal extreme records (Hosking et al., 1985; Hosking and Wallis, 1987). Hosking and Wallis

(1997) listed L-moments and parameter estimates for several frequency distributions com-

monly used in hydrologic modeling. The quantile functions of distributions are inverses of

their Cumulative Distribution Function (CDF, F (x)) with parameters estimated from each

dataset. For example, if F (x) = “(0 Æ “ Æ 1), then x is the “-th quantile of variable

x from the CDF. Stedinger et al. (1993) listed quantile functions for some widely used

frequency distributions.

The CDF and quantile functions of Gumbel distribution are

F (x) = exp(≠ exp(≠x ≠ ›

–
)) (3.1)
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x(F ) = › ≠ – log(≠ log(F )) (3.2)

Where – and › are scale and location parameters respectively. Both x and › can be any real

number, and – is greater than zero. Parameters are estimated by sample L-moments l1 and

l2

–̂ =

l2
log(2)

, ˆ› = l1 ≠ “–̂ (3.3)

Where “ = 0.5772 is Euler’s constant. The sample l-moments l1 and l2 are defined as

l1 = b0 and l2 = 2b1 ≠ b0, where b0 and b1 are estimator of the probability weighted

moments defined as

b
r

= n≠1
A

n ≠ 1

r

B≠1
nÿ

j=r+1

A
j ≠ 1

r

B

x
j:n (3.4)

In this study, sample l-moments and distribution parameters are estimated by using R pack-

age “lmom” (Hosking, 2013). Readers are referred to Hosking and Wallis (1997) for details

of other probability distributions.

3.3.3 Confidence Limits of Quantile Estimates

Two methods are considered for deriving confidence limits of quantile estimates, the

asymptotic method and the resampling method. The asymptotic method based on the cen-

tral limit theorem requires large sample sizes, while the resampling method requires more

computational effort.

When estimating the quantile of frequency distributions, the mean and variance as cal-
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culated from the asymptotic distribution for large sample sizes (usually more than 50), are

well approximated (Hosking et al., 1985; Hosking and Wallis, 1987); however, the asymp-

totic efficiency declines when the sample size is less than 50.

Resampling techniques, especially bootstrapping (Efron, 1979), are widely used in hy-

drologic research (e.g. Douglas et al., 2000; Burn and Hag Elnur, 2002; Adamowski and

Bougadis, 2003) to estimate the confidence limits for quantile estimates when parametric

methods are not applicable. A non-parametric method resamples the sample set (with or

without replacement) and calculates the statistics being analyzed, hundreds or thousands of

times, to construct an empirical distribution. The confidence limits of the statistics obtained

from the original dataset are computed with this empirical distribution.

In this study, confidence limits for quantile estimates were computed using a resampling

method. Rainfall records were resampled 200 times with replacement. For each of these

resampled samples, quantiles of various return periods are estimated with the same distri-

bution selected to describe the original sample. These 200 estimates are pooled together to

estimate the 5% and 95% quantile as the lower and upper confidence limits.

3.3.4 Selecting Probability Distributions

How the data are statistically distributed affects the analysis of frequency. An improper

selection of a probability distribution may lead to a large bias in estimates of extreme

events. Often, the probability density function of extreme value data series is heavy-tailed

(negative shape parameter, see Hosking and Wallis, 1987; Madsen et al., 1997), which
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means the occurrence of extreme events is more frequent than if normally distributed.

Therefore, preferences need to be given to probability distributions with better precision

and accuracy in the tails of the distribution.

Hosking and Wallis (1997) introduced a series of methods for regional frequency anal-

ysis, including the L-moment ratio diagram, the goodness-of-fit measure, and the assess-

ment of the accuracy of quantile estimates. The L-moment ratio diagram is used to select

candidate distributions based on the 3rd and 4th sample L-moment ratios (t3, t4). In this

diagram, L-moment ratios are plotted as points, with t3 as the x-axis and t4 as the y-axis.

Two-parameter frequency distributions (e.g. Normal distribution) are also plotted as points

since their t3 and t4 are fixed values. Three-parameter frequency distributions are plotted as

curves, since the t3 and t4 will change as the shape parameter changes. Those distributions

close to plotted points of samples will be selected as candidate distributions for further

assessments.

Hosking and Wallis (1997) explain that the choice of a frequency distribution should

be focused on the accuracy of quantile estimates in the upper tails when analyzing extreme

events. It is argued finding a frequency distribution that is close to an observed sample does

not guarantee that new observations in the future will match historical samples, especially

when physical processes may subject to change.

One approach to select distributions by measures of goodness-of-fit is the Probability

Plot Correlation Coefficient (PPCC) method (after Filliben, 1975). This procedure is ap-

plied to test the goodness-of-fit for extreme value distributions (Fill and Stedinger, 1995;
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Burn and Taleghani, 2013). The extreme events lie in the upper tail of a frequency dis-

tribution and hence represent only a small portion, compared to the bulk of data, of the

correlation coefficient between the data and the frequency distribution. Therefore, using

PPCC measures will degrade the goodness-of-fit that would otherwise be obtained if only

the upper tail of the frequency distribution was employed. As a result, the PPCC method is

not applied in this research to select frequency distributions.

Hosking and Wallis (1997) introduced a “goodness-of-fit measure” to use as the basis

for selecting the distribution for regional analyses. This approach assumes heavy rainfalls

in a homogeneous region can be described by the same distribution apart from a scale

factor. The goodness-of-fit measure will assess the similarity between the 4th L-moment

ratios of each candidate distribution and the regionally averaged 4th L-moment ratios from

rainfall records; however, it is not suitable for this study since heavy rainfalls from differ-

ent gauges are not necessarily in a homogeneous region. The relative Root Mean Square

Error (RMSE) is one of those measures suggested in Hosking and Wallis (1997) for as-

sessing the accuracy of quantile estimates from a regional frequency analysis algorithm.

However, it is capable of assessing the accuracy of quantile estimates with different can-

didate distributions as well. Using Monte Carlo simulation, M repetitions are drawn from

candidate distributions with parameters estimated from the original sample sets, and all

repetitions have the same size as the original sample set. The quantile estimate Q[m]
(F ) for

non-exceedance probability F is calculated from the mth repetition. The relative RMSE of
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quantile estimates over M repetitions is calculated as

R(F ) = [M≠1
Mÿ

m=1
(

Q[m]
(F ) ≠ Q(F )

Q(F )

)

2
]

1/2 (3.5)

Q(F ) is the true value of the quantile at probability F , and represented by the quantile es-

timated with the original sample herein. To obtain the quantiles from the original sample,

plotting positions are selected according to candidate distributions as per Stedinger et al.

(1993), namely: Gringorten’s plotting position (

i≠0.44
n+0.12) (Gringorten, 1963) was applied for

Gumbel distribution; Cunnane’s plotting position (

i≠0.4
n+0.2) (Cunnane, 1978) was used for

three-parameter log-normal distribution, generalized extreme value distribution and gener-

alized normal distribution; the Pearson Type III distribution uses Blom’s plotting position

(

i≠0.375
n+0.25 ) (Blom, 1958). The quantile at probability F is then interpolated with ordered

observations and their plotting positions.

Makkonen (2006) criticized the usage of various plotting positions, and advocated that

the Weibull formula (p =

i

n+1) is the only correct plotting position. A Monte Carlo exper-

iment is used herein to justify the usage of alternative plotting positions. For the Gumbel

distribution as an example, with given parameters [0, 1], 20 values are randomly generated,

and the estimate of the 5-year event (R = 5, p = 0.8) is linearly interpolated between the

two values with plotting positions closest to p = 0.8. One hundred replications of this

resampling procedure show that, compared to the true 5-year quantile (1.499), Weibull’s

plotting position overestimates by 8.3% and the rest of the plotting positions all have bias
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within 5%. This experiment is repeated 100 times, and the Weibull’s plotting position

averaged 6.9% overestimation, which is more than three times the bias of other plotting

positions. The same experiment is conducted for the Pearson Type III distribution, with pa-

rameters [0, 1, 0]. Again, Weibull’s plotting position averaged 5.28% overestimated while

other plotting positions all have average bias within 2%. Therefore, this study will continue

to use different plotting positions for different probability distributions.

To assess the performance between the records for all 21 gauges and the candidate

distributions, the relative RMSE (R(F )) is developed into a series of boxplots, with each

box depicting statistics (including mean, max, min, and interquartile range) of the relative

RMSE of a specific duration, return period, and candidate distribution.

3.4 Application of the Frequency Distribution Model

3.4.1 Data description

Figure 3.1 shows the 21 selected rainfall stations in Ontario; they all have at least 40

years of rainfall records. Rainfall records are in the form of maximal rainfall amount over

durations of 5, 10, 15, 30min, and 1, 2, 6, and 12h of each day. All of the records em-

ployed are recorded by tipping bucket rain gauges and have been corrected to the standard

rain gauge. (Sandy Radecki, personal communication, 2013). According to Mekis and

Hogg (1999), rainfall measurement methodologies have been modified several times. Rain

gauges were changed to Type-B at most locations in 1970s, which replaced the previous
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Figure 3.1: Location Map Showing 21 Climate Stations within Province of Ontario

Meteorological Service of Canada (MSC) gauge. The Type-B gauge was introduced to

reduce systematic errors—adhesion of water to the gauge surface, evaporation, and splash

out. Also around 1965, the inside container of MSC gauges was changed to soft plastic ma-

terial from copper, which has different wetting characteristics. These modifications intro-

duced non-homogeneity in rainfall records (Groisman and Legates, 1995; Karl et al., 1993,

1995). Goodison and Louie (1986) reported that compared to pit gauge measurements,

MSC gauge measurements are 4% lower on average, and Type-B gauges measurements are

1% lower, at three test sites in Canada (particularly, -1.9% and -0.4% at Mt. Forest, On-

tario). The presence of non-homogeneity in the rainfall record may lead to false significant

changes detected from the record (Groisman and Legates, 1995). The correction approach

from Goodison and Louie (1986) is not used since the metadata of rainfall records are not

available. Based on the fact that all data are quality-controlled by Environment Canada, it
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is reasonable to assume homogeneity in rainfall records employed herein.

As a consequence of instrument, location, and elevation changes, many station names

and identifiers were changed. Simply combining records from two stations will result in

risk of non-homogeneity; Mekis and Hogg (1999) applied a “simple ratio of observation”

method to adjust combined records. The simple ratio of observation method is only appli-

cable when two records have an overlapping period. In this study, stations of approximate

or identical coordinates are considered as potential station groups to be combined. A close

examination of rainfall records reveals that the successive record starts right after the pre-

ceding record ends for many stations. Therefore, it is impossible to adjust records based on

the ratios calculated from overlapped observations. Hence, the quality controlled rainfall

records were combined without adjustment where two or more stations are at identical or

approximate location for this assessment.

In some circumstances, gaps in a record exist. Mekis and Hogg (1999) adjusted their

dataset by filling missing data gaps with values generated from probability distributions

consistent with the available data. The goal of filling missing data gaps is to ease the

computing process by creating a continuous time series (Mekis and Hogg, 1999). Instead of

filling gaps, this study acknowledges the presence of missing data. A threshold of 20% was

employed to classify an annual record as having missing data, where the ratio of missing

data is calculated based on the number of days with missing values between April 1st and

Oct 31st. If in a year the missing ratio is more than 20%, the data for that year are not

included in the subsequent assessments.
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To evaluate whether a change in heavy rainfall events has occurred, each record was

split into two parts at a fixed time (at the end of year 1983). The year 1983 is selected as it

is close to the mid point of most rainfall records; and splitting all records at the same time

point makes it possible to show spatial variability of changes between two time periods

(pre-1983 and post-1984).

3.4.2 Test of Identically Distributed Assumptions

The assumption of identically distributed data in each period of a record is examined

first, by means of the Mann-Kendall trend test. Records detected with significant trends in-

clude the annual maximum 10min rainfall record from the Windsor gauge in the 1st period,

and the annual maximum 5, 15, 30, 60, 120min rainfall records from the Toronto Pearson

Airport gauge in the 2nd period. As a result, the assumption of non-stationarity is violated;

thus, these records are excluded from subsequent analyses.Further, the annual maximum

5min rainfall record at Delhi, Ontario has significant lag-1 autocorrelation, and is excluded.

The 5 and 10min records at Toronto Lester B. Pearson Airport are excluded for the same

reason. For other rainfall records, all assumptions have been verified before proceeding

with frequency analysis.

3.4.3 Distribution selection

To identify candidate distributions, 3rd and 4th L-moment ratios of samples from rainfall

records of all gauges are plotted in the L-moment ratio diagram (Fig 3.2). Each circle in
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Fig 3.2 represents an L-moment ratio estimated from a rainfall record. The Logistic (L),

Normal (N), Uniform (U), Exponential (E), Generalized Logistic (GLO), and Generalized

Pareto (GPA) probability distributions are excluded because they deviate from the bulk of

the circles. The candidate distributions include the Gumbel (GUM) distribution and three

three-parameter distributions, namely the Generalized Extreme-Value (GEV) distribution,

the Generalized Normal (GNO) distribution, and the Pearson type III (PE3) distribution. In

addition, the three-parameter Log-Normal (LN3) distribution is close to the center of the

circles in Fig 3.3 after log-transforming the original data. Therefore, LN3 is added to the

candidate distribution set as well.

Figure 3.2: L-moment Ratio Diagram with Samples
*The solid boxes represent two-parameter distributions, such as Logistic (L), Normal (N), Uniform (U),

Exponential (E), and Gumbel (GUM). The curves represent three-parameter distributions, such as
Generalized Logistic (GLO), Generalized Extreme-Value (GEV), Generalized Pareto (GPA), Generalized

Normal (GNO), and Pearson type III (PE3).
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Figure 3.3: L-moment Ratio Diagram with Log-transformed Samples
*The solid boxes represent two-parameter distributions, such as Logistic (L), Normal (N), Uniform (U),

Exponential (E), and Gumbel (GUM). The curves represent three-parameter distributions, such as
Generalized Logistic (GLO), Generalized Extreme-Value (GEV), Generalized Pareto (GPA), Generalized

Normal (GNO), and Pearson type III (PE3).

To assess the performance between the records for all 21 gauges and the candidate

distributions, the relative RMSE (R(F )) is developed into a series of boxplots, as shown

in Fig. 3.4. The four panels represent the results for return periods of 2, 5, 10, and 25-

year respectively. In each panel, the dotted lines separate groups of boxes with respect to

the time durations, and within each group, the five boxes represent the five distributions,

namely GUM, LN3, GEV, GNO, and PE3 from left to right. Each box depicts statistics

(including mean, max, min, and interquartile range) of the relative RMSE of a specific time

duration, return period, and candidate distribution.

All candidate distributions show similar performance throughout the plots in Fig 3.4.

The GUM shows larger dispersion than other candidates in the estimate of the 2-year event
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over durations from 30min to 2h, but also shows lower mean errors in the estimates of 25-

year events. All five candidates perform similarly for estimating the 5 and 10-year events.

Considering the extra computational effort when applying three-parameter distributions,

and the tradition of using GUM in rainfall frequency analysis (Chow et al., 1988, Ch14),

the Gumbel distribution is selected as the frequency distribution to characterize the heavy

rainfalls at all the gauges.

Figure 3.4: Boxplot of the Relative RMSE of the Candidate Distributions
* The four panels represent the results for return periods of 2, 5, 10, and 25-year respectively. In each panel,
the dotted lines separate groups of boxes with respect to the time durations, and within each group, the five
boxes represent the five distributions, namely GUM, LN3, GEV, GNO, and PE3 from left to right. Each box
depicts statistics (including mean, max, min, and interquartile range) of the relative RMSE of a specific time

duration, return period, and candidate distribution.
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3.5 Identification of Quantile Changes by Comparing Con-

fidence Intervals

To investigate if changes in heavy rainfall intensities have occurred, Confidence Inter-

vals (CIs) of quantiles estimated from two segments of the data are compared at the same

exceedance probability (e.g., 20% annual exceedance or 5-year return period). Vasiljevic

et al. (2012) first introduced this method, but the CIs were calculated following Yevjevich’s

method (Yevjevich, 1972, pp. 211), which is not precise. In this research, the confidence

intervals are estimated with resampling methods, which yields more precise estimates. The

rationale of using a confidence interval comparison method rather than a Student’s t-test is

explained below.

For demonstration, two sample sets are denoted as {x1} and {x2}, each with a sample

size of n, and the means and standard deviations of the two sample sets are x̄1, x̄2, s1, and

s2. The quantiles with non-exceedance probability p are denoted as x1p

and x2p

, and the

corresponding standard deviations are s1p

and s2p

. The objective is to test the significance

of difference between two quantiles.

For the Student’s t-test of means, if two means are significantly different, then:

tú
=

x̄1 ≠ x̄2Ò
s

2
1

n

+

s

2
2

n

> t–
2

(3.6)
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x̄1 ≠ x̄2 > t–
2

Û
s2

1
n

+

s2
2

n
(3.7)

The statistic tú is compared with the critical value t
c

, which is the 1 ≠ –

2 percentile (two-

sided test) of t distribution with degrees of freedom n ≠ 1.

The confidence intervals for group means are x̄1 ± t–
2

s1Ô
n

and x̄2 ± t–
2

s2Ô
n

. If there is no

overlap between confidence intervals, then:

x̄1 ≠ t–
2

s1Ô
n

> x̄2 + t–
2

s2Ô
n

(3.8)

x̄1 ≠ x̄2 > t–
2
(

s1Ô
n

+

s2Ô
n

) (3.9)

With the knowledge that (

s1Ô
n

+

s2Ô
n

) Ø
Ò

s

2
1

n

+

s

2
2

n

is always true, then if Eq 3.9 is the

case, Eq 3.7 also holds. In other words, if two statistics have non-overlapped confidence

intervals, they are necessarily significantly different, with significance at least that used to

construct confidence intervals.

Similarly, the t test statistic for quantiles is tú
=

x1p≠x2pÔ
s

2
1p+s

2
2p

; however, several issues

hindered the use of the t test. The relationship between standard deviations of quantile

(s1p

or s2p

) and sample ({x1} or {x2}) is not as certain as that of the sample mean. For

the sample mean, the Standard Error of the Mean (SE) is computed as the sample standard

deviation divided by the squared root of the sample size (e.g. SE1 =

s1Ô
n

). For a sample
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quantile, there is no straightforward relationship. The standard deviation of a quantile may

vary with the shape of the population distribution and the non-exceedance probability of

the quantile. Use of asymptotic equations is only plausible when the sample size is larger

than 50, as in the preceding discussion.

It is difficult to calculate degrees of freedom of the constructed test statistic for the

quantile estimate. When testing the sample mean, the test statistic tú (using the t-test, for

example) is directly calculated from samples, and the degrees of freedom is n≠1. However,

the quantile (x1p

or x2p

) is indirectly calculated with distribution parameters estimated from

samples, plus the standard deviation of quantile is estimated by a resampling method. It is

impossible to explicitly relate the samples to the test statistic, and therefore, determining

the degrees of freedom of the test statistic is challenging.

The use of the t-test to compare two sample quantiles is hindered since it is difficult to

explicitly derive the quantile standard deviation and degrees of freedom. The comparison

of confidence intervals is used as a compromise method to identify changes in quantiles.

Using a resampling method to obtain M quantile estimates from each period of record,

denoted as {x1p1, x1p2, · · · , x1pM

} and {x2p1, x2p2, · · · , x2pM

}, the confidence intervals are

represented as the interval between the –

2 and 1 ≠ –

2 percentile in each series. If these

two confidence intervals do not overlap, these two quantiles are necessarily significantly

different, at a significance level less than –.

It is acknowledged that this method is not a statistical test, but a substitutive method

to identify significant difference. It is acknowledged that a significant difference may exist
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when confidence intervals overlap, and for non-overlapped confidence intervals, the actual

significance level is less than –.

For a special case when the standard deviation of the two quantiles are equal, and

the sample sizes are large enough to use normal score to replace t score, it is possible

to determine the significance level. In this case, s1p

= s2p

, and the Equation 3.9 is changed

to

x̄1p

≠ x̄2p

> t–
2
(s1p

+ s2p

) = t–
2

Ô
2

Ò
s2

1p

+ s2
2p

= t–Õ
2

Ò
s2

1p

+ s2
2p

(3.10)

where –Õ is the actual significant level for the comparison of confidence intervals, and

t–Õ
2

=

Ô
2t–

2
. Using normal table, if – = 0.1, then –Õ

= 0.02, and if – = 0.05, then

–Õ
= 0.006. The assumption of the equality between the standard deviations of estimated

quantiles, and the use of normal score instead of t score are difficult to be tested. This study

will continue to use the significance level of – and address that the actual significance level

is less than –.

3.6 Results

The annual maximum 5min rainfall record at Windsor, plotted in Fig 3.5, is taken as an

example to illustrate the confidence intervals comparison. After testing the stationarity in

both periods of record (p1 = 0.186, p2 = 0.581, two-sided test), the Gumbel distribution

parameters are estimated for each period. Further, the confidence intervals (1≠– = 0.9) of

2 to 25-year quantiles are calculated with the resampling method. The quantiles and corre-
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sponding confidence intervals are listed in Table 3.1. The results show that the confidence

intervals for events of all return periods do not overlap, indicating changes have occurred

in these design rainfall. These two periods of record, along with quantiles and confidence

intervals, are also plotted in Fig 3.6, indicating the rainfall intensities are decreasing (at the

nominal level of – = 0.1).

Figure 3.5: Annual Maximum Rainfall record for 5 min Duration at Windsor, ON

Table 3.1: Quantiles and Confidence Intervals for 5min duration record at Windsor (mm/h)

Return Period 1st Period 2nd Period
Upper Limit Quantile Lower Limit Upper Limit Quantile Lower Limit

2-year 139.25 127.97 119.21 107.27 99.17 91.72
5-year 167.43 157.23 144.34 133.73 124.07 110.82
10-year 186.79 176.61 161.14 152.12 140.56 123.16
25-year 211.70 201.09 181.34 175.17 161.39 138.89

Table 3.2 summarizes the results of the CIs comparison test. The arrows and hyphens
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Figure 3.6: Confidence Interval Comparisons for 5min Rainfall Record at Windsor, ON

in cells represent the results of CI comparison of 2, 5, 10, and 25-year events. An up-arrow

indicates an increase in rainfall intensity occurred in the 2nd period of record, and a down-

arrow indicates a decrease in rainfall intensity. A hyphen means the CIs are not identified

as significantly (at – < 0.1 significant level) different. For example, the 2nd cell in the 13th

row, which represents the results of CI comparison of the 5min record at Windsor, shows

all down arrows (¿¿¿¿), indicating the quantiles for 2, 5, 10 and 25-year events are all

decreased.

The results show that 2-year rainfall event magnitude at the Sioux Lookout rain gauge

in northern Ontario has significantly increased after 1984, while the rest of the rain gauges

in northern Ontario show no changes. In eastern Ontario, only the Belleville gauge (out

of five gauges) demonstrates increases in heavy rainfall intensities. In central and south-

western Ontario, most changes are recognized as significantly decreased. Four gauges, at
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Windsor, Chatham, St. Thomas, and Toronto, identified significant decreases in magni-

tudes of rainfall events of various return periods. The Delhi gauge identified significant

increases in heavy rainfall events over durations of 30min and 1h, as the only exception in

this geographical area. Due to the low spatial density of rain gauges, it is difficult to con-

clude spatial trends of changes; nevertheless, the results provide an indication of regional

changes in heavy rainfall magnitudes before/after year 1983.

3.7 Discussion

The changes in heavy rainfall intensities identified in this research are compared with

evidence provided in the literature. Adamowski and Bougadis (2003) observed signifi-

cant decreasing trends in short duration heavy rainfalls in southern Ontario, during the

time period of 1970s to 1990s, which is consistent with the results presented in this re-

search. However, the decrease in rainfall intensities in the St. Lawrence region identified

by Adamowski and Bougadis (2003) was not observed in this research. Notice that the test

of trends in rainfall records and test of rainfall intensity changes, as probability distribution

quantiles are not identical. It is reasonable to observe inconsistencies between these two

types of tests. Mailhot et al. (2010) conclude that change of extreme rainfall will emerge

during the time period of 1985–2005. The claim of Mailhot et al. (2010) is supported in

this research with many observations of changes in extreme rainfall that took place after

1983.
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The results in Vasiljevic et al. (2012) show increases in 30 and 60min duration 5-year

rainfall in southern Ontario, between the time periods of 1970–1984 and 1985–2003. This

evidence is inconsistent with findings in this research. This inconsistency is due to: a)

several heavy events took place during the 1960s, which are not included in the research of

Vasiljevic et al. (2012); however, these events result in greater estimates of extreme rainfall

intensities in the first time period in this research; b) Vasiljevic et al. (2012) use partial

duration series to identify changes in extreme rainfall intensities; while, this research uses

annual maximum series; c) this research uses 90% confidence level while Vasiljevic et al.

(2012) uses 80%. That will result in a shorter confidence intervals, which identifies more

cases of significant differences between quantiles estimates. A greater confidence level in

quantile estimates will yield more conservative results, as shown in Table 3.2.

3.8 Conclusion

From the results of the distribution selection, five candidate distributions can all provide

similarly accurate quantile estimates for annual maximum rainfall data. It is also shown

that, for selected distributions, the boxplots of relative RMSE can provide a means of fitting

to specific events over all durations and all gauges, and it is more focused on the accuracy

of event estimates (e.g. events of 2 to 25-year return periods). The boxplot is capable of

comparing all alternative distributions, by putting the boxes side-by-side and comparing

central tendencies and dispersions. This is more visual than listing a table of correlation
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coefficients.

The changes in extreme rainfall intensities in Ontario are identified, demonstrating that

some gauges in central and southern Ontario have experienced decreases in heavy rainfall

pre/post-1983. Increases in heavy rainfall are identified in gauges at Sioux Lookout and

Belleville; however, there is not sufficient information to characterize regional changes in

Ontario when using annual maximum series.
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Table 3.2: Results of 90% Confidence Interval Comparison Test
ID 5min 10min 15min 30min 1h 2h
6034075 ---- ---- ---- ---- ---- ----
6037775 ---- ---- ---- ---- ---- ø---
6057592 ---- ---- ---- ---- ---- ----
6085700 ---- ---- ---- ---- ---- ----
6100971 ---- ---- ---- ---- ---- ----
6104175 ---- ---- ---- ---- ---- ----
6105978 ---- ---- ---- ---- ---- ----
6116132 ---- ---- ---- ---- ---- ----
6131415 ---- ---- ---- --¿¿ --¿¿ ----
6131983 / / ---- -øøø ---ø ----
6136606 ---- ---- ---- ---- ---- ----
6137362 -¿¿¿ ---- ---- ---- ---- ----
6139525 ¿¿¿¿ / ¿¿¿¿ ¿¿-- ¿--- ----
6142400 ---- ---- ---- ---- ---- ----
6144478 ---- ---- ---- ---- ---- ----
6148105 ---- ---- ---- ---- ---- ----
6150689 ---- ø--- øø-- ---- øø-- --ø-
6153301 / ---- ---- ---- ---- ----
6158355 -¿¿¿ -¿¿¿ ---- ---- ---- ----
6158733 / ---- / / / /
6158875 ---- ---- ---- ---- ---- ----

*The arrows and hyphens in cells represent the results of CI comparison of 2, 5, 10, and 25-year events
(from left to right). An up-arrow indicates an increase of rainfall intensity occurred in the 2nd period of
record, and a down-arrow indicates a decrease of rainfall intensity. A hyphen means no significant change
(– = 0.1) is shown or, in other words, the CIs are not significantly different. Cells with slashes represent
records that are not stationary.
*The name and location of climate stations are listed in Table 8.1
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Table 3.3: Results of 80% Confidence Interval Comparison Test
ID 5min 10min 15min 30min 1h 2h
6034075 ---- ---- ---- ---- ---- ----
6037775 ---- ---- ---- ---- ø--- øø--
6057592 ---¿ ---- ---- ---- ---- ----
6085700 ---- ---- ---- ---- ---- ----
6100971 ---- ---- ---- ---- ---- ----
6104175 ---- ---- ---- ---- ---- ----
6105978 ---- ---- ---- ¿--- ¿--- ----
6116132 ---- ---- ---- ---- ---- ----
6131415 ---- ---- ---- -¿¿¿ --¿¿ ----
6131983 / ---- ---ø -øøø -øøø ----
6136606 ---- ---- ---- ---- ---- ----
6137362 -¿¿¿ ---¿ ---- ---- ---- ----
6139525 ¿¿¿¿ / ¿¿¿¿ ¿¿¿¿ ¿--- ¿---
6142400 ---- ---- ---- ---- ---- ----
6144478 ---- ---- ---- ---¿ ---- ----
6148105 ---- ---- ---- ---- ---- ----
6150689 øø-- øø-- øøø- ø--- øø-- øøøø
6153301 / / ---- --¿- -¿¿¿ ----
6158355 ¿¿¿¿ -¿¿¿ -¿¿¿ ---- ---- ----
6158733 / ---- / / / /
6158875 ---- ---- ---- ---- ---- ----
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Chapter 4

Uncertainty Characterization of Rainfall

Inputs Used in Design of Storm Sewer

Infrastructure

Chapter 3 shows that changes in design rainfall intensities are evident. However, the

comparison of the confidence intervals is highly related to the extent of the confidence

intervals, i.e. the uncertainties associated with the statistical models. Therefore, this paper

analyzes the uncertainties involved in the AMS model and related IDF curves. The climate

stations used in this paper are the same as in chapter 3.

Two sources of IDF curves are discussed in this paper, the MSC IDF data file and

the online search tool provided by the Ministry of Transportation Ontario (MTO). One

amendment to this paper is that this paper was written in early 2013 and criticized MTO
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IDF for not providing uncertainty information, while MTO updated their tools to provide

uncertainty information in late 2013. This paper points out that the uncertainty associated

in the IDF curves could be substantial, and needs assessment before being applied to the

stormwater system design.

The uncertainties associated with estimates from the statistical models are analyzed in

relation to the time period of the rainfall record. The paper shows that the extent of the

confidence interval is linearly related to the log-transformed length of rainfall record. In

the Province of Ontario, the circumstance is that most climate stations do not have sufficient

length of rainfall record to generate rainfall intensities with a desirable level of uncertainty.

This paper demonstrates the necessity of assessing, and provided insight in the quan-

tification of uncertainties in the design rainfall intensities.

4.1 Abstract

Intensity–Duration–Frequency (IDF) curves from which design rainfall magnitudes are

developed, are constructed using rainfall predictions associated with different return peri-

ods and durations. However, the degree of confidence for estimates of rainfall rates as input

for the design of stormwater infrastructure is influenced by the length and character of his-

torical precipitation records. Relationships are assessed between the length of the period of

historical record of rainfalls and uncertainties of predictions for different confidence levels,

using both analytical and resampling methods. The uncertainty in IDF curve regression is
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also analysed.

The correlation between the log-transformed lengths of the record and the ratios of the

standard deviations of predictions are determined to be high, allowing a linear regression

model to be developed to characterize the 95% confidence intervals. Based on 20 rain

gauges in Ontario, it is estimated that to achieve a 95% confidence interval as small as 10%

of the predictions, at least 49, 62, and 73 years of records are needed for 5, 10, and 25-year

recurrence events respectively. Considering that record lengths of rain gauges are mostly

< 50years, the challenges to accurately estimate the event magnitudes are substantial. This

underscores the importance of considering uncertainties when using design rainfall rates

based on available records.

Further, an example of non-linear regression between the IDF estimates and confidence

intervals and rainfall durations shows the possibility of underestimating design rainfall in-

tensities. This raises awareness of uncertainties when selecting design rainfall rates.

4.2 Introduction

Rainfall is one of the most important inputs in stormwater infrastructure design, to de-

termine the conveyance capacity needed for the stormwater system. The rainfall input may

be a rainfall event obtained from the historical record characterized from several decades

of historical events, or a storm generated from the IDF curves, combined with a selected

rainfall distribution (e.g. a triangular distribution).
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Uncertainty of a design rainfall arises since the rainfall intensities are not known with

certainty; there is a range of values. This range is typically represented as a confidence in-

terval. Thus, it is important to consider the confidence intervals as well as the design rainfall

intensities. Use of the upper confidence limit is more conservative in stormwater design,

although this approach may increase the cost due to the extra capacity needed for conveying

the predicted stormwater flows. When dealing with uncertainties, the selected design rain-

fall intensity should be a balance between cost and risk of being more frequently exceeded;

a smaller range of uncertainty is helpful to ensure the design performs as intended.

For Ontario, IDF curves are available from two sources: the IDF database from the

Ontario Ministry of Transportation (MTO) and the IDF data file from Environment Canada

(EC). MTO’s IDF database provides estimated rainfall depth and intensities, and the regres-

sion coefficient values for the equations. MTO’s IDF curves are remarkably localized—

they are available at locations that don’t have rainfall gauges, which implies spatial in-

terpolation has been employed. However, the MTO’s IDF curves are not provided with

information on uncertainties.

The EC IDF data files contain more information in comparison with the MTO’s IDF

database, although EC IDFs are only at locations at which there are rain gauges. EC IDF

data files include the Quantile–Quantile plot for distribution fit, and event estimate graphs,

based on historical records at a rainfall gauge. The annual maximal rainfall intensities

over various durations are also provided, together with the estimates of events for return

periods from 2-year through 100-year. The confidence intervals for the event estimates are
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also supplied, at the confidence level of 95%, two-sided. The regression coefficients for

each of these IDF curves are also available. With the data provided, users are immediately

advised about the magnitudes of the uncertainties, and capable of fitting rainfall records

with alternative probability distributions and quantifying the uncertainties.

An issue is raised when examining the confidence intervals related to storm durations.

EC’s IDF curves provide confidence intervals for durations of 5 min, 10 min, 15 min and 30

min and for 1 h, 2 h, 6 h, 12 h and 24 h. However, the design rainfall for stormwater system

design could be over any duration Æ 2 h, depending upon the hydrologic characteristics

(e.g. time of concentration) of the catchment. The confidence limits are needed to compare

with expected values, to be confident of the design rainfall selected. Therefore, interpola-

tion or regression of the confidence intervals is necessary, in addition to the regression of

the expected values of design rainfall intensities.

The intensities and confidence intervals used for IDF regression are usually estimated

by parametric methods, including fitting a probability distribution to extreme rainfall data

series, and estimation of the extreme event intensities for selected exceedance frequencies.

Uncertainties are introduced into estimated intensities generated from both modelling error

and sampling error involved in parametric methods, and further introduced into IDF curves

and design rainfalls.

The uncertainties in design rainfalls sometimes could be very large. As an example,

Figure 4.1 illustrates the IDF curves for Waterloo, Ontario. The cautionary note in the up-

per right corner indicates the large range of the confidence intervals. The 10 years return
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period event of 1h duration rainfall is estimated to be 45.1mm/h as an expected value, with

a 95% confidence interval of ±9.9mm/h, which is almost ±20% of the expected value.

Consequently, designers are looking at a design rainfall intensity which could be anywhere

from 35.2mm/h to 55mm/h, reflecting the 95% confidence interval. In response, one pos-

Figure 4.1: IDF Curves for Waterloo, Ontario. (Publicly available from Environment
Canada)

sibility is to have a longer record, which would reduce the uncertainties in design rainfall

estimates by reducing sampling error; the length of the rainfall record needed to achieve

a specified degree of certainty in design rainfall estimate should be determined as well.

However, a lengthy record may contain temporal trends or step changes. It is not always

appropriate to use the longest record, as the current climate storms are suspected to be

different from decades or hundreds of years ago.

Of interest is to develop the relationships between the width of confidence intervals



59

for design rainfall versus the length of the rainfall record, to quantify the length of record

needed to achieve specific uncertainty or to determine the magnitude of the uncertainties

given the available historical period of record. Further, this paper develops the relationships

between the design rainfall confidence limits and the rainfall durations of the same return

period, to provide the confidence limits for selection of the design rainfall for a given design

storm duration.

4.3 Literature Review

The uncertainties in extreme rainfall event estimation have been analyzed in research

to investigate the impact of climate change (Fowler and Kilsby, 2003; Garcı́a-Ruiz et al.,

2000; Coles et al., 2003) and to estimate the impact of uncertain input to stormwater system

design (Aronica et al., 2005; Semadeni-Davies et al., 2008). However, the relationship

between uncertainties in the estimation of extreme event intensities and record length have

not been comprehensively investigated. Rauch and de Toffol (2006) investigated six rainfall

series in Austria to assess the length of the rainfall series required to estimate extreme

rainfall and associated uncertainties, of 1-year return period events with 15 min duration.

The rainfall intensities are estimated based on segments of the historical record, with the

lengths of 1, 10, and 20 years. In Rauch and de Toffol (2006), a correlation is observed

between the magnitude of uncertainties (expressed as the ratio between the width of the

90% confidence interval and the expected value using the entire record) and the length of
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segments of the historical record. It is suggested to use Ø 10 years record to estimate a

1-year event. Use of the longest available record is not always recommended, as increasing

record length might be influenced by temporal trends. Rauch and de Toffol (2006) only

tested the 1-year return period rainfall over 15 min duration, which cannot demonstrate all

the characteristics of all extreme rainfall events; this relationship between uncertainties in

the estimation of extreme event intensities and the record length needs to be thoroughly

investigated.

4.4 Methodologies

The uncertainty of design rainfall in this research is represented as the confidence in-

terval at the confidence level of 95%. There are two methods to describe the relationships

between the length of the rainfall record and the confidence intervals: the analytical method

and the resampling method. In both methods, the sample sets are fitted with the Gumbel

distribution using L-moments (Hosking and Wallis, 1997, Chapter 2). In the analytical

method, the variance of the rainfall estimate is calculated by the asymptotic method (after

Stedinger et al., 1993).

V ar(x̂
p

) =

–2
[(1.1128 ≠ 0.9066

n

) ≠ (0.4574 ≠ 1.1722
n

)y + (0.8046 ≠ 0.1855
n

)y2
]

n ≠ 1

(4.1)

where y = ≠ ln (≠ ln(

1
T

)) is the reduced variant for the Gumbel distribution; T is the return

period in years. – is the scale parameter for the Gumbel distribution. n is the sample size.
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The confidence interval is:

CI = x̂
p

± z
Ò

V ar(x̂
p

) (4.2)

where z is the normal score for a given significance level.

The rainfall intensity is estimated by the inverse of the cumulative distribution function

of the Gumbel distribution, Equation 4.3, with scale (–) and location (›) parameters, for

non-exceedance probability p

x̂
p

= › ≠ – ln ≠ ln p = › + –y (4.3)

In this research, the uncertainty is characterized as a percentage of the width of the

confidence interval compared to the expected value.

CI ≠ x̂
p

x̂
p

= ±z

Ò
V arx̂

p

x̂
p

= f(n, y; ›, –) ◊ 100% (4.4)

Note that the percentage is a function of the sample size (n) and the reduced variant (y),

which is a function of the return period (T ). Therefore, for a specified return period, the

magnitude of uncertainty is only determined by the sample size, which equals the length

of the record when using annual maxima. With the analytical method, the relationship

between the record length and the uncertainties can be computed using Equation 4.4.

With the resampling method, the relationship is characterized 100 times using similar
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procedures to those used in the analytical method based on resampled datasets. First, 5000

values are synthesized using the Gumbel distribution to form a large dataset (A). Second,

100 values are randomly selected from this dataset A, to construct an annual maximum

rainfall record (B) over 100 years. Third, the first 10 values in this record B are assumed as

a sample set (C) (a sample size <10 is expected to have large sampling error, defined as the

variance of the sample). Fourth, the sample set C is fitted with the Gumbel distribution to

calculate the percentage of the 95% confidence interval compared with the event estimates

for return periods of 2, 5, 10, and 25-year. The third step is repeated by including the

next value from the record B into the sample set C until the sample size reaches 100.

Subsequently, the percentages are plotted against the log-transformed size of the sample

set C taken from the record B. Finally, steps two through four are repeated 100 times, with

results as plotted in Figure 4.2, and compared with the curve developed by the analytical

method.

The relationship between the log-transformed record length and the percentages of the

confidence intervals is depicted in Figure 4.2 (the solid black curve is the analytical method

of Equation 4.4). The figure demonstrates that the relationship is approximately linear,

especially for the segment between 20 and 100 years of record. The 100 trials of the

resampling methods are also drawn in Figure 4.2 (the dashed grey curves), and compare

favourably with the analytical method (the solid black curve).

In Figure 4.2, the resampled curves (the grey curves) scatter over a large range when

the record length is <20 years, and are in immediate proximity to the analytical curve as
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Figure 4.2: Analytical and Resampling Methods for the Relationships between the Record
Length and the Uncertainties for Wvents of 10-year Return Period

the record length increases. In addition, the resampled curves are distributed evenly around

the analytical curve. Therefore, these resample curves are valid as good estimates of the

relationships between uncertainties and record lengths. For 100 repetitions, the resampled

curves show considerable density close to the analytical curve, and the relationship is ob-

vious. There is no necessity of more repetitions to make it denser.

Steps three and four in the resampling method are used to draw the relationships be-

tween record length and uncertainties in the historical record (used as data set B). A least

squares linear regression is applied to model this relationship, and extrapolated to get the

minimum record length needed to achieve a specific percentage of uncertainty.

To verify the minimum record length, a bootstrap method was applied to the historical

record. In the bootstrap method, the historical record is assigned as the population (dataset
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A), and the dataset B is randomly selected (with replacement for 50 or 100 repetitions)

with length calculated from the linear regression model. The dataset B is directly used to

fit to the Gumbel distribution and estimate the confidence intervals, and the percentage of

the width of the confidence interval against the expected value is calculated as well. The

mean of the percentages in each repetition is compared to the desired percentage to check

the minimum record length estimate.

The nonlinear regression of IDF curves and their confidence intervals are developed,

and compared with the linear regression available from EC’s IDF files. The non-linear

equation used for the IDF curves is

I = a(t + c)

b (4.5)

where I is the design rainfall intensity in mm/hr, a, b, c are coefficients to be optimized

by the least-squares method, and t is rainfall duration in hours.

Further, the regression functions for the upper and lower confidence limits are devel-

oped using Equation 4.5, by substituting the intensity with the upper or lower limits, I
Upper

and I
Lower

.

4.5 Data Description

Twenty-one rainfall gauges with lengthy records (30 years or longer) are used in this

research, with location and length as listed in Table 4.1. These records include daily max-
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imal rainfall amount over durations of 5, 10, 15, and 30 min and for 1, 2, 6, 12, and 24 h.

Rainfall rates recorded between April 1st and October 31st are used to emphasize summer

storm characteristics, and a yearly record will be excluded if missing more than 20% of

data for the seven months record of a year. Annual maximum data series are extracted and

utilized in the analysis of relationships between the record length and the uncertainties of

rainfall estimates. The non-linear regression analysis of the design rainfall estimates and

confidence intervals uses data in the EC IDF data files.

4.6 Results and Discussion

The 1 h duration historical record at Kingston is analyzed as an example. As shown in

Figure 4.3, the relationship for the 25-year event fluctuates when the record length increases

from 10 to 20 years, but the percentages are gradually reduced to 13% when using the entire

record of 45 years.

The linear regression for the percentage (r) of 95% confidence intervals and the length

of the record (l) is expressed in Equation [6], based on the segment of curve from 20 to 45

years.

r = 45.66 ≠ 8.64 log l (4.6)

The slope and the correlation coefficient are both significant at p < 0.001.

Using Equation 4.6, the minimal length of the record for Kingston needed to achieve a



66

Table 4.1: Record Lengths and Percentages of Uncertainty of Rainfall Gauges in Ontario

ID Years Record Length Needed $ Actual Percentage #

5-year 10-year 25-year 5-year 10-year 25-year
6158355 65 53 67 81 9 10.4 11.9
6137362 43 59 81 99 10.5 12.2 14.1
6139525 43 44 51 59 10.5 12.2 14.2
6150689 41 41 57 74 10.1 11.8 13.8
6105978 42 41 53 65 9.7 11.4 13.4
6144478 46 48 61 74 10.3 11.9 13.8
6142400 42 59 69 78 13.2 14.8 16.7
6104175 45 40 51 62 9.5 11.1 13.0
6158733 46 50 65 79 10.2 11.8 13.7
6153301 39 27 42 59 8.7 10.5 12.5
6057592 37 53 66 79 11.5 13.4 15.4
6131983 39 43 50 57 11.1 12.8 14.9
6131415 35 82 116 136 11.7 13.6 15.7
6116132 30 48 54 61 15.5 17.4 19.6
6037775 33 136 148 151 12.9 14.9 17.1
6085700 34 48 60 71 11.6 13.5 15.7
6148105 33 59 68 77 13.8 15.7 17.9
6100971 34 59 70 81 12.7 14.6 16.8
6034075 33 44 50 57 13.6 15.5 17.7
6136606 31 38 45 53 11.7 13.7 16.0
6158875 32 43 49 56 12.9 14.8 17.1

*The name and location of climate stations are listed in Table 8.1
$ This is the record length needed to achieve a 95% confidence interval whose width is 10% of the
predictions.
# This is the percentage of the width of a 95% confidence interval to the predictions when using all available
rainfall records.
* The percentages of the 95% confidence interval for all events at Sioux Lookout A do not decrease as
record length increases. This results in a very flat linear regression and the slope equal to zero is not
rejected. Thus, very large record lengths are calculated by extrapolation.
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Figure 4.3: Relationship at Kingston between the Percentage of the 95% Confidence Inter-
val and the Record Length.

95% confidence interval as small as ±10% of the prediction is exp(

45.66≠10
8.64 ), or 62 years.

The bootstrap method is used to check this estimate of record length. Fifty and 100

sets of 62 values are randomly selected from the historical record, with replacement, and

fitted to the Gumbel distribution. The 25 y event intensity is estimated using Equation 4.3

for each set of values. The mean, variance, and 95% confidence limits are estimated based

on these 50 and 100 estimates, assuming the normal distribution. The percentage of the

magnitude of the confidence interval to compare to the mean is obtained from Equation 4.4.

This bootstrap method gives a percentage of 10.7% for 50 sets of values, and 9.4% for 100

sets of values. Hence, good agreement is observed between the analytical method and the

resampling method, indicating that the assessment of the required record length as 62 years

is valid.
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Table 4.1 lists information about the 21 rain gauges, including the record length avail-

able and the percentage of 95% confidence interval compared to predictions based on the

entire record (one hour duration). The lengths needed to achieve the 95% confidence in-

terval as low as 10% of the predictions for 5, 10, and 25-year events separately, are listed

therein. Excluding the gauge at Sioux Lookout A (at which gauge the slope of the linear re-

gression function is not rejected as equaling zero, one possible reason is that more outliers

or other kinds of wild data are included as expanding the record length), it is calculated that

the average length of record needed to achieve a 95% confidence interval as low as 10% of

the prediction is 49, 62, and 73 years for return periods of 5, 10, and 25-year respectively.

Considering that the average record length is 40 years for the remaining 20 gauges, it is

strongly recommended to consider the uncertainties of rainfall intensity estimates when

selecting design rainfall from these IDF curves, because otherwise the design rainfall is at

risk of being significantly underestimated.

Table 4.2: Five-Year Event Estimates and 95% Confidence Intervals at Waterloo
Duration Intensity (mm/h) 95% Confidence Interval

5 min 153.3 ±24.1
10 min 110.4 ±17.7
15 min 91.9 ±15
30 min 66.4 ±12.5

1 h 45.1 ±9.9
2 h 26.7 ±5.8
6 h 10.8 ±2.1

12 h 5.9 ±1
24 h 3.2 ±0.5

The 5-year event IDF curve at Waterloo is employed as an example to explain the im-
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portance of using confidence intervals as well as expected values. The expected values and

95% confidence intervals are obtained from EC’s IDF files, and listed below in Table 4.2.

The EC regression equation is shown in Equation 4.7 as a benchmark, which is a linear

regression between the intensities (I) and the log of durations (t) in hours.

I = 30t≠0.691 (4.7)

The non-linear regression using Equation 4.5 becomes,

I = 36.6(t + 0.07)

≠0.685 (4.8)

Both of these equations are plotted in Figure 4.4, and demonstrate the expected values and

95% confidence intervals for events over nine durations of storms.

In Figure 4.4, the EC regression equation (Equation 4.7) is close to the lower confidence

limit of rainfall events at durations of 30 min, 1 h, and 2 h. Therefore, if a hydrologic model

uses design rainfall over 90 min duration, it is in fact using an intensity that is close to the

lower confidence limit. Further, there is a 95% chance that this event will be exceeded more

frequently than once every 5 years on average. The non-linear regression equation is not

perfectly fitted to data beyond 2 h duration. This should not be a concern, since the time of

concentration in urban stormwater system design are usually less than 2 hours.
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Figure 4.4: IDF Curve for 5-Year Event at Waterloo

4.7 Conclusion

A linear relationship is observed and modeled between the uncertainties (in the form

of the percentage of the 95% confidence intervals, compared with the expected values) and

the record length. Using this linear relationship, it is possible to quantify the record length

needed to achieve a specified uncertainty; for example, the width of a 95% confidence

interval that is <10% of the expected value. With the record lengths quantified, modelers

are better aware of uncertainties in rainfall intensities estimated from records with limited

durations.

The uncertainties of extreme event predictions are constrained by the length of the his-

torical record. It is difficult to provide a confident estimate of the 100-year event based

on a record of 40 or 50 years. This situation is a very common circumstance for Ontario.
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Stormwater infrastructure design is, in fact, dealing with heavy rainfall intensities involving

a very large extent of uncertainties. Using the expected value does not incorporate the un-

certainty in the estimation of the rainfall intensities which are used for design of stormwater

infrastructure.

The design rainfall intensities obtained from the IDF curve regression equations may be

exceeded more frequently than the design return period. Modelers should compare these

intensities with the corresponding confidence intervals to decide which of the intensities

(the upper confidence limit or the interpolated expected value) should be used in modeling.
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Chapter 5

Performance Comparisons of Partial

Duration and Annual Maxima Series

Models for Rainfall Frequency Analysis

of Selected Rain Gauge records,

Ontario, Canada

This paper demonstrates the advantages of using Partial Duration Series (PDS) instead

of Annual Maximum Series (AMS) in rainfall intensity modeling, and a complete proce-

dure to develop the PDS model for selected rain gauges in southern Ontario. This paper

uses the same set of climate stations as the two preceding papers.
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This paper explains the theoretical difference between the event-based model and the

annual-based model, and clarifies the relationship between the recurrence interval of a given

event and the non-exceedance probability in the cumulative frequency distribution. These

are important theoretical bases and major contributions in this thesis.

This paper introduces approaches for developing PDS models (the PDS-E in this pa-

per), including the selection of thresholds, the sensitivity to missing values, the selection of

frequency distributions, and quantile and confidence interval estimates. This paper shows

that the PDS model produces larger rainfall intensity estimates than the AMS model, and

is more pertinent for stormwater infrastructure design of frequent rainfall events. The pa-

per shows that the uncertainties associated with the PDS model is considerable and needs

improvement.

5.1 Abstract

To assess the advantages of rainfall frequency models based on Partial Duration Se-

ries (PDS) in comparison with models based on Annual Maximum Series (AMS), rainfall

records from 21 rainfall gauges in Ontario are examined. A procedure to develop the PDS

Event-based model (PDS-E) is derived, showing sensitivities to missing values, selection

of thresholds, and quantile and confidence limit estimates.

The true values of 2 and 5-year return period design rainfall intensities are 10% and

3% greater in PDS than in AMS data on average, which indicates the necessity of using
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PDS data and the event-based model for frequent event modeling, instead of the annual-

based model. The accuracy of PDS-E estimates of design rainfall is sensitive to the ex-

ceedance threshold; and for an elevated threshold, which improves the model accuracy, the

PDS-E estimates of 1h duration and 5-year return period events is 3.5% greater than AMS

model estimates. Nevertheless, the 2-year return period design rainfall estimates are mostly

greater for the PDS-E than in AMS model.

The PDS-E is demonstrated to be more pertinent for stormwater infrastructure design

of frequent rainfall events. The exceedance threshold needs to be assessed with respect to

sensitivity of accuracy of estimate and extent of uncertainty, and the model accuracy needs

further improvement.

5.2 Introduction

Predictions of design rainfall intensities are critical inputs for design of urban stormwa-

ter systems. Traditionally, the Annual Maximum Series (AMS) has been used for gener-

ating Intensity–Duration–Frequency (IDF) curves and ultimately, to determine the design

capacity of infrastructure for stormwater management. However, another data series perti-

nent to frequency analysis is the Partial Duration Series (PDS).

A PDS is a data series extracted from the historical record by selecting rainfall events

exceeding a certain threshold (x
T

) with corresponding time of occurrence. The PDS data

series are also referred to as Peaks–Over–Threshold (POT). The magnitude of exceedance



75

of PDS is usually modeled either by Exponential distribution (EP) or Generalized Pareto

distribution (GPA); and the arrival rates (the number of exceedances in each year) are mod-

eled as a Poisson process, or negative binomial distribution; and the length of time between

exceedances are commonly modeled by the Exponential distribution as well.

The PDS model (models generated using PDS data) has rarely been used in practice for

design of stormwater management systems, although the PDS of flood records have been

analyzed to estimate flood frequency and event magnitudes. Todorovic and Zelenhasic

(1970) developed models of flood count (the number of flood occurrences in each time

interval) and flood magnitudes based on flood records for the Susquehanna River. Later,

Todorovic and Rousselle (1971) expanded this model to include seasonal differences, and

achieved fairly good agreement between observed and theoretical results. Cunnane (1979)

judged the validity of the Poisson process on data from gauges in Great Britain, and con-

cluded that when all data are considered jointly, the number of occurrences in each year

does not follow the Poisson process. Madsen et al. (1994) modeled the total rainfall depth

and the maximum 10min rainfall intensity of individual storms with PDS based on rainfall

records in Denmark. Madsen et al. (1995) further developed a regional Bayesian approach

to provide estimates of T-year events (events which will be exceeded in one year amongst

every T years on average) with less uncertainty compared to estimates using only at-site

data, and also provided estimates at non-monitored sites. Trefry et al. (2005) also applied

a PDS/GPA model for regional rainfall frequency analysis for the State of Michigan, and

used the predictions for events with recurrence intervals of less than 10 years.
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For frequent events (recurrence interval less than 10 years), Laurenson (1987) argued

that AMS recurrence interval could be misleading, and suggested using PDS and recur-

rence interval (same magnitude as return period) concepts. By using AMS, the recurrence

interval is the average period between years in which a given value is exceeded, regardless

of the number of exceedances in any one year. However, when using PDS, recurrence in-

terval is the average period between individual exceedances within a given period of time.

Laurenson (1987) agreed that the annual exceedance probability is the reciprocal of the re-

currence interval of the AMS, although the reciprocal of PDS recurrence interval is “not the

probability of anything”. Therefore, Laurenson (1987) did not apply conventional proba-

bility analyses on PDS, and required that the probability of exceedances must be “within a

given period of time” — such as the probability of a given value being exceeded in a year.

The AMS model (statistical model generated with AMS data) predicts the return period

between years in which a given rainfall intensity is exceeded; or conversely, predicts the

rainfall intensity that will be exceeded with a given return period on average (or a given

annual exceedance probability, dimensionless). The AMS model is not concerned with the

number of exceedances within a year, which is reasonable when modeling extreme events

(e.g. 100-year return period storm) but misleading when dealing with frequent events. Lau-

renson (1987) selected a 10-year return period as a dividing line between extreme events

and frequent events. Hereafter, AMS model is also called the annual-based model.

The PDS model predicts the return period between exceedances of a given rainfall in-

tensity, or the rainfall intensity that will be exceeded with a given return period on average.
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The PDS model is a probability model of the exceedance magnitudes, although the prob-

ability needs to be adjusted according to the number of events in PDS and the number of

years in the rainfall record being used. The PDS model can characterize frequent events,

even when the return period is shorter than one year. The PDS model is hereafter called

Event-based model, or PDS-E, since it is related to the occurrence frequency of a given

event. If the arrival rate of events is modeled together with the PDS model to map to an-

nual exceedance probability, it is an annual-based model similar to the AMS model, and is

referred to as PDS annual-based model, or PDS-A.

If PDS and AMS data extracted from the same rainfall record are sorted in descending

order, the PDS have values greater than, or equal to, the value at the same rank in the AMS,

because the PDS may include heavy events excluded in the AMS. With the same given

rainfall intensity, there may be more events in the PDS exceeding this intensity than in

the AMS; thus, the recurrence interval of exceedances of the given intensity in the PDS is

shorter than or at least equal to the recurrence interval in the AMS (they are only equal when

the PDS and the AMS have the same number of storms greater than the given intensity).

Conversely, for the same recurrence interval, the given rainfall intensity in the PDS is

greater than or equal to that in the AMS. The “given rainfall intensity” is estimated with

statistical models and referred to as the design rainfall in municipal infrastructure design.

Correspondingly, the true value of the PDS-E estimate is greater than or equal to that of the

AMS model estimate, for the same return period.

Besides the greater true value of design rainfall and shorter recurrence interval, there
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are advantages arguing for use of PDS-E. Firstly, the flexibility of a PDS-E makes the

model versatile to deal with different frequency analysis tasks. Selecting a higher threshold

to extract PDS from rainfall record would allow better fitting of a distribution for extreme

events, and a lower threshold could reduce sampling variances. Secondly, the PDS model

can be adjusted for circumstances of missing data, compared to the AMS model. In the

AMS model, it is not necessarily reliable to take the recorded maximal event as the maxi-

mum of a year, when there are many missing values in a year. However, in the PDS model,

any event that has intensity greater than the threshold would be utilized in developing the

data series, regardless of how many values are missing in that year (although it is acknowl-

edged that it is difficult to conduct any statistical analysis if there are too many missing

values).

A threshold is required to extract PDS, and there is no general consensus with respect to

how the threshold should be selected (Ashkar and Rousselle, 1983a, 1987). Rainfall events

in PDS are required to be independent and identically distributed.

The PDS-A, as an annual-based model, estimates a true value smaller than that of the

PDS-E model. The PDS-A involves more sources of uncertainty since fitting the arrival

rate to the Poisson distribution introduces model errors. Cunnane (1973) compared the

variances of predictions given by both an AMS model and a PDS-A, and points out that

the PDS-A requires a sample set at least 1.65 times that of the AMS model to achieve the

same accuracy. This conclusion, especially the scale of 1.65, is referred to in studies such

as Tavares and Silva (1983); Rosbjerg (1985); Buishand (1989); Wang (1991).
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5.3 Study Objective

To demonstrate the advantages of the PDS event-based model, this paper theoretically

proves, for a given return period, the true value of the design rainfall for PDS-E is greater

than that for AMS or PDS-A. It also clarifies the relationship between the return period and

non-exceedance probability in statistical distribution modeling. Further, based on rainfall

records of 21 rainfall stations in the Province of Ontario, this paper introduces the details of

establishing the PDS-E, including sensitivity analysis to missing values, methodologies to

select thresholds, probability distribution fitting, and estimation of quantiles and variances.

The PDS-E estimates of design rainfall are compared with the AMS model in relation to

model precision and accuracy.

5.4 Event-Based Model and Annual-Based Model

5.4.1 Event-based Model and Return Period

As introduced in Laurenson (1987), the return period of partial duration series is the

average period of time between exceedances; while, the return period of annual series is the

average period of time between years in which the given event is exceeded. In annual series

the number of events is always equal to the number of years in rainfall records. Therefore,

the reciprocal of the return period (1 year in T years return period) is a dimensionless value

and equals the exceedance probability of the design rainfall intensity in the Cumulative

Distribution Function (CDF) of the annual series. A problem arises when using partial
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duration series. The reciprocal of the return period has dimension (1 event in T years),

and the exceedance probability of the event intensity is related to the number of events in

the partial series, which is further related to the arbitrary threshold used to extract partial

series. To solve this problem, the average arrival rate (⁄) is used to convert the reciprocal

of the return period to a dimensionless value and be related to the exceedance probability

in the CDF. It is explained more precisely as follows.

Denote a PDS extracted by threshold x
T

from N years of rainfall records as {x1, x2, · · · , x
n

},

which has a true CDF of F
P

(x). The average annual arrival rate ⁄ is estimated by n/N

(events per year). In PDS, the exceedance probability of an intensity x is described as

Pr{x
i

Ø x} = 1 ≠ F
P

(x).

The exceedance probability for intensity x
T

Õ
(x

T

Õ > x
T

) is 1 ≠ F
P

(x
T

Õ
) =

n

Õ

n

=

n

Õ
/N

n/N

=

⁄

Õ

⁄

(dimensionless), where nÕ is the number of values in PDS exceeding x
T

Õ. The reciprocal

of the return period, T
p

, for given intensity (x
T

Õ) is

1

T
p

= ⁄Õ
= ⁄[1 ≠ F

p

(x
T

Õ
)] (Events per year) (5.1)

Then the reciprocal of return period and the exceedance probability are related in PDS.

Further, the non-exceedance probability of a given value is F
P

(x
T

Õ
) = 1 ≠ 1/⁄T

p

.
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5.4.2 Annual-Based Model and Return Period

For the AMS model, the return period (T
a

) and the exceedance probability are directly

related as Equation 5.2

1

T
a

= 1 ≠ F
A

(x
T

) Dimemsionless (5.2)

where F
A

(x) is the CDF of the AMS data. The non-exceedance probability of a given value

is F
A

(x
T

) = 1 ≠ 1/T
a

.

For the PDS-A model, to model the number of occurrences of exceedances in any year,

the Poisson distribution with parameter ⁄ÕÕ is used as in Equation 5.3.

P (Ÿ; ⁄ÕÕ
) = e≠⁄

ÕÕ
⁄ÕÕ/Ÿ!, Ÿ = 0, 1, 2 · · · (5.3)

The parameter ⁄ÕÕ is estimated as the average arrival rate of exceedances of the design value

in PDS-A. The probability of having no arrivals in a year is P (0; ⁄ÕÕ
) = e≠⁄

ÕÕ .

Thus, the annual exceedance probability for the T
a

-year return period is calculated as

given in Equation 5.4.

1 ≠ e≠⁄

ÕÕ
= 1/T

a

(5.4)

To find the design value (xÕÕ
T

) and exceedance probability (1 ≠ F
P

(xÕÕ
T

)) in PDS-A, the

⁄ÕÕ in Equation 5.4 is isolated and substituted into Equation 5.1 as ⁄Õ, which is as given in
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Equation 5.5.

⁄[1 ≠ F
p

(xÕÕ
T

)] =

1

T
p

= ⁄Õ
= ⁄ÕÕ

= ≠ ln 1 ≠ 1

T
a

= ln

T
a

T
a

≠ 1

(5.5)

And the non-exceedance probability of a given value is F
P

(xÕÕ
T

) = 1 ≠ 1
⁄

ln(

Ta
Ta≠1).

To summarize, given a return period T , the non-exceedance probability in CDF of PDS-

E is 1 ≠ 1/⁄T , of AMS model is 1 ≠ 1/T , and of PDS-A is 1 ≠ 1
⁄

ln(

T

T ≠1).

5.4.3 Difference in the True Value of the Design Rainfall

The true value of the design rainfall is interpolated between two observations having

probability plotting positions closest to the non-exceedance probability. The ranks of values

being interpolated in AMS model and in PDS-E are the same, while the values in PDS-E

are greater than or equal to those in AMS model, as aforementioned. Therefore the true

value of the design rainfall in PDS-E is greater than or equal to that of the AMS model.

Given the fact that 1/T > ln(T/(T ≠ 1)), the non-exceedance probability of PDS-E

is constantly greater than that of PDS-A. Using the same PDS data, the true value of the

design rainfall of PDS-E is greater than that of the PDS-A.

The relationship between true values of the design rainfall of the AMS model and the

PDS-A is determined by two factors: the extra heavy events in PDS data results in larger

ranked values, and the smaller non-exceedance probability in PDS-A that results in smaller

interpolation. These two counter-acting factors vary from case to case, and make the incon-
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sistent relationships between true values of the design rainfall of AMS model and PDS-E,

as per Fig. 5.1. Consequently, the widespread impression that the PDS annual-based model

should give greater predictions than the AMS model is incorrect.

Figure 5.1: Relationships of True Values of PDS-E, PDS-A, and AMS Model

5.5 PDS Event-based Model Development

The development of PDS-E includes treatment of gaps in data records, test of inde-

pendence and identically distributed assumptions, selection of the exceedance threshold

and probability distributions, and estimates of distribution parameters and quantiles. The

exceedance threshold determines data values in PDS, and further affects the distribution

fitting and quantile estimation. Therefore, the exceedance threshold will be selected with

considerations of distribution fitting and quantile estimation.
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5.5.1 Missing Values

In comparison with the AMS model, the PDS model may involve more extreme events

from those years when records have considerable numbers of missing values; however, it

also extends the record length, even when there are no extreme events occurred in those

years. The side effect of increasing the length of record is the possibility of reducing the

annual arrival rate (⁄). Further, the non-exceedance probability of the true value of the

design rainfall will be decreased, as Equation 5.1.

It is inappropriate to manually examine rainfall record of each year and to determine

whether or not to include the record, because the work involved is substantial, but also

the discrimination between rainfall records will result in subjective bias in the model esti-

mates (i.e., a modeler can exclude all years that have no extreme events to get a very large

estimate).

This study applies a threshold of missing percentage to clean rainfall records at each

rain gauge. If the rainfall record of a year has a percentage of missing values more than the

threshold, then the record of this year is excluded from subsequent analysis. The sensitivity

of the true value of the design rainfall intensity in relation to the threshold for the missing

percentage is analyzed. If there were too many missing values, it would be difficult to

conduct any statistical analysis. Therefore, the maximum percentage of missing values

considered in this study is arbitrarily set to 40%.
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5.5.2 Assumption of Independence

The assessment of independence between rainfall events is required priori in subse-

quent steps. The models for dependent peaks are different and more complex than indepen-

dent peaks (Rosbjerg, 1985). Ashkar and Rousselle (1983b) argue that certain restrictions

(e.g. 24h cessation of rainfall between events) will interfere with the hypothesis of Poisso-

nian peak arrival. Ashkar and Rousselle (1987) also claim that the statistical independence

of flood peaks will be less important if the arrival of flood peaks follows a Poisson process

at, or above, the threshold.

On the other hand, researchers have applied simple rules to separate rainfall events for

independence. Ben-Zvi (2009) applied 24 hours of rainfall cessation between events as a

sign of independence. Vasiljevic et al. (2012) required a minimum of two days between

events. Gerold and Watkins (2005) set the expected number of exceedances as twice per

year, and estimated the threshold from rainfall data. Madsen et al. (2002) separated rainfall

events using dry periods that have the same duration as the rainfall events, and required

at least one hour dry period for events that last shorter than one hour. Independence is

assumed between rainfall events. The values in rainfall record are calculated as the average

rainfall intensity over a given duration for each rainfall event.

This study maintains at least a 24h dry period between storms in sequence. Events

happening in sequence with less than a 24h dry separation period will be treated as a single

storm, and only the maximum rainfall amount over the assumed duration will be considered

as the basis for extracting PDS data.
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5.5.3 Assumption of Identically Distributed Data Series

Many investigators (e.g. Madsen et al., 1994, 1995; Rosbjerg and Madsen, 1996; Tre-

fry et al., 2005) assume that the data in PDS are identically distributed; therefore, the ex-

ceedances are modeled directly without any pretreatments. The rainfall peaks occurring in

different seasons are modeled as one sample set. Todorovic and Zelenhasic (1970); Todor-

ovic and Rousselle (1971) and Ashkar and Rousselle (1981) all applied the Kolmogorov-

Smirnov test to verify the homogeneity of flood peaks in different seasons. Long-term

changes in rainfall intensities can violate the identically distributed assumption. The Mann-

Kendall trend test is able to verify the stationarity of the record, or examine the slope in

linear regression for the count of exceedance in each individual year, as in Trefry et al.

(2005). Beguerı́a et al. (2011) applied the Poisson distribution and GPA distribution with

parameters linearly varying with time, in order to model the non-stationary rainfall record.

The test of the assumption of identically distributed data is related to the selection of

the threshold, since a high threshold will exclude more events than a low threshold, and

the presence of these events will affect the results of a stationarity test. In this research,

the Mann-Kendall trend test and the lag-1 autocorrelation tests are applied to each of the

exceedance data series, to assess the presence of long-term trends or autocorrelations in the

rainfall exceedances.
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5.5.4 Exceedance Threshold Characterization

After the rainfall events are determined to be independent and identically distributed,

a threshold is needed to extract the PDS data. However, there is no general consensus on

procedures to select the threshold.

In the scope of flood frequency analysis, physical meaning is occasionally combined

with the threshold, e.g. the flow rate of bankfull discharge (Kavvas, 1982). However, it is

not physically meaningful to assign a threshold associated with rainfall intensities, since

the rainfall-runoff process varies from one catchment to another.

Statistical techniques are also involved in selecting the threshold by focusing on the

statistical characteristics of the extracted PDS series. To maintain the hypothesis of Poisson

arrival peaks, Ashkar and Rousselle (1987) selected the threshold according to the ratio of

the observed mean and the variance of the number of exceedances per year. They selected

the threshold when the ratio is close to unity, and demonstrate a linear relationship with

the average arrival rate. Ben-Zvi (2009) applied Anderson-Darling’s test to identify the

threshold. The general idea of the statistical perspective of threshold selection is to improve

the confidence of not rejecting a hypothesis, to increase the goodness-of-fit of a distribution

assumed to describe peak arrivals or peak magnitudes, and to improve the precision and

accuracy of the rainfall intensity prediction.

Coles (2001) indicated that the asymptotic basis of the GPA model is likely to be vi-

olated if the threshold is too low and will lead to inaccuracy, while a high threshold will

generate few exceedances leading to high variance in model estimates. Coles (2001) intro-
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duced two methods to select exceedance threshold: by examining the mean of exceedances,

or by assessing the stability of parameter estimation, both with the assumption of gener-

alized Pareto distributed exceedances. The “Mean Residual Life Plot” plots the mean of

all exceedances of a given threshold against that threshold to show linear relationship, and

selects the threshold when the linear relationship appears stable. The other method is based

on the fact that if all exceedances of x
T

follow GPA, for any threshold greater than x
T

,

the exceedances will also follow GPA, with the same shape parameter Ÿ. Therefore, the

estimated Ÿ is constant with respect to the threshold x
T

. Similarly, the modified scale

parameter ‡
xT

ú
= ‡

xT ≠ Ÿx
T

is constant in respect to the threshold x
T

.

To select the exceedance threshold, this study analyzes the Coles’ mean residual life

plot and the parameter estimates stability plot, along with the plot of design rainfall esti-

mates and confidence limits against thresholds. The design rainfall estimate is expected to

be a good approximation of the true value of design rainfall, and the confidence interval is

expected to contain the true value at the selected threshold.

5.5.5 Frequency Distributions

To describe the magnitude of exceedances, the PDS data are usually modeled with the

Generalized Pareto distribution (GPA), which was introduced as a heavy-tailed distribution

to describe extreme values. It is a three-parameter distribution, including location param-

eter ›, scale parameter –, and shape parameter Ÿ. The cumulative distribution function is
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given in Equation 5.6.

F (x) = 1 ≠ [1 ≠ Ÿ
x ≠ ›

–
]

1
Ÿ

,

Y
_____]

_____[

Ÿ < 0 › < x < +Œ

Ÿ > 0 › Æ x Æ › +

–

Ÿ

(5.6)

Other candidate probability distributions include the Pearson Type III distribution (PE3),

Generalized Normal distribution (GNO), Generalized Logistic distribution (GLO), and

Generalized Extreme value distribution (GEV). Shown in Fig. 5.2, these candidates are

plotted on an L-moment ratio diagram according to the relationships of the 3rd and 4th L-

moment ratios of each distribution. The L-moment ratios of PDS from all rain gauges are

plotted as points as well. The candidate distribution plotted close to all PDS points is se-

lected. In this study, the GPA curve is close to most of the PDS points and thus the GPA

curve is selected as the probability distribution for subsequent analysis.

5.5.6 Estimation of Parameters, Design Rainfall, and Confidence Lim-

its

In GPA, the location parameter (›) is estimated as the smallest value in the partial

duration series, and the scale (–) and shape (Ÿ) parameters are estimated with L-moments.

Given the first and second sample L-moments as l1 and l2, the parameters are estimated as
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Figure 5.2: L-moment Ratio Diagram of PDS Data

given in Equation 5.7

Ÿ̂ =

l1 ≠ ˆ›

l2
≠ 2, –̂ = (l1 ≠ ˆ›)(1 + Ÿ̂) (5.7)

For PDS-E, using the non-exceedance probability given by Equation 5.1, the design

rainfall with return period T is estimated as Equation 5.8

x̂
T

= F ≠1
[1 ≠ 1

⁄T
] = [1 ≠ (

1

⁄T
) Ÿ̂]

–̂

Ÿ̂
+

ˆ› (5.8)

The precision of the estimated design rainfall is described by confidence limits, which

are assessed by the resampling method. The original PDS data were resampled with re-

placement for N
s

im times, and the design rainfall intensities of given return periods were
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estimated by fitting GPA to the resampled data set. Given the confidence level of “, the

confidence limits were calculated as the “/2 and 1 ≠ “/2 quantiles of N
s

im resampled

design rainfall intensities.

5.6 AMS Model Development

The AMS model uses the same rainfall records as PDS-E, but extracts rainfall data

as annual maxima. AMS data are inherently independent since values are extracted as

one event within each year and rainfall events in different years are independent. This

is especially likely to be true in this study, since only rainfall events between April and

October are considered. The identically distributed assumption is tested with the Mann-

Kendall trend test and the lag-1 autocorrelation test tests the assumption of independence.

Those records with significant Mann-Kendall trends or autocorrelations are excluded in

subsequent assessment.

By using the L-moment ratio diagram, the Generalized Extreme Value distribution is

selected as the probability distribution to model AMS data, as given in Equation 5.9.

F (x) = exp {≠[1 ≠ Ÿ(

x ≠ ›

‡
)]

1
Ÿ }, Ÿ ”= 0 (5.9)

where Ÿ is the shape parameter, – is the scale parameter, and › is the location parameter.

Similar to the PDS-E model, the uncertainties of the AMS estimates are described with

confidence limits, by resampling the original AMS data as well.
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5.7 Model Application

5.7.1 Data Description

This study uses historical rainfall records at 21 stations in the Province of Ontario,

Canada, all with 40 years or more of historical records. All of these records include daily

maximum rainfall amounts for durations of 5, 10, 15, 30min, and 1, 2, 6, and 12h in a day,

recorded by tipping bucket and quality-controlled by Environment Canada. The records

between April 1st and October 31st are analyzed in this research, in order to focus on rainfall

events.

The rainfall measurement methodologies used by Environment Canada have been mod-

ified several times, according to Mekis and Hogg (1999). Rain gauges were changed from

Meteorological Service of Canada (MSC) gauge to Type-B at most stations in 1970s,

and the inside container of MSC gauges were changed around 1965 resulting in non-

homogeneity of the dataset. Compared to pit gauge measurements, Type-B gauge measure-

ments are 1% lower on average, while MSC gauge measurements are 4% lower (Goodison

and Louie, 1986). Non-homogeneity was also introduced when measuring instruments

were relocated, in which case the station identifiers will be changed and records need to be

combined.

The detailed information of instrument changes are not available to this study, and

based on the consideration that all data have been corrected to the standard rain gauge by

Environment Canada (Sandy Radecki, personal communication, 2013), the homogeneity
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in data records are reasonably assumed.

5.7.2 PDS-E Model Application

The methodologies introduced in the model development section are applied to data

described above, to develop a PDS-E model for each station in Ontario. The details of

selecting missing percentages and exceedance thresholds are discussed in this section.

Missing Values Characterization

To explain the sensitivity test of true values of design rainfall intensities in respect to

missing values, the 30min duration rainfall record at the City of Hamilton is shown as an

example in Fig. 5.3. The estimated true values of design rainfall intensities for 2, 5, and

10-year return periods are plotted against the missing percentage (from 10 to 40%, with a

step of 2%). The intensity threshold used to extract PDS data was set to the minimum of

the corresponding AMS data, which was 18mm/hr.

The design rainfall intensities decreased (though fluctuations) about 5mm/h as the miss-

ing percentage increased from 10% to 30% and remained stable up to 40%. The record

length increased from 33 years to 43 years (because those records having more than 10%

missing values are included as the threshold is elevated), and increased especially rapidly

with missing percentages between 14% and 24%. The design rainfall intensities are not

sensitive with respect to the missing percentages while the record length is affected to

some extent.
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Figure 5.3: Changes of Observation Against the Missing Percentage For Hamilton 30min
Duration Rainfall Record

The sensitivity test is conducted for all rainfall records among the 21 gauges. For most

rainfall records, the design rainfall intensities are not sensitive to the missing percentage,

especially when the missing percentage is greater than 20%. Therefore, records are re-

moved if the missing percentage is greater than 20%, the same as for the AMS model, to

facilitate comparison with the AMS model under the same circumstances.

Exceedance Threshold Characterization

The mean residual life plot, parameter estimates stability plot, and the design rainfall

estimates stability plot are generated to characterize the sensitivity of PDS-E to the ex-

ceedance threshold. The extent of the exceedance threshold is set from the minimum of the

AMS data to 90% of the 2-year return period estimate of the AMS model. This is based on
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the consideration that the model will lead to bias if the threshold is too low, while too high

a threshold will result in high variance in model estimates. Furthermore, the estimation

of 2-year return period events will be impossible if the annual arrival rate is too small (if

⁄ < 0.5, then the non-exceedance probability 1 ≠ 1
2⁄

< 0).

The 30min rainfall record at Windsor is used as an example. Fig. 5.4 is a temporal plot

of all independent events of intensities heavier than the minimum of AMS record (22.4

mm/hr). The rainfall records of years 1992 and 1996–1998 have considerable amounts of

missing values and therefore are excluded in this analysis. The two dashed lines indicate

the extent of potential exceedance threshold ([22.4, 41.5]). The mean residual life plot in

Fig. 5.5 shows two segments: the mean residual fluctuates between 12 and 14 mm/h when

the threshold increases until 52 mm/hr, and approximately linearly decreases to 6 mm/h

until the threshold increases to 70 mm/hr. Note that the characterized extent of threshold

is within the 1st segment, and this segment has some evidence of linearity. Therefore, the

intended extent of threshold ([22.4, 41.5]) is accepted by the analysis of mean residual life

plot. The plot of estimated distribution parameters and corresponding confidence limits

(90%) are shown in Fig. 5.6 and 5.7. Both estimated parameters (–̂ú, Ÿ̂) gradually rise

as the threshold increases, and the confidence intervals extend when threshold exceeds 28

mm/hr. Therefore, the intended extent of the threshold is set to [22.4, 28]. The model

sensitivity to the threshold is further characterized in the design rainfall estimates stability

plot, as per Fig. 5.8. Within the intended extent of threshold, the model estimates are

relatively stable, and so are the confidence limits. Therefore, the exceedance threshold is
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selected to be 28mm/h, as the upper limit of the intended extent. This procedure is

Figure 5.4: Thirty-minute Duration Rainfall Record at Windsor

applied to all records amongst the 21 gauges, to select thresholds for each PDS model.

Some problems are apparent in this process. The parameter estimates are not constant with

respect to exceedance thresholds in some cases, but the extent of the confidence interval of

parameter estimates constantly expand as the threshold increases. Therefore, the threshold

is selected at the value before the parameter estimates rapidly change, or the confidence

intervals dramatically expand. In the design rainfall estimates stability plot, the confidence

interval covers the true value of design rainfall in most rainfall records, and the thresholds

are always selected to ensure the confidence intervals encompass the true values.

The Mann-Kendall trend test and the lag-1 autocorrelation test are used to assess the

stationarity and independence of each extracted PDS. New thresholds are selected for those
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Figure 5.5: Mean Residual Life Plot For Windsor 30min Duration Rainfall Record

Figure 5.6: Stability Plot For The Adjusted Scale Parameter Estimate From 30min Duration
Rainfall Record At Windsor
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Figure 5.7: Stability Plot For The Shape Parameter Estimate From 30min Duration Rainfall
Record At Windsor

Figure 5.8: Design Rainfall Estimates Stability Plot For Windsor 30min Duration Rainfall
Record
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records showing significant Mann-Kendall trends or autocorrelations, and the new extracted

PDS will be tested again, until stationarity is achieved.

Quantiles and Variances

The parameters and quantiles are finally estimated based on data extracted using the

threshold determined as per above, and the confidence limits are estimated with 1000 re-

sampled sample sets (with replacement) of same length as the original PDS.

5.7.3 AMS Model Application

The AMS data are extracted from the same rainfall records as the partial duration se-

ries, and tested with Mann-Kendall trend test and lag-1 autocorrelation test. All records

at Toronto Pearson Airport rainfall station are excluded, due to both decreasing trends

(p < 0.05) and lag-1 autocorrelation (95% confidence level, two-sided). The 30 min and 1

h rainfall records at Windsor are excluded for decreasing trends. The 2h rainfall record at

Sioux Lookout and the 1h rainfall record at North Bay are both excluded due to significant

autocorrelation.

The rest of the rainfall records are all fitted with the Generalized Extreme Value (GEV)

distribution, The selection of GEV is also based on the L-moment ratio diagram, as per

Fig. 5.9, which shows the GEV curve is the closest to the center of sample L-moment ratios.

The design rainfall intensities are estimated at non-exceedance probability of 1 ≠ 1/T , and

the confidence limits are estimated with resampling methods.
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Figure 5.9: L-moment Ratio Diagram of AMS Records

5.8 Results

5.8.1 Comparison of The True Value of Design Rainfall in PDS-E and

AMS Model

The estimated true values of design rainfall are compared between the PDS-E model

and the AMS model. The differences are calculated as the percentages of the PDS-E esti-

mates greater than the corresponding AMS estimates, for return periods of 2, 5, 10 years,

over durations of 30 min, 1 and 2 h. The boxplots in Fig. 5.10 depict all percentages of

differences of various rainfall records. The 2-year return events are showing the largest

differences, up to 29% larger for the 1 h duration design rainfall at Windsor. The averaged

differences are close to 10% for all rainfall durations. The 5-year return events show con-
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siderable differences as well, with average differences around 3%. The average differences

of 10-year return events are all close to zero, indicating small difference between estimates

of the PDS-E and the AMS model.

Figure 5.10: Percentage of True Values of PDS-E Greater Than True Values of AMS Model
For Durations From 30min To 2h and Return Periods of 2, 5, and 10 Years

The PDS event-based model focuses on the probability of an intensity threshold being

exceeded in an individual event, rather than being exceeded in a particular year, which is

the annual scheme. Within different meanings of return periods, simply comparing the PDS

event-based model estimates with AMS estimates is meaningless. However, it is interesting

to identify conditions when this difference is substantial. One important factor determining

the magnitudes of the event observations is the data series itself. Given 40 years of record,

a 10-year return period event is approximately the 4th largest of the extreme events. The
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possibility of having more than one event exceed this 4th largest event in a single year is

small but not negligible. Therefore, considering a PDS event-based model in engineering

design is appropriate.

5.8.2 Comparison of the PDS-E and the AMS Model Estimates

The PDS models and the AMS model are compared with respect to the magnitudes and

the width of confidence intervals of predictions for 2, 5, and 10-year events. The 2-year

event estimates are greater in the PDS-E model than in the AMS model, but the 5 and

10-year events estimates are not showing substantial difference.

Fig. 5.11 shows the difference between the PDS-E estimates and the AMS model es-

timates in percentages, which is calculated as [(PDS-E estimate/AMS Model estimate) ≠

1] ◊ 100%. The 2-year return events estimated in PDS-E are constantly greater than in the

AMS model. However, the 5 and 10-year return event estimates of PDS-E are less than

those of the AMS model. This is due to the design rainfall which is underestimated by

PDS-E model. A simple comparison of the estimates to the true values of design rainfall

intensities shows an average of 5.6% underestimation on 5-year return events and 10.6%

underestimation on 10-year return events. In the mean time, the AMS model underesti-

mates design rainfall intensities by an average of 0.9% and 2.2% respectively.

To improve the accuracy of PDS-E estimates, a different set of thresholds was tried

by assessing design rainfall estimates stability plot directly and selecting the exceedance

threshold where the 5-year return event estimate is closest to true value, with a reasonable
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Figure 5.11: Difference Between the PDS-E Estimates And the AMS Model Estimates

number of exceedances and range of confidence intervals. This set of thresholds was ap-

plied to extract PDS data, and the estimates were compared again with the AMS estimates,

as shown in Fig. 5.12. The averaged differences of 5-year return events estimated from the

two models are close to zero, which is closer to, but still different from, the estimated true

value comparison results.

To compare the models’ precision, width of confidence intervals (90%) are assessed. In

Fig. 5.13, the percentages of differences in confidence intervals are depicted as box plots.

It shows that the PDS-E estimates have smaller width of confidence intervals compared to

AMS model estimates, for most rainfall records. This is partially due to the sample sizes

in PDS model being larger than in AMS model, more than tripled on average (¯⁄ = 3.27),
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Figure 5.12: Percentage of Estimates of PDS-E Greater Than Estimates of AMS Model,
Using Alternative Thresholds

Figure 5.13: Percentage of Confidence Interval Widths of PDS-E Greater Than Those of
AMS Model
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which reduces sampling errors.

5.9 Discussion

The argument made by Laurenson (1987), which advocates the use of partial duration

series in assessing frequent events, is supported by both theoretical derivation and analysis

of true values of design rainfall intensities with real rainfall records. The design rainfall

in partial series is on average 11.9% greater than in annual series for 2-year return period,

and 3.5% for 5-year return period. The reciprocal of PDS recurrence interval was claimed

as “not the probability of anything” in Laurenson (1987). It is acknowledged that the

reciprocal is not a probability since it has a dimension (events per year); however, in this

study, it is explained as the occurrence frequency of events exceeding a given threshold,

and related to the exceedance probability used in statistical distributions by applying a

conversion factor — the annual arrival rate (⁄).

The threshold selection procedures introduced by Coles (2001) are applied in the model

development process. These procedures focus on stability of model parameter estimates,

and linearity between exceedance thresholds and mean residuals of exceedances. The

thresholds selected are usually low, which result in large annual arrival rates, and even-

tually affect the accuracy of design rainfall estimates. It is shown that use of thresholds

beyond the stable range of parameter estimates can improve the design rainfall estimates

in some cases. Further, there is not always a range of thresholds that have stable parame-
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ter estimates. This study assesses the stability and accuracy of design rainfall estimates in

addition to Coles (2001)’s procedures. This additional procedure provides insights directly

on the modeling objective — to provide accurate design rainfall estimates.

The selection of exceedance thresholds is related to the modeling objectives, and the

procedures used in this study are recommended for modeling for frequent events using

partial series. It is suggested the stability of event estimates be assessed along with stability

of parameter estimates. The threshold that produces accurate event estimates should be

considered as long as the parameter estimates stability is not severely deteriorated.

The width of confidence intervals, as an indicator of the precision of the design rainfall

estimate, is shown to be smaller for PDS-E than in the AMS model. This advantage of

PDS-E is a result of the large sample size in partial series, which is brought by using low

thresholds. Additionally, it is possible to ensure stationarity of the data series by altering

exceedance thresholds, as used in this study, which is impossible in AMS modeling. Nev-

ertheless, the lack of accuracy in PDS-E estimates comparing to the AMS model limits the

application of PDS-E in design rainfall assessment. It is important to assess the PDS-E

model accuracy, and make improvement, if necessary.

5.10 Conclusion

The PDS event-based model (PDS-E), focusing on the average probability of a rainfall

intensity being exceeded in a single event, is more pertinent to stormwater infrastructure
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design objectives. Besides, the PDS-E generally provides estimates greater than the AMS

model. The PDS-E also has advantages in association with the modeling objectives, by

altering the thresholds during data series extraction.

In engineering design, infrastructure is designed with the capacity to carry a heavy

storm, for example, once in five years on average. This design objective is in fact one ex-

ceedance expected in every five years. However, the AMS model predicts event magnitudes

which are exceeded in one year in every five years, despite the number of exceedances in

any single year. Therefore, for frequent events, using AMS model predictions in stormwa-

ter infrastructure design is misleading. Use of the PDS event-based model to estimate the

design rainfall for stormwater system design is more appropriate.
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Chapter 6

Identification of Design Rainfall

Changes Using Regional Frequency

Analysis — A Case Study in Ontario,

Canada

Chapter 5 analyzes the advantages of the PDS model in comparison with the AMS

model, and points out the need to reduce the uncertainties implicit in the PDS model.

Hence, this paper demonstrates the application of the regional frequency analysis approach

and the improvement with respect to model uncertainties. In addition, the changes in design

rainfall intensities are identified from both the regional frequency analysis model and the

PDS model using at-site rainfall records, and compares the consistency of changes iden-
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tified from the two models. The climate stations used in this paper are different from the

preceding papers. They include 32 climate stations from southern Ontario. These climate

stations all have longer than 10 years of rainfall record both pre and post 1983. In addition,

the high density of climate stations in southern Ontario can benefit the regionalization.

This paper modifies the original algorithms of the regional frequency analysis methods

to accommodate the partial duration series. This is a major contribution in this thesis.

The paper shows a complete procedure to develop a regional frequency analysis model

using partial duration series data, including grouping gauges into homogeneous regions,

selecting regional frequency distributions, and using a regional L-moment algorithm to

predict rainfall intensities.

The paper indicates that the regional frequency analysis approach significantly reduces

uncertainties involved in rainfall intensity estimates. The consistency of changes identi-

fied further confirms that design rainfall intensities have been changing over the last few

decades with statistical significance, in several areas in southern Ontario, Canada.

6.1 Abstract

Providing design rainfall intensities appropriate for stormwater system design under

climate change conditions requires a comprehensive understanding of changes in heavy

rainfall events, which may have occurred over the past few decades. Historical rainfall

records of 32 gauges are analyzed to assess if changes in design rainfall intensities in
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southern Ontario are evident. To assess whether changes in rainfall intensity are occur-

ring, rainfall records are split into two time periods and design rainfalls of 2, 5, and 10-year

return periods are estimated; however, due to limited record lengths, uncertainties in design

rainfall estimates are substantial. To reduce uncertainties, the potential for regionalization

involving grouping the gauges into regions and a regional L-moment algorithm (a method

combining at-site L-moment statistics via the weighted average to estimate a regional fre-

quency distribution) is applied to each region.

The procedure used to develop the regional frequency analysis model employs Partial

Duration Series data, and includes selecting regional frequency distributions, and using a

regional L-moment algorithm to predict rainfall intensities. The result shows that the re-

gional L-moment algorithm produces more accurate rainfall estimates (i.e. reduces RMSE

and decreases the width of confidence intervals) in comparison with an at-site model. For

10-year return storms, 26% reduction in RMSE in the regional model was obtained for the

first time period (1960-1983), and 35% for the second time period (1984-2007).

Comparing error bounds between the two time periods shows that design rainfall inten-

sities have been changing over the last few decades with statistical significance, in several

areas in southern Ontario, Canada.
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6.2 Introduction

Climate change research has been catapulted to the fore in recent years. As a result

of increased energy present in the hydrologic cycle, more intense precipitation events are

expected, and are evident (Alexander et al., 2006; Burn and Taleghani, 2013; Adamowski

et al., 2010). The changes expected in the mean value and variation of precipitation intensi-

ties are expected to be evident through changes in the extreme rainfall recurrence frequency.

In response, challenges exist in the design and management of urban stormwater systems,

where infrastructure is, for example, designed to prevent the flooding of road systems dur-

ing a 5-year event. Developing design rainfall intensities appropriate for system design

under changing climate conditions is challenging, i.e. conditions may be non-stationary.

Further, estimating design rainfall intensities for the future requires a comprehensive un-

derstanding of changes that have been observed in relation to extreme rainfall events over

the past few decades, and prediction of future changes based on changes identified in the

past (although one can argue with the rationale to assume the continuance of any changes

identified).

Types of temporal changes can be characterized as step change and gradual change. A

step change describes the “jump” of a statistic between two non-overlapping time periods,

and indicates possible changes in fundamental climate-driven forces. A gradual change

is identified when a statistic has increased or decreased over a period of time. In fre-

quency analysis, especially when the objective is to assess the design rainfall intensity, an

independent and identically distributed record is normally assumed, and gradual changes
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are removed (de-trended) if identified. Therefore, in frequency analysis, identifying step

changes rather than gradual changes over time is more beneficial to the assessment of de-

sign rainfall.

Regarding extreme rainfall frequency analysis, statistics used for identifying changes

over time include expected values and variances of design rainfalls, for a particular return

period and duration. Cumulative density functions of extreme rainfall records may also

be analyzed to discover step changes. Descriptive indices of extremes have been used to

describe changes as well (WMO, 2009), e.g. the number of days with rainfall above the

95th percentile of daily accumulations, denoted as R95p.

At-site analysis is the frequency analysis focused on characteristics or changes in storm

events at a particular site/rain gauge. A statistical model using only the rainfall record at a

particular gauge is referred to as an ‘at-site model’, while a statistical model using regional

frequency analyses for gauges with limited rainfall records is referred to as a ‘regional

model’. Both the at-site model and the regional model can perform the at-site analysis.

Spatial variability of changes in a region can be illustrated by comparing changes identified

at several gauges within the region.

A variety of assessments of changes in precipitation rates have been identified across

Canada. Groisman et al. (1999) observed a 50% increase in mean summer precipitation

over the past century, based on daily precipitation records. Zhang et al. (2001) character-

ized heavy precipitation events for the period of 1900–1998, and found increasing trends

of spring heavy rainfall in eastern Canada. Vincent and Mekis (2006) analyzed daily pre-
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cipitation records for periods of 1950–2003 and 1900–2003 separately, and found that in

the latter half of the 20th century the number of days with precipitation has increased, while

the daily intensity and maximum number of consecutive dry days have both decreased.

Burn and Taleghani (2013) identified more increasing trends than decreasing trends based

on records of 51 stations across Canada. In addition, Burn and Taleghani (2013) found that

the design rainfall values of various return periods have increased in the most recent 20

years, compared to the entire record.

Rainfall patterns in southern Ontario, Canada have also been studied. Stone et al. (2000)

grouped the Great Lakes and St. Lawrence area as one homogenous region when analyzing

daily precipitation events across Canada. Stone et al. (2000) identified seasonally increas-

ing trends in total precipitation in southern Ontario, and also concluded that more extreme

precipitation events in autumn and winter are related to the negative Pacific/North Amer-

ican teleconnection pattern (PNA). Adamowski and Bougadis (2003) discovered both in-

creasing and decreasing trends of extreme rainfall events in various rainfall stations in On-

tario. Adamowski et al. (2010) demonstrated that with the presence of increasing trends, a

given design storm may occur more frequently in the future.

Changes occurring in design rainfall values are discovered by comparing estimates of

design rainfall values from records of two different time periods. Burn and Taleghani

(2013) compared the estimate of the most recent 20 years to the estimate of the entire

timeframe. Vasiljevic et al. (2012) compared estimates of 1970 – 1984 and 1985 – 2003.

Since the record lengths of stations in Ontario are usually short (mostly starting from the
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1960s), splitting the record into two segments results in even shorter records (approxi-

mately 20 years in each segment). A short record will entail more uncertainties in the

estimates of design rainfall values. To solve this problem, Burn and Taleghani (2013) used

resampling techniques to improve the accuracy of quantile estimates. On the other hand,

regional frequency analysis can use rainfall records from adjacent rainfall stations in a sta-

tistically homogeneous region to improve the accuracy of design rainfall intensity estimates

(Hosking and Wallis, 1997).

Regional frequency analysis is based on the assumption that sites in a statistically homo-

geneous region have identical frequency distributions except for site-specific scale factors.

Hosking and Wallis (1997) introduce several comprehensive measures to delineate homo-

geneous regions and select frequency distributions, the regional L-moment algorithm, and

the methods to assess the accuracy of estimated quantiles.

Research using regional frequency analysis techniques includes Madsen et al. (1998,

2002) who analyzed regional variability of extreme rainfall statistics by using linear regres-

sion between site statistics (e.g. index flood) and site characteristics (e.g. mean annual pre-

cipitation), and developed a regional estimation model for precipitation in Denmark. Trefry

et al. (2005) updated Intensity–Duration–Frequency (IDF) curve estimates for Michigan,

U.S., using regional frequency analyses based on both Annual Maximum Series (AMS,

data series consisting of the maximum value in each year) and Partial Duration Series

(PDS, data series consisting of all values exceeding a threshold) data. Results show that

regional analysis can provide reliable rainfall IDF estimates. For 23 rainfall stations in
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Malawi, Ngongondo et al. (2011) compared the accuracy of design rainfall estimates be-

tween at-site and regional analysis, and concluded that the regional-based estimates have

smaller uncertainties and better accuracy. Sveinsson et al. (2002) analyzed regional ex-

treme precipitation frequencies in northeastern Colorado, U.S., and focused specifically

on an extraordinary storm which occurred in 1997. It shows that design values at the site

of interest, are underestimated with regional analysis when the region is not statistically

centered at the site.

Most research documents using regional frequency analysis techniques are based on

AMS. Laurenson (1987) states the advantage of using PDS instead of AMS in at-site anal-

yses: the rainfall model using PDS data evaluates rainfall intensity of average recurrence

interval between storm events, instead of between two hydrologic years, in which a given

rainfall intensity is exceeded regardless of the number of exceedances. The difference be-

tween rainfall intensity models based on PDS and AMS is discussed in Wang and McBean

(2013).

This paper uses a regional frequency analysis approach to improve the accuracy of

heavy event estimates, based on partial duration series data, and identifies regional changes

of extreme rainfall values by comparing estimates of two consecutive time periods. The

accuracies of rainfall intensity estimates will be measured herein as relative Root Mean

Square Error (rRMSE) and computed using Monte-Carlo simulation.
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6.3 Development of Regional Frequency Analysis Model

6.3.1 Differences Between Use of PDS and AMS Data

The simulation algorithms in the lmomRFA package in R project (Hosking, 2012; R

Core Team, 2013) need to be modified when using PDS data in regional frequency analy-

ses. This is required when using PDS data, since the record length is not the same as the

number of years of the rainfall record. An average annual arrival rate (⁄) is calculated as

the number of values in the record divided by the number of years of the record. In the orig-

inal regional L-moment algorithm, the annual maximum series was applied, and storms of

the same return period have the same non-exceedance probability (F ) for all gauges. This

consistency of F is not preserved when using PDS data, due to the different ⁄ between

gauges. In this case, the projection from the regional frequency distribution to the at-site

storm estimate is dependent on both the scale factor (l1, mean rainfall intensity at gauge)

and ⁄; that is, ˆQ
i

(T ) = l1
(i)q̂(1 ≠ 1/⁄T ) for the design rainfall intensity with T-year return

period, and the non-exceedance probability is calculated as F = 1 ≠ 1/⁄T .

The PDS data are extracted with thresholds (x
T

) specific to rainfall gauges. The sen-

sitivity of distribution parameters (using Generalized Pareto distribution parameters) and

design rainfall estimates with respect to the thresholds is analyzed, following Coles (2001).

The threshold is selected in a range where the distribution parameters are relatively stable

and rainfall intensity estimates are close to the interpolated values of ranked rainfall records

using Gringorten’s plotting position formula (Gringorten, 1963). Wang and McBean (2013)
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discussed the selection of intensity thresholds.

6.3.2 Screening the Data

Data screening is one of the most important processes in frequency analyses. Gross er-

rors introduced by instrument malfunction or mistakes in transcription need be eliminated.

Hosking and Wallis (1997) suggest a discordancy measure to identify gauges that are dis-

cordant with other gauges in a group. This measurement compares statistics (L-moment

ratios) from records of all gauges in a group to find out if any gauge has statistics deviating

from the group average. Let t(i), t
(i)
3 , t

(i)
4 be denoted as L-CV, L-skewness, and L-kurtosis

for the record at the i-th gauge (N gauges in total), and a vector ui = [t(i) t
(i)
3 t

(i)
4 ]

T

consists of these three values. The unweighted group average of ui is represented as Equa-

tion 6.1

ū = N≠1
Nÿ

i=1
ui (6.1)

The discordance measure for the i-th gauge is computed as given in Equation 6.2

D
i

=

1

3

N(ui ≠ ū)

T A≠1
(ui ≠ ū) (6.2)

Where A is the matrix of sums of squares and cross-products as in Equation 6.3

A =

Nÿ

i=1
(ui ≠ ū)(ui ≠ ū)

T (6.3)
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This discordance measure (D
i

) is compared with critical values (Table 3.1 in Hosking

and Wallis, 1997) to determine if the historical record from the i-th gauge is discordant

with other records in the group. Records with a large discordancy measure need to be

investigated carefully to decide whether to include these records in the group, or shift to

other groups.

6.3.3 Identify Homogeneous Regions

The regional frequency analysis algorithms are based on assumptions that records of

gauges within a homogeneous region have similar frequency distributions, apart from scale

factors. The homogeneity of a region is in relation to the similarity of frequency distri-

butions between records (in a statistical, not a geographical perspective), which indicate

gauges within a homogeneous region are not necessarily close in proximity. If the rain-

fall pattern of an area is highly affected by geographical factors such as oceans, lakes,

or mountains, then geographical characteristics should be considered in the grouping of

gauges. Other site characteristics (e.g. the Mean Annual Precipitation (MAP), or time of

year at which extreme events mostly occur) are widely used as well (e.g. Adamowski et al.,

1996; Trefry et al., 2005; Ngongondo et al., 2011).

In the present paper, the storms being considered are located in southern Ontario which

has a continental climate “markedly modified by the Great Lakes” (Hare and Thomas, 1979,

pp105). Therefore, the gauge distances to the three lakes, including Lake Huron, Lake Erie,

and Lake Ontario, are employed as site characteristics in the grouping of gauges.
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To divide gauges into homogeneous regions, several grouping methods are described

in Hosking and Wallis (1997). Subjective partitioning methods investigate site characteris-

tics and define groups accordingly. Adamowski et al. (1996) assumed that all rain gauges

across Canada belong to one homogeneous region, after finding that the at-site L-skewness

and L-kurtosis are invariant to MAP, and rejected this hypothesis later when objective parti-

tioning measures were applied. Objective partitioning methods measure “within group het-

erogeneity” of a site statistic, and determine the homogeneity of the group as to whether the

heterogeneity measure exceeds a given threshold. Objective partitioning methods usually

consider “within group variation” of the sample statistics such as coefficient of variation,

skewness, or kurtosis.

Clustering methods are practical when dealing with large data sets. Gauges are par-

titioned or aggregated into groups based on similarities of their at-site characteristics or

statistics. Trefry et al. (2005) used a k-means clustering method to group gauges, and

Ngongondo et al. (2011) used k-means and Ward’s hierarchical method to cluster rain

gauges in southern Malawi. This study uses Ward’s hierarchical clustering method to ini-

tially group rain gauges, and then uses a k-means clustering algorithm to adjust clusters.

Regional homogeneity is assessed using a measurement of the degree of heterogeneity

in a group of gauges. This measurement compares two components, the “between gauge

dispersion of the sample L-moment ratios”, and the ‘between gauge dispersion if it was

a homogeneous group of gauges”. The “between gauges dispersion” is the averaged dif-

ference between gauge statistics and group-averaged statistics, weighted by the length of
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record (in years) at each gauge. The dispersion of a homogeneous region is calculated

using Monte Carlo simulation. In each realization, records are simulated with the same

length as their real world counterparts, using a parent frequency distribution (usually a

four-parameter Kappa distribution).

The between gauge dispersion of sample L-CVs is calculated as in Equation 6.4

V = {
Nÿ

i=1
(n

i

(t(i) ≠ tR

)

2
)/

Nÿ

i=1
n

i

}1/2 (6.4)

where tR is the group-averaged L-CVs, weighted by record length n
i

, and t(i) is the L-CV

at the i-th site.

The heterogeneity measure (H) is calculated as Equation 6.5

H =

V ≠ µ
V

‡
V

(6.5)

Where µ
V

and ‡
V

are the mean and standard deviation of the dispersions calculated from

Monte Carlo simulations. The critical values for H are: acceptable homogeneity when

|H| < 1, possible heterogeneity when 1 Æ |H| < 2, and definite heterogeneity when

|H| Ø 2. At least 500 replications in the Monte Carlo simulation are recommended by

Hosking and Wallis (1997).
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6.3.4 Selection of A Frequency Distribution

The regional frequency analysis algorithm is based on the assumption of identically dis-

tributed data from records of all gauges within a homogeneous region, apart from a scale

factor at each gauge. This does not create the necessity to identify a true frequency distri-

bution to apply to each gauge; any frequency distribution that can produce good quantile

estimates is plausible. Therefore, it is not always necessary to choose the best-fit distribu-

tion; it makes sense to choose a robust distribution, i.e., a distribution that can provide a

good quantile estimate even when future data may come from a distribution different from

the fitted distribution, due to the changes in background mechanisms.

The Goodness-of-Fit measure introduced in Hosking and Wallis (1997), is designed

to select between candidate frequency distributions. It assumes that the variation of L-

moment ratios in a homogeneous region are due to sampling variability; therefore, the

candidate distributions are evaluated by how well the fitted L-skewness and L-kurtosis

match the regional average L-skewness and L-kurtosis of the observed data. For three-

parameter candidate distributions, the L-skewness is fitted to regional average; thus, only

the difference of L-kurtosis between fitted distribution (· DIST
4 ) and regional average (tR

4 ) is

evaluated, as in Equation 6.6

ZDIST
=

tR

4 ≠ · DIST
4

‡4
(6.6)

The ‘DIST’ refers to the candidate distribution, and ‡4 denotes the standard deviation

of tR

4 .
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The same as the heterogeneity measure, the Monte Carlo simulation is used here to

quantify the variability (‡4) and the bias (B4) of tR

4 , as in Equation 6.7 and 6.8.

B4 = N≠1
sim

Nsimÿ

m=1
(t

[m]
4 ≠ tR

4 ) (6.7)

‡4 = [(N
sim

≠ 1)

≠1
Nsimÿ

m=1
(t

[m]
4 ≠ tR

4 )

2 ≠ N
sim

B2
4 ]

1/2 (6.8)

As usual, m denotes the index in N
sim

replications. With the bias of tR

4 , the Goodness-of-

Fit measure is modified as given in Equation 6.9.

ZDIST
=

· DIST
4 ≠ tR

4 + B4
‡4

(6.9)

A criterion of |ZDIST| Æ 1.64 is suggested to judge if ZDIST is sufficiently close to zero (a

0.10 level test), i.e., the L-kurtosis of the fitted distribution is close to the regional average

L-kurtosis of the observed data.

6.3.5 Regional L-moment Algorithm

The regional L-moment algorithm is based on the index-flood method, which aver-

ages the statistics of data at the gauge to form the regional estimates. Instead of using

conventional moments in the index flood method, the regional L-moment algorithm uses

L-moment ratios of data. The regional L-moment algorithm assumes no serial correlation
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for data observed at the same gauge, and no dependence between observations at differ-

ent gauges. The index flood at the i-th gauge, or scale factor, is estimated by the sample

mean of the record, and denoted as l
(i)
1 . Data at each gauge are divided by this index flood;

therefore, the regional average mean rainfall intensity is unity.

The L-moment ratios at the i-th gauge are denoted as t(i), t
(i)
3 , t

(i)
4 , the record length is

denoted as n
i

, and the regional average L-moment ratios are denoted by tR, tR

3 , tR

4 , calcu-

lated as Equation 6.10 and 6.11.

tR

=

Nÿ

i=1
n

i

t(i)/
Nÿ

i=1
n

i

(6.10)

tR

r

=

Nÿ

i=1
n

i

t(i)
r

/
Nÿ

i=1
n

i

, r = 3, 4, · · · (6.11)

The parameters of the chosen frequency distribution are estimated based on the regional

average L-moment ratios, and the quantile function with non-exceedance probability F is

calculated from Equation 6.12

ˆQ
l

(F ) = l
(i)
i

q̂(F ) (6.12)

6.3.6 Assessment of Accuracy of Estimated Quantile

The accuracy of the estimated quantile in the regional L-moment algorithm is estimated

with Monte Carlo simulation. The simulated samples should have the same statistical char-

acteristics as that of the observed data — to keep the heterogeneity, dependence and other
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statistical characteristics in the observed data. The possibility when the frequency distribu-

tion is mis-specified should be considered as well.

Hosking and Wallis (1997) provide a detailed introduction of the assessment procedure;

therefore, only the modifications applied for using partial duration series are demonstrated

herein.

A correlation matrix R is used to indicate the between site dependencies. It is originally

calculated as Equation 6.13

r
ij

=

q
k

(Q
ik

≠ ¯Q
i

)(Q
jk

≠ ¯Q
j

)

[

q
k

(Q
ik

≠ ¯Q
i

)

2 q
k

(Q
jk

≠ ¯Q
j

)

2
]

1/2 (6.13)

Where ¯Q
i

= n≠1
ij

q
k

Q
ik

, and Q
ik

is the data value for the gauge i at the time point k.

The time point k extends over all time points for which both gauges i and j have values.

Equation 6.13 works well for AMS data, since there is only one value in each year (as a

time point); however, PDS data may have situations when several values are recorded in

the same year. Thus, Q
ik

is redefined as the maximum data value for the gauge i at the time

point k.

It is noted that in Equation 6.13, those data values recorded in a year at one gauge

without counterparts at the other gauge are excluded from the calculation of the between-

site dependence. Still, in the simulation algorithm, these data values are generated together

with those data values included in the dependence calculation, by using the correlation

matrix R. When using PDS data, the second largest values in a year are excluded when
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calculating between site dependence; likewise, these data values are generated with the

correlation matrix R.

The correlation matrix R needs to be positive definite, to generate correlated variables

using Cholesky decomposition. Non-positive definite correlation matrices are modified by

changing negative eigenvalues to small positive values (1◊10

≠8) and normalized (Brissette

et al., 2007).

Over a large number (N
sim

) of repeated simulations, the rRMSE is approximated as

Equation 6.14.

R
i

(F ) = [N≠1
sim

Nsimÿ

m=1
(

Q
[m]
i

(F ) ≠ Q
i

(F )

Q
i

(F )

)]

1/2 (6.14)

where Q
[m]
i

(F ) is the quantile estimate at the non-exceedance probability F of the m-th

replication, and Q
i

(F ) is the estimated quantile based on observed data, at the i-th gauge.

The at-site rRMSE can be averaged over the N gauges within a region to obtain a regionally

averaged rRMSE, as in Equation 6.15.

R
R

(F ) = N≠1
Nÿ

i=1
R

i

(F ) (6.15)

The rRMSE introduced in Equation 6.14 is useful to quantify variances in estimates of the

regional model, and compare to its counterpart in estimates of the at-site model. However,

confidence intervals of design rainfall estimates are needed to identify step changes in the

design rainfall intensity over time. As discussed in Wang et al. (2013), a step change is

statistically significant if the confidence intervals of design rainfall estimates for different
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time periods are not overlapping, with a significance level less than –, where – is used to

construct the confidence intervals.

The calculation of the confidence interval requires assumptions such as independence

between data from different rainfall gauges, statistically homogeneous regions, and prop-

erly selected regional statistical distributions. However, these assumptions can hardly all

be satisfied in reality. The rainfall data usually present some extent of violation. Instead,

the empirical quantiles of the distribution of estimates are useful assessments of errors. In

Monte Carlo simulation, the ratio of the estimated value to the true value [

ˆQ
i

(F )/Q
i

(F )]

at site i are accumulated over each realization, and the upper and lower 5th percentiles are

found and denoted as U
.05(F ) and L

.05(F ). The true value Q
i

(F ) is expressed as

ˆQ
i

(F )

U
.05(F )

Æ Q
i

(F ) Æ
ˆQ

i

(F )

L
.05(F )

(6.16)

Hosking and Wallis (1997) referred to these bounds as “90% error bounds” for ˆQ
i

(F ),

and indicated that they can be confidence intervals only if the distribution of ˆQ
i

(F )/Q
i

(F )

is independent of the at-site means and the regional average L-moment ratios. In prac-

tice, “the independence does not hold, and confidence statements are at best approximate”

(Hosking and Wallis, 1997). The error bounds can be accurate estimates of the mag-

nitude of errors when the number of repetitions (N
sim

) is large, e.g. N
sim

= 1000 or

N
sim

= 10000.
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6.4 Application of A Regional Frequency Model

6.4.1 Data Description and Screening

Records for two hundred and seventy rainfall gauges located in the Province of Ontario

were obtained from Environment Canada. The gauges have daily maximum one-hour rain-

fall amounts recorded for various time spans, from as early as 1937, to as late as 2009.

Records of 44 gauges are combined with records from other gauges, since these gauges

are at the same or very close locations, and have consecutive rainfall records. The research

time span is set to 1960–2007, and split by the end of the year 1983 to identify step changes

in extreme rainfall intensities by comparing estimates from rainfall records pre-/post-1983.

The rainfall records between April 1st and October 31st are extracted, and any yearly record

that has more than 20% missing values within the seven month period (Apr. – Oct.) is

excluded in the analyses described below. In the present research, 32 gauges in southern

Ontario are analyzed (shown in Figure 6.1 and details are listed in Table 6.1), due to the

high density of gauges in southern Ontario. All of these gauges have records longer than

10 years for both pre- and post-1983. The data have already undergone quality control at

Environment Canada; therefore, any gross errors are not expected to be present. The rain

gauges were changed from Meteorological Service of Canada (MSC) gauge to Type-B at

most locations in the 1970s (Mekis and Hogg, 1999). Around 1965, the inside container

of the MSC gauge was changed from copper to soft plastic. These modifications are sup-
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Table 6.1: Information of 32 Gauges in Southern Ontario

No. Climate ID Record Length (Years) Region-1983 1984-
1 6100971 16 17 1
2 6104027 13 17 1
3 6104175 22 23 1
4 6105978 20 20 1
5 6106000 14 20 1
6 6127514 16 21 3
7 6131415 17 17 3
8 6131983 19 20 4
9 6133362 16 12 3
10 6136606 16 14 4
11 6137287 11 18 4
12 6137362 20 21 3
13 6139148 13 10 4
14 6139525 23 20 3
15 6140954 22 11 4
16 6142400 20 21 3
17 6143090 20 14 5
18 6144478 23 23 3
19 6146714 10 12 3
20 6148105 16 17 3
21 6149387 13 18 3
22 6150689 17 24 1
23 6150830 14 17 2
24 6151042 13 16 2
25 6153194 13 19 4
26 6153301 17 22 4
27 6155878 12 16 2
28 6158355 24 24 2
29 6158665 13 11 2
30 6158733 24 22 2
31 6158875 17 15 1
32 6166418 11 18 2

*The name and location of climate stations are listed in Table 8.1
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Figure 6.1: Thirty-two Gauges in Five Clusters Located in Southern Ontario

posed to introduce non-homogeneity in rainfall records and may lead to detection of false

significant changes from the record (Groisman and Legates, 1995). It is reasonable to as-

sume homogeneity in rainfall records, since all data are quality-controlled by Environment

Canada.

6.4.2 Identification of Regions

The regions are formed by clustering site characteristics, which include distances to

Lake Huron, Lake Erie, and Lake Ontario. The selection of these site characteristics

is based on considerations of rainfall formation in southern Ontario. One-hour duration

storms are too long to compare to convective storm durations, and mostly should be of the

frontal rainfall type. In southern Ontario, sources of wet and warm air could be as close
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as the Great Lakes, or as far as the Atlantic Ocean. The distances of gauges to the At-

lantic Ocean are not sufficiently distinct to be clustering variables; therefore, the distances

to three of the Great Lakes are used herein.

Using Ward’s hierarchical clustering method and the k-means clustering algorithm, five

regions are initially formed. However, some regions either include few gauges, or are

statistically heterogeneous. According to Hosking and Wallis (1997), the heterogeneity

measure tends to indicate false homogeneity for small size regions. Thus, regions are

adjusted to obtain bigger regions and to achieve statistical homogeneity. The rainfall record

(1984 – 2007) at the Guelph gauge has a negative L-kurtosis ratio and a small L-skewness

ratio, which is statistically distinct from any other gauges; therefore, this gauge is split off

as a single-site region. Four regions are distinguished and the numbers of gauges in each

region and corresponding values of heterogeneity measure are listed in Table 6.2. Notice

that regions 2 and 4 show some extent of heterogeneity; therefore, the regenerated samples

should preserve equivalent heterogeneity.

Table 6.2: Number of Gauges in Each Region and Related Heterogeneity Measures

Region ID # of Gauges Heterogeneity Measure Heterogeneity Measure
(Pre 1983) (Post 1983)

1 7 0.58 -0.54
2 7 1.66 1.25
3 10 -0.07 0.28
4 7 1.23 1.68
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6.4.3 Choice of Distribution

For the partial duration series of one hour daily maximum rainfall record, candidate fre-

quency distributions are selected on the L-moment ratio diagram. Figures 6.2 and 6.3 show

separate diagrams for each region, for the periods of pre- and post-1983. In each diagram, a

frequency distribution is selected as a candidate if it is proximate to the center of at-site L-

moment ratios. The five frequency distributions under consideration include: Generalized

Logistic (GLO), Generalized Extreme Value (GEV), Generalized Pareto (GPA), General-

ized Normal (GNO), and Pearson Type III (PE3). From both Figures 6.2 and 6.3, it is noted

that all of the five distributions are potentially to be selected. The goodness-of-fit measure

ZDIST defined in Equation 6.9 is computed for each of the 5 candidate distributions for each

region, as per Table 6.3. The bias of regionally averaged L-kurtosis is considered since

all regions have less than twenty gauges. For both time periods, PE3 is chosen for use in

regions 1 and 2, and GPA is chosen for use in regions 3 and 4.

Table 6.3: Measures of Goodness-of-fit for Candidate Distributions in Each Region
1960 – 1983 1984 – 2007

GLO GEV GNO PE3 GPA GLO GEV GNO PE3 GPA
Region 1 4.44 3.56 2.58 0.69 0.82 3.97 3.29 2.13 0.18 0.92
Region 2 3.28 2.50 1.70 0.17 0.44 3.23 2.43 1.58 0.09 -0.12
Region 3 3.07 2.33 0.92 -1.34 -0.31 4.16 3.20 1.77 -0.83 0.09
Region 4 3.70 2.54 1.78 0.53 -0.01 2.41 1.67 0.80 -0.67 -0.37

*Values underlined are moduli less than 1.64.
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Figure 6.2: L-moment Ratio Diagrams of 1 h Partial Duration Seires in Each Region (1960
– 1983)

*Crosses with circles indicate gauges have less accurate estimates from the regional model in comparison
with the at-site model

Figure 6.3: L-moment Ratio Diagrams of 1 h Partial Duration Seires in Each Region (1984
– 2007)

*Crosses with circles indicate gauges have less accurate estimates from the regional model in comparison
with the at-site model
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6.4.4 Assessment of Quantile Estimate Accuracy

In Monte Carlo simulation, a series of steps are applied to reproduce regions with the

same statistical characteristics as the original region. The heterogeneity is preserved by

arbitrarily assigning a range of L-CV values to gauges in the region. The range of L-CV

values assigned is usually less than the range of sample L-CV values. The L-skewness

ratios are all replaced with the regionally averaged L-skewness ratio. For example, Region

1 of period 1960–1983 has seven gauges with L-CVs varying over the range from 0.134

to 0.205, and the heterogeneity measure is H = 0.58. The simulated gauges have L-CV

varying from 0.137 to 0.202, with a heterogeneity measure of 0.55.

Shown in Figures 6.4 and 6.5, between-gauge correlations are relatively low in all re-

gions, with average values ranging from -0.02 to 0.21. Therefore, the samples generated in

Monte Carlo simulation are not correlated. For each time period, 1000 replications of each

region are simulated, and rRMSE and error bounds (90%) are calculated.

6.5 At-site PDS model

The design rainfall intensity estimates based on at-site PDS data are also calculated, to

compare with estimates from the regional model. Statistical distributions used for at-site

PDS models are consistent with the distribution used for the region in which the gauge

was associated. The rRMSE and 90% error bounds are estimated in the same way as
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Figure 6.4: Histograms of Correlation between Gauges in Each Region (1960 – 1983)

Figure 6.5: Histogram of Correlation between Gauges in Each Region (1984 – 2007)
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the regional L-moment algorithm in Equation 6.14 and 6.16, apart from the use of at-site

estimates instead of regional estimates.

6.6 Results of Accuracy Improvement

The comparison between the regional model and the at-site model shows improvement

in the accuracy of the design rainfall intensity estimates. Table 6.4 shows the comparison

of regionally averaged rRMSE between two models. The regionally averaged rRMSE is

calculated using Equation 6.15, and the ratios in Table 6.4 are

[RR

(F ) for at-site model)/RR

(F ) for regional model] (6.17)

The reduction of rRMSE is demonstrated in all regions, for rainfall intensity estimates of

all return periods.

Table 6.4: Ratio of Regionally Averaged RMSE of the Regional Model Against the At-site
Models

Region 1960 – 1983 1984 – 2007
2 Year 5 Year 10 Year 2 Year 5 Year 10 Year

1 0.82 0.75 0.69 0.78 0.66 0.61
2 0.88 0.85 0.81 0.86 0.78 0.71
3 0.88 0.79 0.68 0.83 0.74 0.64
4 0.87 0.88 0.81 0.91 0.90 0.81

Amongst 32 gauges analyzed, 22 gauges have smaller rRMSE in the regional model

in comparison with the at-site model, for the time period of 1960 – 1983, and 22 gauges

(not the same set of gauges as referred to above) for the time period of 1984 – 2007, as
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shown in Table 6.5. Figure 6.6 shows the histogram of ratios of extent of rRMSE between

two models for both time periods. Comparisons of error bounds between two models show

almost identical results.

Figure 6.6: Histograms of Ratio of Error Bound Extent between the Regional Model and
the At-site Model

The gauges that didn’t show improvement of accuracy in the regional model are mostly

in regions with possible heterogeneities. In Table 6.5, regions 2 and 4, which both have

H > 1, have a substantial number of gauges that have larger rRMSE for the regional

model than for at-site models. These gauges are indicated as symbols consisting of crosses

and circles on the L-moment ratio diagrams in Figures 6.2 and 6.3, respectively for the two

time periods. In the L-moment ratio diagram of the region 2 in Figure 6.3, the L-moment

ratios of three gauges (No. 23, 27, 30) are all plotted close to the regional distribution
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Table 6.5: Ratio of Regionally Averaged RMSE of the Regional Model Against the At-site
Models

Gauge ID 1960 – 1983 1984 – 2007
2 Year 5 Year 10 Year 2 Year 5 Year 10 Year

6100971 0.59 0.54 0.47 0.68 0.63 0.62
6104027 0.80 0.64 0.50 0.82 0.65 0.56
6104175 0.93 0.93 0.89 0.76 0.65 0.63
6105978 0.77 0.75 0.75 0.96 0.81 0.74
6106000 0.89 0.89 0.87 1.01 0.84 0.80
6150689 0.93 0.90 0.89 0.76 0.79 0.79
6158875 1.01 0.85 0.80 0.58 0.46 0.37
6150830 1.09 1.05 0.94 1.13 1.14 1.12
6151042 1.69 1.76 1.70 0.84 0.73 0.68
6155878 0.78 0.67 0.60 1.00 1.02 1.02
6158355 0.85 0.88 0.87 0.69 0.63 0.58
6158665 0.72 0.66 0.63 0.58 0.43 0.36
6158733 0.79 0.84 0.84 1.25 1.32 1.26
6166418 0.75 0.76 0.74 0.95 0.93 0.91
6127514 0.92 0.94 0.87 0.66 0.57 0.47
6131415 0.66 0.58 0.52 1.07 1.23 1.23
6133362 0.87 0.71 0.55 0.75 0.69 0.62
6137362 0.83 0.82 0.71 0.83 0.80 0.75
6139525 1.14 1.19 1.13 1.13 1.02 0.90
6142400 0.68 0.54 0.42 0.81 0.66 0.51
6144478 0.87 0.81 0.74 1.0 0.98 0.89
6146714 1.09 0.96 0.85 0.87 0.83 0.75
6148105 0.87 0.83 0.79 0.73 0.59 0.49
6149387 0.98 0.81 0.69 0.70 0.54 0.45
6131983 1.45 1.93 2.08 0.77 0.86 0.82
6136606 0.98 1.20 1.30 0.69 0.69 0.62
6137287 0.61 0.54 0.44 1.09 1.38 1.36
6139148 0.74 0.69 0.61 0.82 0.83 0.80
6140954 1.10 0.94 0.81 1.42 1.13 0.91
6153194 0.95 1.25 1.34 0.77 0.64 0.53
6153301 0.80 0.73 0.68 1.21 1.48 1.53
6143090 1 1 1 1 1 1

* Horizontal lines separate regions.
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curve (PE3); contrarily, the No. 24 gauge, which was plotted apart from the PE3 curve,

was estimated more accurately in the regional model. This shows that closeness to the

regional distribution curve on the L-moment ratio diagram is not an indicator of more

accurate estimates.

6.7 Changes Identified in Design Rainfall Intensities

As discussed in Wang et al. (2013), a step change is identified if the confidence intervals

of design rainfall estimates for two time periods are not overlapping, with a significance

level less than –, where – is used to construct the confidence intervals.l. In addition, the

90% error bounds are good approximations of the confidence interval when the number of

simulations is large (N
sim

= 1000 in this analysis). Therefore, the error bounds are used to

identify changes in the design rainfall intensity herein.

For the 1-hour design rainfall, based on the at-site PDS model, changes are identified

at five gauges in southern Ontario. In detail, the gauges located at Ottawa Macdonald-

Cartier Int’l A and Toronto Pearson Airport show statistically significant decreases; while

the Delhi, Belleville, and Bowmanville gauges have increased significantly. The changing

rate is calculated as Equation 6.18

(i2 ≠ i1)/i1
t2 ≠ t1

◊ 100% (6.18)

Where i1 and i2 are design rainfall intensities estimated from the 1st and 2nd periods, sep-
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arately; and t1 and t2 are the mid point year of these two periods. A complete result of

changes identified based on the at-site PDS model is listed in Table 6.6, including statisti-

cally insignificant changes.

Five gauges are identified with statistically significant changes in the regional model.

The difference in comparison with the at-site model results are: no changes identified at

Delhi or Toronto Pearson Airport gauges, but changes identified at the Toronto Island Air-

port Gauge (2-year return storm, decreased), Waterloo Wellington Airport (2-year return

storm, increased), and Belleville (5-year return storm, increased). The rainfall estimates

and error bounds of these five gauges are listed in Table 6.7.

6.8 Discussion

To discuss the different changes identified in the regional model estimates, consider the

view of the regional L-moment algorithm. The rainfall intensities at gauges in the same

region are assumed statistically identically distributed apart from scale factors (defined as

the sample means at each gauge). This assumption implicitly states that storms observed

at one gauge are as likely to be observed at other gauges in the same region, both histori-

cally, and in the future. Therefore, the between-site variations of the occurrences of heavy

storms, which substantially determine the at-site model estimates, are averaged over all

gauges in the regional model, except the variation of scale factors. For regions that are

not acceptably homogeneous, the heterogeneity between gauges is preserved in the Monte
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Table 6.6: Changes of Design Rainfall Intensity in Southern Ontario

Gauge ID 1960 – 1983 1984 – 2007
2 Year 5 Year 10 Year 2 Year 5 Year 10 Year

6100971 -0.23 -0.48 -0.63 0.12 0.32 0.44
6104027 0.79 0.92 0.96 0.62 0.80 0.93
6104175 0.01 0.27 0.43 -0.04 0.11 0.20
6105978 -0.73 -0.69 -0.64 -0.50 -0.37 -0.28
6106000 -1.29* -1.09 -0.94 -1.18* -0.95 -0.81
6150689 1.15* 1.29 1.38 1.02* 1.06* 1.10
6158875 1.01 1.81 2.31 0.71 0.89 1.00
6150830 1.81* 1.35 1.08 1.88* 1.41 1.17
6151042 0.51 1.29 1.86 0.83 0.51 0.34
6155878 1.22 0.37 -0.15 0.94 0.61 0.42
6158355 -0.56 -0.43 -0.34 -0.53 -0.61 -0.65
6158665 -2.11 -1.69 -1.39 -1.79* -1.82 -1.84
6158733 -0.66 -1.05* -1.26* -0.54 -0.62 -0.66
6166418 -0.64 -1.02 -1.20 -0.43 -0.73 -0.89
6127514 0.64 1.02 1.36 0.43 0.35 0.27
6131415 -0.50 -1.10 -1.52 -0.17 -0.25 -0.31
6133362 0.66 0.49 0.29 0.42 0.36 0.30
6137362 0.20 0.06 -0.08 0.18 0.16 0.13
6139525 -0.61 -0.52 -0.43 -0.54 -0.52 -0.52
6142400 0.03 -0.15 -0.30 0.05 -0.02 -0.08
6144478 0.02 -0.16 -0.31 0.12 0.04 -0.02
6146714 2.62 2.81 2.78 2.14 1.93 1.77
6148105 0.35 0.60 0.89 0.42 0.28 0.17
6149387 1.63 2.00 2.30 1.47* 1.23 1.07
6131983 0.97* 1.75* 2.38* 0.46 0.52 0.58
6136606 -0.06 0.44 0.96 0.01 -0.02 -0.01
6137287 -0.46 -1.19 -1.72 -0.46 -0.47 -0.45
6139148 -0.62 -0.67 -0.72 -0.62 -0.54 -0.48
6140954 -0.07 -0.27 -0.32 0.08 0.04 0.05
6153194 -0.43 0.40 1.41 0.05 0.06 0.09
6153301 0.00 -0.37 -0.63 0.05 0.01 0.02
6143090 0.65 -0.45 -1.26 0.65 -0.45 -1.26

* Horizontal lines separate regions. Unit: Percentages Per Year. Use At-site Partial Duration Series Model
* Values with asterisks are statistically significant changes (90%).
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Table 6.7: Changes of Design Rainfall Intensity in Southern Ontario (Percentages per year,
using at-site PDS model)

Gauge ID T Model 1960 – 1983 1984 – 2007
L-CV Q(F) 0.05 0.95 L-CV Q(F) 0.05 0.95

6131983
5yr regional 0.11 29.71 26.66 33.36 0.11 33.89 29.69 38.59

at-site* 0.12 27.17 25.10 28.99 0.20 36.70 31.64 42.35

10yr regional 0.11 33.20 29.08 38.05 0.11 39.10 33.43 46.23
at-site* 0.12 28.95 26.47 31.43 0.20 42.73 35.19 51.01

6158733

5yr regional 0.21 34.96 30.68 39.94 0.18 30.01 26.93 33.68
at-site* 0.20 36.59 31.25 42.14 0.12 27.77 25.35 30.70

10yr regional 0.21 40.71 34.78 47.72 0.18 34.53 30.14 39.72
at-site* 0.20 43.21 35.87 51.04 0.12 30.65 27.44 34.63

6158665 2yr regional* 0.19 28.09 24.84 31.66 0.17 22.05 19.63 24.76
at-site 0.20 28.26 24.02 33.01 0.20 21.11 17.08 25.96

6149387 2yr regional* 0.24 24.77 21.64 27.47 0.23 30.41 27.93 33.61
at-site 0.17 24.25 20.97 27.77 0.22 30.36 26.28 34.93

6150689 5yr regional* 0.19 25.51 22.62 28.63 0.20 31.60 28.67 35.02
at-site 0.16 24.63 21.43 28.13 0.19 31.78 27.99 35.93

* Models with asterisks are identified statistically significant changes (90%). Unit: Percentages Per Year.

Carlo simulations, by means of assigning L-CV values for replications of rainfall records.

The re-assigned L-CV values vary over a range not the same as the original L-CV values.

The consequence is that the new variations between gauges may not be the same amount

as in the original rainfall records.

For the gauges at Delhi CS and Toronto Pearson Airport, the rearrangement of sam-

ple variation changed the design rainfall intensity estimate in a direction reversed to the

direction of changes identified in the at-site model (as listed in Table 6.7); therefore, the

differences between estimates from the two time periods are substantially reduced, and no

statistically significant differences can be identified in the regional model. The gauge at

Delhi CS has an original L-CV of 0.20 over the time period 1984 – 2007, but was simu-

lated with a value of 0.11 in the regional model. The reassignment of L-CV values results
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in the reduced rainfall intensity estimates in the regional model. The Toronto Pearson Air-

port gauge has an original L-CV = 0.12 and a regional simulated L-CV = 0.18 over the 2nd

time period; therefore, the estimates are substantially increased for 5 and 10 years return

events. The 2-year event estimates at Toronto Island airport are changed as L-CV values

changed as well. The error bounds at Waterloo Wellington Airport and Belleville gauges

were only slightly overlapping in the at-site model, and the changes of L-CV values lead to

completely unconnected error bounds. The correlation coefficients between Q̂(F )regional

Q̂(F )at-site
and

L-CVsimulated
L-CVregional

amongst all gauges are calculated, where F is the non-exceedance frequency of

2, 5, and 10-year return events. The correlation coefficients are all statistically significant

(0.95, using Student’s t-test), for both time periods, which support the relationship between

intensity estimates and simulated L-CV values.

The regional L-moment algorithm was expected to improve the accuracy of the rainfall

intensity estimate in this study, especially for gauges with limited rainfall records, and this

is partially supported by the results of accuracy improvement. It shows that for region

1, which is statistically homogeneous, the 10-year storm estimates rRMSE are reduced

by 26% (ranging from 11% to 53%) in the regional model on average, for the 1st time

period, and 35% (ranging from 20% to 63%) reduced for the 2nd time period. Given that

the record lengths are approximately 20 years, which is definitely inadequate to estimate

10-year return storm, this reduction in rRMSE is very impressive. The performances of the

regional model on the 5-year return storm estimates are promising as well — 22% and 31%

rRMSE reduction on average. For regions with statistical heterogeneity (e.g. regions 2 and
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4), many gauges with record lengths shorter than 15 years show reduced rRMSE in the

regional model, while gauges with relatively longer records have increased rRMSE in the

regional model. The accuracy improvement of rainfall intensity estimates with the regional

model has considerable merit.

6.9 Conclusion

This study explores the use of a regional L-moment algorithm combined with partial

duration series to identify changes in design rainfall intensity. The results show that:

• The regional L-moment algorithm is capable of reducing the uncertainty involved

in rainfall intensity estimates, especially at gauges with limited records and within

statistically homogeneous regions.

• The rainfall intensity estimates for the regional model are subject to the simulated

L-CV values, which determine the between-site variation in a region.

• The design rainfall intensity changes identified in the regional model can be different

from at-site PDS model, due to the reassignment of between-site variations (L-CV

values) in the regional model.

• The regional L-moment algorithm using PDS data, as introduced in this study, can

develop a regional model with respect to PDS extracted with different annual arrival

rate (⁄). This enables the benefits of using PDS in heavy rainfall models, including
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greater and more practical design rainfall estimates, in comparison with the AMS

model.
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Chapter 7

The Sensitivity of Changes in Design

Rainfall Intensities

7.1 The Rate of Change of Design Rainfall Intensity

In chapter 6, to analyze changes in design rainfall intensities with respect to the time-

frame of the rainfall record, design rainfall intensities estimated from records of two con-

secutive time periods (1960 –1983 and 1984 – 2007) are compared, based on 1 h rainfall

records from 32 climate stations in southern Ontario. The confidence intervals are com-

puted using the resampling method. If the confidence intervals for the design rainfall in-

tensity of the same return period do not overlap, then a step change in the design rainfall

intensity is identified, with a significance level less than –, where – is used to construct

the confidence intervals. Further, the rate of change of the design rainfall intensity are
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calculated, as given in Equation 7.1.

(i2 ≠ i1)/i1
t2 ≠ t1

◊ 100% (7.1)

where i1 and i2 are design rainfall intensities estimated from two time periods, separately;

and t1 and t2 are the mid-point years of these two time periods.

7.2 The Sensitivity of the Rate of Change

In addition, it is of interest to determine how the selection of the split year affects

the design rainfall intensity changes identified. Therefore, in this chapter the sensitivities

of the changes with respect to the split year are assessed using the split year changing,

enumerated from 1975 to 1990, using the PDS model with at-site rainfall data. The result

of the 1 h daily maximum rainfall record at Delhi, ON (climate station ID: 6131983) is

shown in Figure 7.1. The rate of change of 25-year return rainfall is the largest for all split

years, while that of the 2-year return rainfall is the smallest. The rate of change of the

2-year return rainfall is insensitive in response to the split year, fluctuating between 1 and

1.5% per year. Most changes identified at Delhi are statistically significant, except the two

split years of 1989 and 1990. This provides strong evidence of increasing design rainfall

intensities at Delhi, ON.

Another example at the Toronto Pearson Airport gauge (climate station ID: 6158733)
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Figure 7.1: Sensitivity of Rate of Change and Significance in respect to Split Year at Delhi
CS, ON (1 h Duration Rainfall)

demonstrates a different pattern of sensitivities of the rate of change, as shown in Fig-

ure 7.2. The 25-year design rainfall intensity estimate shows high decreasing rates for all

split years, and is the least sensitive amongst all four return periods; the rate of change of

2-year design rainfall intensity exhibits large sensitivity to the split year, and is always the

smallest decreasing rate amongst all four return periods. The statistical significances of the

changes are sensitive to the split years as well. For the 5, 10, and 25-year event, changes are

significant when the rainfall record is split from early 1980s until 1990, while the changes

for the 2-year event are only statistically significant if split the record from the late 1980s.

The sensitivity results of the statistical significance demonstrates the emergence of changes

in the 1980s, and provides insights on which period of record should be used to estimate

design rainfall intensities.
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Figure 7.2: Sensitivity of Rate of Change and Significance in respect to Split Year at
Toronto Lester B. Pearson INT’L A, ON (1 h Duration Rainfall)

Examining sensitivity analysis results at all 32 stations shows that changes in design

rainfall intensity between records of two consecutive time periods are sensitive to the split

year. However, the analyses of 32 stations found no consistent pattern, in terms of the

trends of the rate of change or the statistical significance of changes. To conclude, the

design rainfall intensity varies over time (and substantially, sometimes). Therefore, the

sensitivity of the design rainfall intensity should be analyzed in relation to the timeframe

of the rainfall record being used, as an alternative to the use of the entire historical rainfall

record.
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Chapter 8

Conclusions and Future Work

8.1 Synthesis Conclusion

8.1.1 Conclusion for Rainfall Intensity Changes

The changes in heavy rainfall intensities have been analyzed using three different mod-

els, and the changes identified are consistent between models. It is appropriate to conclude

that rainfall intensities have been changing during the last few decades in Ontario. Spa-

tially, changes are occurring mostly in southern Ontario, along the coasts of both Lake

Erie and Lake Ontario from Windsor to Ottawa. There are no conclusive regional changes

identified, although several climate stations with geographical closeness show the same di-

rection of changes. For example, the Toronto area and the area from Windsor to London

show decreased changes. Temporally, changes are occurring during the 1980s and 1990s,

from the sensitivity analyses of the changes.
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This study has been mostly using the 90% confidence limits to detect changes in rainfall

intensities, and addressed that the actual significance level is 0.02. As shown in Table 3.2,

there are 35 changes identified with significance level of 0.02, in the AMS model. However,

by using a significance level of 0.05 (83.4% confidence limits), there are 56 significant

changes identified in rainfall intensities, which is similar to the results listed in table 3.3,

which is using 80% confidence limits. For the PDS models, when relaxing the significant

level from 0.02 to 0.05, one significant change is identified at Delhi for the at-site model,

and one significant change is identified at Belleville for the regional frequency analysis

model.

8.1.2 Conclusion for Rainfall Intensity Models

The research developed three types of statistical models for heavy rainfall intensities:

the at-site model using annual maximum series, the at-site model using partial duration

series, and the regional frequency analysis model using partial duration series. The appli-

cation of the Gumbel distribution in the AMS model is investigated and supported, which

shows that the Gumbel distribution is as good as other three-parameter distributions in the

modeling of rainfall values. In urban stormwater system design, the PDS model is more

appropriate for heavy rainfall modeling when the return period is less than or equal to 10

years. It is also exhibited that the regional model using partial duration series can reduce

uncertainties involved in the rainfall intensity estimates.
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8.1.3 Conclusion for Rainfall Intensity Uncertainties

The uncertainties involved in rainfall intensity estimates can be substantial, due to lim-

ited rainfall records or temporal changes. In this research, the uncertainties are charac-

terized using relative RMSE and confidence intervals. The currently used design rainfall

intensities, either from the MSC IDF file or from the MTO IDF tool, are associated with

considerable amounts of uncertainties in certain conditions. The rainfall intensity estimates

derived from the EC data also have substantial amounts of uncertainties involved, includ-

ing the large extent of confidence intervals, and the shift of the expected values. The extent

of the confidence interval is linearly related to the log-transformed length of the rainfall

record, which provides insights to understand the condition in Ontario — most climate

stations do not have rainfall records long enough to provide accurate rainfall intensity es-

timates (e.g., less than 10% for 95% confidence level). The regional frequency analysis

model is capable of reducing uncertainty substantially, and is recommended for use if rain-

fall records are available from adjacent climate stations.

To assess the rainfall intensity estimate for stormwater system design, the following

recommendations are given based on the studies in this research:

• Use the partial duration series instead of the annual maximum series for the rainfall

intensity model when the return period is no more than 10 years. This is because the

AMS model will not use all the information available about heavy rainfall events.

It is agreed that the difference is trivial when modelling for extreme events (e.g.,

100-year return period).
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• When extracting the partial duration series, use the mean residual life plot, parameter

estimates stability plot, and the design rainfall estimates stability plot to select the

rainfall intensity threshold.

• Analyze the sensitivity of the rainfall intensity estimate in relation to the missing

values. The heavy events recoded in those years which have considerable numbers

of missing values are valuable information for the statistic model.

• Try to split the record in two pieces, at different years, and develop models for each

piece of the record, compare the estimate for given return period to identify if changes

have occurred over time.

• Try use of different lengths of record (always use the most recent record) to examine

the extent of the uncertainties involved in the rainfall intensity estimate, and use

the appropriate time period of the rainfall record, which provides rainfall intensity

estimates with small uncertainties, instead of always using the entire available rainfall

record.

• Develop the regional frequency analysis model if rainfall records are available from

adjacent climate stations, especially when the rainfall record is too short to provide

accurate rainfall intensity estimates.

• When developing rainfall models using partial duration series, select the frequency

distribution with the L-moment ratio diagram and examine the goodness-of-fit us-

ing relative RMSE, instead of the Probability Plot Correlation Coefficient (PPCC)
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method.

• Estimate the distribution parameters with the L-moment method, instead of the con-

ventional method of moments.

• In the regression of IDF curves, use non-linear regression instead of the linear regres-

sion, and use the upper confidence limit when the width of the confidence interval is

large.

8.2 Contributions

This research has contributions to theories and methodologies in heavy rainfall fre-

quency analysis, including theoretical explanation of the confidence interval comparison;

clarification of the relationship between the event-based model and the annual-based model;

and the application of regional frequency analysis using partial duration series.

This research theoretically validates the methodology for the identification of changes

in heavy rainfall intensities by examining the confidence intervals for overlapping. It is

proved that the two estimates are significantly different if the two confidence intervals are

not overlapping, with a significance level less than that used for constructing confidence

intervals. A previous master student, Ms. Branislava Vasiljevic, has applied this method

in her master thesis. However, she did not validate the usage of this method, nor provide

the reason for not using conventional tests, e.g. the Student’s t-test. This research explains

that the t-test is not directly applicable, but managed to relate the inequality of confidence
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limits to the Student’s t-test. It is shown that the significance level of the changes identified

in the rainfall intensity is less than –, where – is used to construct the confidence intervals.

The difference between the partial duration series model and the annual maximum se-

ries model is clarified in this research. Previously, the estimates from the PDS model and

the AMS model were compared directly, without consideration of the different concepts

behind the two models. This research explains the difference between the event-based and

the annual-based models. It is shown that a PDS model is related to the recurrence interval

between individual events, while the AMS model is related to the return period between

two hydrologic years, in which a given rainfall intensity is exceeded, regardless of the

number of exceedances. The use of PDS model is not only attributed to the greater rainfall

intensity estimates, but also more importantly, because of the more practical relationships

with the urban stormwater management.

The application of regional frequency analysis (the regional L-moment algorithm) using

partial duration theory is another contribution from this research. The original algorithm

and codes in R-project were modified to handle the situations when the length of the record

is different from the number of values in the data series. The algorithms for the discordance

measure, the homogeneity measure, the goodness-of-fit measure, and the assessment of

accuracy are all modified accordingly. The modified algorithms are tested with real data

and the results show that the regional frequency analysis method can reduce uncertainties

to a large extent.
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8.3 Limitations and Future Work

While extensive work has been done, there are still limitations in this research, and

suggestions for future work.

Only a few rainfall durations are discussed in this research (30 minutes to 2 hours,

mostly). These design rainfall estimates are applied in a regression to generate IDF curves.

The regression inevitably introduces uncertainties into an interpolated design rainfall es-

timate. Therefore, the uncertainty associated with, for example, 45 min duration rainfall

intensity is dependent on both the uncertainties in 30 min and 1 h rainfall intensity esti-

mates and the errors of the regression function inbetween. The relationship has not been

clearly demonstrated, and it is of interest to quantify this relationship and test its sensitivity

to all kinds of factors including record length, the duration time, the regression functions,

etc. This research did not discuss this, because the research was focused on the rainfall

intensities over given durations.

Besides the temporal interpolation, the spatial interpolation is another potentially fruit-

ful direction. This research only developed regional models for gauged locations. It is

needed to further develop these models to estimate design rainfall intensities for ungauged

locations. In addition, the site characteristics used in this research are limited to the dis-

tances between climate stations and the Great Lakes, while there is more information capa-

ble to characterize the rainfall intensity pattern at a location, for example the mean annual

precipitation, the time of the largest event in a year, the dominant wind direction in the

rainy season, the land use, and the topography of adjacent area.
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Further, the impact of an uncertain rainfall intensity estimate on a given urban stormwa-

ter system should be quantified. The accuracy of the rainfall-runoff model also depends on

the uncertainties in other hydrologic parameters in the drainage area, e.g. the infiltration

and abstraction rates, the imperviousness, and the roughness of the land surface. With

all these parameters unchanged, the marginal improvement of the model accuracy will

decrease and eventually become insensitive to the improvement of the accuracy of rainfall

intensity estimates. In addition, the urban stormwater system is equipped with detention/re-

tention facilities, which will lessen the effects of underestimated rainfall events. As well,

the stormwater conduits are manufactured with specific diameters. It is not possible to bury

a conduit of 566.7 mm in diameter that is just sufficient to handle the design storm; the con-

duit will be designed as 600 mm or even larger. Thus, the uncertainty in the design rainfall

is not as critical because the stormwater conduit can handle larger rainfall runoff naturally.

It is suggested to analyze the response of urban stormwater system with respect to design

rainfall intensities and uncertainties involved.

Appendix

Table 8.1: Climate Stations In Southern Ontario

Station ID Station Name Latitude Longitude Altitude

6010738 BIG TROUT LAKE 53.83 -89.87 224.10
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6011305 CENTRAL PATRICIA 51.50 -90.15 345.00

6012199 EAR FALLS (AUT) 50.63 -93.22 362.60

6014353 LANSDOWNE HOUSE (AUT) 52.20 -87.94 253.40

6016295 PEAWANUCK (AUT) 54.98 -85.43 52.70

6016525 PICKLE LAKE (AUT) 51.45 -90.22 390.80

6016527 PICKLE LAKE A 51.45 -90.21 386.20

6016975 RED LAKE A 51.07 -93.79 385.88

6020LPQ ATIKOKAN (AUT) 48.76 -91.63 389.30

6034075 KENORA A 49.79 -94.37 409.65

6035190 MINAKI 49.98 -94.67 335.30

6036904 RAWSON LAKE 49.65 -93.72 358.10

6036907 RAWSON LAKE (AUT) 49.66 -93.73 435.00

6037775 SIOUX LOOKOUT A 50.12 -91.90 383.10

6040325 ARMSTRONG (AUT) 50.29 -88.91 322.50

6041110 CAMERON FALLS (AUT) 49.15 -88.34 232.60

6041221 CARIBOU ISLAND 47.33 -85.83 186.50

6042716 GERALDTON A 49.78 -86.93 348.40

6046770 PUKASKWA NATL PARK 48.60 -86.30 192.00

6047810 SLATE ISLAND 48.62 -87.00 185.90

6048145 STURGEON LAKE 49.88 -90.97 428.20

6048235 TERRACE BAY(AUT) 48.82 -87.10 289.60
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6048268 THUNDER BAY CS 48.37 -89.33 199.40

6049095 UPSALA (AUT) 49.03 -90.47 488.50

6052259 ELLIOT LAKE A 46.35 -82.56 331.30

6055210 MISSISSAGI ONT HYDRO 46.43 -83.38 225.60

6056907 RAYNER 46.33 -83.50 243.80

6057592 SAULT STE MARIE A 46.48 -84.51 192.00

6059408 WAWA (AUT) 47.97 -84.78 287.10

6059475 WHITE RIVER 48.60 -85.28 378.90

6059D09 WAWA A 47.97 -84.78 287.10

605DJ25 KILLARNEY (AUT) 45.97 -81.48 196.30

6061361 CHAPLEAU A 47.82 -83.35 448.06

6068148 SUDBURY 46.48 -80.98 259.10

6068150 SUDBURY A 46.63 -80.80 347.50

6068158 SUDBURY SCIENCE NORTH 46.47 -81.00 263.00

6070027 ABITIBI CANYON 49.88 -81.57 204.20

6072183 DYMOND ONT HYDRO 47.52 -79.68 198.10

6073980 KAPUSKASING CDA ON 49.41 -82.44 218.00

6074211 KIRKLAND LAKE CS 48.15 -80.00 324.00

6075435 MOOSONEE RCS 51.29 -80.62 9.10

6075543 NAGAGAMI (AUT) 49.75 -84.16 264.00

6076540 PINARD 49.85 -81.60 231.60
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6076572 PORCUPINE ONT HYDRO 48.47 -81.27 298.70

6078285 TIMMINS VICTOR POWER A 48.57 -81.38 294.70

6079068 UPPER NOTCH 47.25 -79.58 240.80

6080192 ALGONQUIN PARK EAST GATE 45.53 -78.27 397.00

6084278 LA CAVE 46.37 -78.73 172.20

6084307 LAKE TRAVERSE 45.95 -78.07 236.20

6085700 NORTH BAY A 46.36 -79.42 370.30

6093004 GREAT DUCK ISLAND 45.65 -82.97 182.90

6100285 APPLETON 45.19 -76.11 133.00

6100493 BARK LAKE DAM 45.42 -77.80 335.30

6100720 BELLROCK 44.48 -76.77 146.30

6100971 BROCKVILLE PCC 44.60 -75.67 96.00

6101335 CHALK RIVER AECL 46.05 -77.37 121.90

6101820 COMBERMERE 45.37 -77.62 286.50

6101874 CORNWALL 45.02 -74.75 64.00

6101901 CORNWALL ONT HYDRO 45.03 -74.80 76.20

6101986 DELTA 44.62 -76.13 97.50

6102839 GLOUCESTER DESJARDINS 45.33 -75.50 76.20

6103024 GRENADIER ISLAND 44.42 -75.85 82.00

6103367 HARTINGTON IHD 44.43 -76.69 160.00

6104027 KEMPTVILLE CS 45.00 -75.63 99.40
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6104146 KINGSTON A 44.22 -76.60 93.00

6104175 KINGSTON PUMPING STATION 44.24 -76.48 76.50

6105061 MERIVALE CDA 45.30 -75.73 89.90

6105978 OTTAWA CDA RCS 45.38 -75.72 79.20

6105960 OTTAWA BRITANNIA 45.37 -75.80 57.60

6105980 OTTAWA CITY HALL 45.43 -75.70 56.40

6106000 OTTAWA MACDONALD-CARTIER INT’L A 45.32 -75.67 114.00

6106098 OTTAWA RIDEAU WARD 45.40 -75.63 71.30

6106400 PETAWAWA NAT FORESTRY 45.98 -77.43 183.00

6107836 SMITHS FALLS TS 44.88 -76.00 114.30

610F3Q0 PERTH 44.88 -76.20 133.20

610FC98 PETAWAWA HOFFMAN 45.88 -77.25 153.00

6110210 ALLAN PARK 44.17 -80.93 285.00

6110557 BARRIE WPCC 44.38 -79.69 221.00

6110606 BEATRICE 2 45.13 -79.40 297.20

6110607 BEATRICE CLIMATE 45.14 -79.40 297.20

6110617 BEAUSOLEIL 44.85 -79.87 183.00

6110827 BORDEN A 44.27 -79.93 227.40

6110854 BRACEBRIDGE ONT HYDRO 45.03 -79.30 266.70

6111792 COLLINGWOOD 44.50 -80.22 179.80

6112072 DORSET MOE 45.22 -78.93 323.10
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6113490 HONEY HBR BEAUSOLEIL 44.85 -79.87 182.90

6114295 LAGOON CITY 44.55 -79.22 220.70

6115525 MUSKOKA A 44.97 -79.30 281.90

6115811 ORILLIA BRAIN 44.60 -79.44 250.00

6116132 OWEN SOUND MOE 44.58 -80.93 178.90

6116254 PARRY SOUND 45.33 -80.00 193.50

6116257 PARRY SOUND CCG 45.34 -80.04 176.30

6116843 RAGGED RAPIDS 45.02 -79.68 228.60

6117700 BARRIE-ORO 44.48 -79.55 289.00

6119115 UTTERSON ONT HYDRO 45.20 -79.35 297.20

61191LK VANKOUGHNET 45.03 -79.00 304.80

6119500 WIARTON A 44.75 -81.11 222.20

6.11E+03 EGBERT CS 44.23 -79.78 251.00

61210K7 BRUCE ONTARIO HYDRO 44.33 -81.58 179.80

6121275 CENTRALIA A 43.30 -81.52 253.00

6121499 CHESLEY 44.28 -81.13 251.50

6121912 COVE ISLAND 45.33 -81.73 179.80

6121940 CYPRUS LAKE CS 45.23 -81.53 190.00

6122079 DOUGLAS POINT 44.33 -81.60 179.80

6122456 FORMOSA 44.07 -81.28 304.80

6122847 GODERICH 43.77 -81.72 213.70
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6127518 SARNIA CHRIS HADFIELD A 43.00 -82.31 181.00

6127514 SARNIA AIRPORT 42.99 -82.30 180.60

6128323 TOBERMORY CYPRUS LAKE 45.23 -81.53 190.00

6129660 WROXETER 43.86 -81.15 335.00

6131415 CHATHAM WPCP 42.39 -82.22 180.00

6131983 DELHI CS 42.87 -80.55 231.70

6133362 HARROW CDA AUTO 42.03 -82.90 191.00

6134344 LANGTON 42.73 -80.58 228.60

6134610 LONG POINT 42.55 -80.05 175.30

6135638 NIAGARA FALLS 43.13 -79.08 182.90

6135642 NIAGARA FALLS CHIPPAWA 43.07 -79.05 175.00

6136606 PORT COLBORNE 42.88 -79.25 175.30

6136699 PORT WELLER (AUT) 43.25 -79.22 79.00

6137154 RIDGETOWN RCS 42.45 -81.88 205.70

6137287 ST CATHARINES A 43.20 -79.17 97.80

6137362 ST THOMAS WPCP 42.77 -81.21 209.10

6137401 ST WILLIAMS ACS 42.70 -80.45 213.40

6137730 SIMCOE 42.85 -80.27 240.50

6139148 VINELAND STATION RCS 43.18 -79.40 79.20

6139525 WINDSOR A 42.28 -82.96 189.60

6139538 WINDSOR UNIVERSITY 42.30 -83.07 179.80
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613KLLM ERIEAU (AUT) 42.25 -81.90 178.00

613P001 POINT PELEE CS 41.95 -82.52 176.80

6140818 BLUE SPRINGS CREEK 43.63 -80.12 373.40

6140954 BRANTFORD MOE 43.13 -80.23 196.00

6141095 CAMBRIDGE GALT MOE 43.33 -80.32 268.20

6142286 ELORA RCS 43.65 -80.42 376.40

6142400 FERGUS SHAND DAM 43.73 -80.33 417.60

6142627 FULLARTON 43.38 -81.20 335.30

6142803 GLEN ALLAN 43.68 -80.71 400.00

6142991 GRAND VALLEY WPCP 43.88 -80.33 464.80

6143070 GUELPH ARKELL FARM 43.53 -80.18 335.30

6143073 GUELPH EDINBURGH ROAD T 43.52 -80.23 333.80

6143074 GUELPH EDINBURGH ROAD W 43.52 -80.23 333.80

6143075 GUELPH ERAMOSA TWP 43.57 -80.17 349.00

6143087 GUELPH SMALLFIELD FARM 43.53 -80.30 344.40

6143090 GUELPH TURFGRASS CS 43.55 -80.22 325.00

6144240 KITCHENER CITY ENG 1 43.45 -80.48 320.00

6144241 KITCHENER CITY ENG 2 43.45 -80.48 320.00

6144478 LONDON CS 43.03 -81.15 278.00

6145504 MOUNT FOREST (AUT) 43.98 -80.75 414.50

6145516 MOUNTSBERG 43.47 -80.03 304.80
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6146714 PRESTON WPCP 43.38 -80.35 272.80

6146745 PROSPECT HILL 43.22 -81.23 312.40

6148105 STRATFORD MOE 43.37 -81.00 345.00

6148212 TAVISTOCK 43.32 -80.83 343.20

6149380 WATERLOO FIRE HALL 43.47 -80.52 317.00

6149387 WATERLOO WELLINGTON A 43.45 -80.38 317.00

6149625 WOODSTOCK 43.14 -80.77 281.90

614B2H4 ELORA ACS 43.65 -80.42 376.40

6150100 ALBION 43.93 -79.83 274.30

6150689 BELLEVILLE 44.15 -77.39 76.20

6150825 BOLTON SPS 43.88 -79.73 213.10

6150830 BOWMANVILLE MOSTERT 43.92 -78.67 99.10

6150863 BRADFORD MUCK RESEARCH 44.03 -79.60 221.00

6151042 BURKETON MCLAUGHLIN 44.03 -78.80 312.40

6151057 BURLINGTON ELIZABETH GDN 43.37 -79.73 83.80

6151059 BURLINGTON FIRE HQ’S 43.35 -79.82 114.30

6151137 CAMPBELLFORD 44.30 -77.80 146.30

61515DE CLAREMONT FIELD CENTRE 43.95 -79.08 182.90

6151684 COBOURG (AUT) 43.95 -78.17 77.70

6153020 GREENWOOD MTRCA 43.90 -79.07 128.00

6153194 HAMILTON A 43.17 -79.93 237.70
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6153301 HAMILTON RBG CS 43.29 -79.91 102.00

6153410 HEART LAKE 43.73 -79.78 259.10

6153545 HORNBY 43.57 -79.85 198.10

6154611 LONG SAULT IHD 44.05 -78.72 342.90

6154820 MAIN DUCK ISLAND 43.93 -76.63 75.00

6154950 MAPLE 43.87 -79.48 244.10

6154990 MARKHAM MTRCA 43.87 -79.28 167.60

6155187 MILTON KELSO 43.50 -79.95 243.80

6155496 MORVEN IHD 44.25 -76.85 106.70

6155619 NEWMARKET WPCP 44.07 -79.43 245.00

6155790 ORANGEVILLE MOE 43.92 -80.09 411.50

6155878 OSHAWA WPCP 43.87 -78.83 83.80

6156518 PICKERING FIRE HALL #5 43.83 -79.08 83.80

6156533 PICTON 44.02 -77.13 76.20

6156559 POINT PETRE (AUT) 43.83 -77.15 78.60

6157015 RICHMOND HILL 2 43.90 -79.40 233.00

6157832 SMITHFIELD CDA ACS 44.08 -77.67 119.00

6158084 STOUFFVILLE WPCP 43.97 -79.25 266.70

6158355 TORONTO CITY 43.67 -79.40 112.50

6158385 TORONTO BERMONDSEY 43.72 -79.32 138.40

61583FL TORONTO AMESBURY 43.70 -79.48 153.90
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6158406 TORONTO BOOTH 43.65 -79.35 77.10

6158418 TORONTO DISCO 43.70 -79.62 160.00

6158443 TORONTO DOWNSVIEW A 43.75 -79.48 198.10

6158520 TORONTO ELLESMERE 43.77 -79.27 164.00

6158525 TORONTO ETOBICOKE 43.63 -79.53 118.90

6158575 TORONTO GREENWOOD 43.67 -79.32 99.10

6158665 TORONTO ISLAND A 43.63 -79.40 76.50

6158712 TORONTO JANE-WILSON 43.72 -79.52 129.50

6158718 TORONTO KEELE-FINCH 43.77 -79.48 199.90

6158732 TORONTO LESLIE EGLINTON 43.72 -79.35 133.30

6158733 TORONTO LESTER B. PEARSON INT’L A 43.68 -79.63 173.40

6158740 TORONTO MET RES STN 43.80 -79.55 193.50

6158748 TORONTO NASHDENE 43.82 -79.25 177.40

6158749 TORONTO NEW INT’L A 43.95 -79.13 262.70

615874R TORONTO NEW INT’L A 2 43.95 -79.15 245.40

6158764 TORONTO OLD WESTON RD 43.65 -79.47 121.90

61587D9 TORONTO NEW INT’L A 3 43.95 -79.22 260.60

61587P6 TOR SCARBOROUGH COLLEGE 43.78 -79.18 129.50

61587PG TORONTO SENECA HILL 43.78 -79.35 189.00

6158875 TRENTON A 44.12 -77.53 86.30

6159010 TWEED 44.50 -77.28 144.80



167

6159127 VALENS 43.38 -80.13 281.90

6159510 WILCOX LAKE 43.95 -79.43 289.60

615HHDF TORONTO YORK MILLS 43.75 -79.38 153.30

615HMAK TORONTO BUTTONVILLE A 43.86 -79.37 198.10

615N619 NEWMARKET 2 44.03 -79.40 292.00

615N745 OAKVILLE SOUTHEAST WPCP 43.48 -79.63 86.90

615S001 TORONTO NORTH YORK 43.78 -79.47 187.00

6163171 HALIBURTON 3 45.03 -78.53 330.00

6164432 LINDSAY FILTRATION PLANT 44.35 -78.73 251.50

6166418 PETERBOROUGH A 44.23 -78.37 191.40

6166450 PETERBOROUGH STP 44.28 -78.32 192.00

6166456 PETERBOROUGH TRENT U 44.35 -78.30 216.00

6169453 WEST GUILFORD 45.10 -78.68 327.70

616I001 BANCROFT AUTO 45.07 -77.88 330.70
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