Exploring the relationship between general intelligence, executive function, and performance

by

Jonathan Stermac-Stein

A Thesis
Presented to
The University of Guelph

In partial fulfilment of requirements
for the degree of
Masters of Arts
in
Psychology

© Jonathan Stermac-Stein, January, 2014
EXPLORING THE RELATIONSHIP BETWEEN GENERAL INTELLIGENCE, EXECUTIVE FUNCTION, AND PERFORMANCE

Jonathan Stermac-Stein Advisor: Dr. Peter Hausdorf
University of Guelph, 2014

An individual’s cognitive ability is arguably the single most important construct in work performance. The general factor of intelligence, \(g \), is widely considered “as good as it gets” when attempting to predict work performance. However, development and continued understanding of the \(g \) factor of intelligence is lacking within the field of I-O psychology. This thesis aims to investigate the mediation of the intelligence-performance relationship by cognitive factors, most importantly, Executive Function. While the hypotheses of this study were not supported, this research serves to provide a framework for investigating intelligence within I-O as well as explore the relationship between Executive Function, various cognitive factors, and general intelligence in the performance domain.
Acknowledgments

I would like to thank my advisor, Dr. Peter Hausdorf, for his continued support, motivation, and understanding throughout my undergraduate and graduate career. Most of all, for the spirited discussions that always lead to new insights and inspiration. It has been an absolute pleasure working with and learning from Peter. I’d also like to thank my committee members, Dr. Jeffrey Spence and Dr. Lana Trick for their flexibility, accommodation, and feedback throughout the process. I would like to especially thank my fellow graduate students for all of their support and making my graduate experience so memorable. Lastly, I would like to thank the other faculty members in the UoG Psychology department for their help and friendliness.
Table of Contents

List of Tables .. vi
List of Figures .. vii

Chapter 1. Introduction ... 1
 Concept of g ... 1
 Current state of g ... 3
 Validity of g ... 5
 Future of g .. 10
 Cognitive Operations .. 16

Chapter 2. Method .. 26
 Participants ... 26
 Materials ... 27
 Psychometric g ... 27
 Executive Function ... 27
 Attention .. 28
 Working Memory ... 28
 Visual-Spatial Ability ... 28
 Processing Speed ... 29
 Task Performance ... 29
 Procedure ... 30
 Analysis ... 30

Chapter 3. Results ... 31

Chapter 4. Discussion .. 37
 Implications ... 44
 Limitations .. 46
 Future Research .. 48
 Conclusion ... 49

References ... 51

Appendix of Tables .. 63

Appendix A: Information/Consent Form ... 69

Appendix B – Test Materials .. 72

Appendix C – Cognitive Tasks .. 75
General test of typing speed ... 75
Wonderlic Personnel Test – General Mental Ability (g) 75
Executive Function – Stroop Test .. 76
Attention – Selective attention test .. 78
Working Memory – Operation Span Task ... 79
Visual-Spatial Ability – Mental Rotations Test 79
Processing Speed – The Deary-Liewalk Reaction Time Task 80
Appendix D - CAPTCHA Task ... 82
Appendix E – Debrief Form ... 83
Appendix E: Second Consent Form ... 84
Appendix F – Models .. 86
List of Tables

Table 1. Computation of Variables...69
Table 2. Descriptive Statistics...70
Table 3. Correlations..71
Table 4. Exploratory Factor Analysis without Covariate and Criterion.........72
Table 5. Exploratory Factor Analysis of All Variables.................................72
Table 6. Exploratory Factor Analysis of All Variables Restricted to Two Factors............72
Table 7. Measurement Models...73
Table 8. Path Models..74
Table 9. Extended View of Measurement...92
Table 10. Path Models..93
List of Figures

Figure 1. CFA 1 Factor with WPT ... 88
Figure 2. CFA 1 Factor Without WPT .. 89
Figure 3. CFA 2 Factor from EFA (covary) .. 90
Figure 4. CFA 2 Factor (3 each) ... 91
Figure 5. CFA All variables under 1 factor .. 92
Figure 6. All variables under 2 factors ... 93
Figure 7. All variables in 3 factors (from EFA) ... 94
Figure 8. SEM Model 1 ... 95
Figure 9. SEM Model 2 ... 96
Figure 10. SEM Model 3 ... 97
Figure 11. SEM Model 4 ... 98
Figure 12. SEM Model 5 ... 99
Figure 13. SEM Model 6 .. 100
Figure 14. SEM Model 7 .. 101
Figure 15. SEM Model 8 .. 102
Figure 16. SEM Model 9 .. 103
Figure 17. Layered Reference Model of the Brain 104
Figure 18. Mediation Model for Hypothesis 2 ... 105
Figure 19. Multiple Mediation Model for Hypothesis 2............................... 106
Chapter 1. Introduction

Concept of g

The concept of intelligence dates back to Aristotle’s division of the psyche in 4th century B.C. where *dianoetic* (cognitive function) was separated from *orectic* (emotion and moral sense). However, the development of modern definitions of intelligence did not surface until Sir Francis Galton’s work in the mid to late 19th century when he developed the concept of *mental ability*. In the early 20th century, Alfred Binet leveraged Galton’s work to develop the first practically useful and valid measure of intelligence for school children. While the notion of a general intelligence was by no means a novel idea at that time, Charles Spearman is largely credited for the development of the general factor of intelligence, *g*, and the invention of factor analysis, a statistical tool that provided empirical evidence towards the existence of a general factor of intelligence (Jensen, 1998). Given the historical and important nature of the construct of intelligence, this introduction will review the historical development of the construct, the concept of a generalized factor of intelligence, *g*, evidence of its existence and its validity in predicting performance, controversies surrounding the *g* factor, and the cognitive operations theorized to contribute to *g*.

Spearman’s development of *g* is a product of his invention of factor analysis, a now commonly used statistical technique. Factor analysis is used to describe the variability in observed correlated variables using a smaller number of unobserved variables or *factors*. Using data from Galton’s research, Spearman analyzed the correlation matrix with early measures of factor analysis and confirmed that the correlations between teacher-rated performance in scholastic subjects all had one general underlying factor in common. This single common factor accounted for their overall academic achievement. This factor was especially important and surprising given that
many of the academic subjects were thought to be unrelated (i.e., performance in Math would not be related to performance in English or Music). However, the correlations between each variable and the common factor, g, (i.e., factor loadings) differed slightly, signifying the presence of other underlying factors outside of g that accounted for the variation in academic performance in each subject. For example, the positive correlation between g and English was slightly different compared to the positive correlation between g and Music due to the differences in specific (s) abilities (e.g., vocabulary or exposure to music; Jensen, 1998).

Spearman described the single factor that all the variables (e.g., performance in English, Math, Music, etc.) had in common as the general factor, g. Rather than dismissing g as scholastic attainment, Spearman investigated the relationship between the common g factor and Galton’s preliminary measure of reaction time (a now widely used index of speed of processing that underlies cognitive processing) and found a highly significant correlation ($r > .67$). Spearman was able to confirm that the g factor represented a general aspect of cognitive ability that was used in academic performance and other mentally engaging activities.

Based on his data supporting both a common factor g and specific factors related to academic performance (with 63% and 37% of the variance respectively), Spearman introduced his Two-Factor Theory. This theory stated that all mental tests of cognitive ability or general intelligence will measure some g and some s (which will be uncorrelated). Furthermore, a composite score on a battery of general mental ability tests will more accurately measure g, and erase the presence of any specific factors (Jensen, 1998).

Unfortunately, Spearman was only able to provide evidence towards the existence of g, admitting that he did not know exactly what g represented. He described the lack of understanding of g as follows:
But notice must be taken that this general factor g, like all measurements anywhere, is primarily not any concrete thing but only a value or magnitude. Further, that which this magnitude measures has not been defined by declaring what it is like, but only by pointing out where it can be found. It consists in just that constituent—whatever it may be—which is common to all the abilities interconnected by the tetrad equation. This way of indicating what g means is just as definite as when one indicates a card by staking on the back of it without looking at its face. ...Such a defining of g by site rather than by nature is just what is meant originally when its determination was said to be only “objective.” Eventually, we may or may not find reason to conclude that g measures something that can appropriately be called “intelligence.” Such a conclusion, however, would still never be the definition of g, but only a “statement about” it. (Spearman, 1927, p. 75-76)

This lack of clarity of what g constituted did not slow down its widespread acceptance into psychology as the dominant conceptualization and method of measuring intelligence in individuals (Neisser et al., 1996). Today the importance of the construct of intelligence and g is widely accepted in Industrial-Organizational (I-O) psychology (Murphy, Cronin, & Tam, 2003).

Current state of g

Rather than referring to g as the common factor that Spearman discovered, psychometric g describes any conceptualization of intelligence that relies on a single common underlying factor representing individual differences in generalized cognitive ability. The most widely accepted test and models conceptualize g as a higher order factor, under which specific groupings of abilities are present (e.g., verbal comprehension, perceptual reasoning, quantitative reasoning, etc.). The most heavily used modern intelligence tests rely on a battery of assessments in order to fully capture g and many establish an intelligence quotient (IQ) score for test takers.

Beyond Spearman’s proposed two factors, other researchers have proposed the existence of additional factors (i.e., multiple factor approach) present among groupings of abilities (e.g., arithmetic and verbal abilities tasks had large correlations with g and within each other). Combining Spearman’s work with the multiple factor approach many current intelligence tests
utilize a battery of sub-tests designed to provide a more accurate measure of g and group factors (e.g., math, verbal, spatial ability, etc.; Jensen, 1998).

The Cattell-Horn-Carroll theory of cognitive abilities (CHC theory) is widely considered the most empirically supported and theoretically comprehensive structure of cognitive abilities. CHC theory utilizes g as the highest order factor, under which nine broad stratum abilities fall, each making up a distinct set of narrow abilities. The nine broad abilities represent functional components of g: crystallized intelligence (breadth and depth of acquired knowledge), fluid intelligence (novel problem solving and reasoning), quantitative reasoning (comprehend and manipulate quantitative concepts and symbols), reading and writing ability (skills for basic reading and writing), short-term memory (apprehending and holding immediately useful information), long-term storage and retrieval (store and retrieve information for later processing and thinking), visual processing (perceive, analyze, and think with visual patterns), auditory processing (perceive, analyze, and discriminate auditory stimuli), and processing speed (performance in automatic cognitive tasks under focused and maintained attention) (Flanagan, Ortiz, & Alfonso, 2007). The CHC three-stratum structural model, illustrates the most advanced and currently accepted factor-based model of intelligence within psychology (McGrew, 2005).

In addition to the CHC model, psychometric g intelligence tests (e.g., Wechsler Intelligence Scale for Children, Stanford-Binet Intelligence Scale, Wechsler Adult Intelligence Scale, etc.) have been widely used in education to identify children with learning difficulties, children with special needs, children’s strengths and/or weaknesses, and children who are gifted (i.e., score significantly above the mean). They are often used to help diagnose and assess psychiatric illness, brain injuries, and cognitive functioning. Several tests of psychometric g (i.e., Wonderlic Personnel Test [WPT], General Aptitude Test Battery [GATB], etc.) are used in
vocational counseling and occupational selection and assessment. While there are substantial criticisms of current methods of intelligence testing, those and other psychometric g tests are reliable and valid predictors of future educational achievement, job performance, and a wide variety of life outcomes (Neisser et al., 1996; Salgado et al., 2003; Schmidt & Hunter, 2004).

Validity of g

Prior to discussing the validity of general intelligence, it is important to illustrate the connection between the research discussed here and the proposed study. This thesis seeks to understand the relationship between general intelligence, cognitive factors (especially Executive Function) and task performance, measure in a laboratory. Examining this relationship will link cognitive and I-O psychology, bring understanding of cognitive factors and Executive Function to the realm of workplace psychology, and provide further construct development to general intelligence from within I-O.

Most relevant to the field of I-O psychology is how well g is able to predict training and job performance. Among the first to assess the meta-analytic potential of general intelligence as a predictor of work performance were Hunter and Hunter in 1984. They assessed the validity of a number of predictors commonly used in organizations for the selection of new employees and the promotion of existing employees (e.g., general mental ability (GMA), interview, assessment centre, etc.) across 32,124 participants within 452 studies. For both the selection of new employees and the promotion of current employees, general mental ability had a mean validity of .53 with supervisory ratings of current and future job performance (Hunter & Hunter, 1984). Hunter and Hunter (1984) provide compelling evidence of the validity of general mental ability as a predictor of job performance in US organizations.
Salgado, et al. (2003) extended the validity generalization evidence for Hunter and Hunter’s (1984) US meta-analysis using the same criteria with 166 European samples. GMA was found to be a valid predictor for all 10 occupational groups the authors reviewed: engineers, chemists, managers, clerks, police officers, mechanics, electricians, drivers, and general skilled workers and apprentices. Criterion-related validities for supervisor ratings of job performance (N = 1,936) ranged from .12 to .34 (.24 to .67 when corrected for criterion reliability and predictor range restriction). Uncorrected criterion-related validities for training success ratings (N = 2,897) ranged from .13 to .46 (.25 to .74 when corrected for criterion reliability and predictor range restriction).

As well, the authors provided empirical evidence for GMA measures’ generalized validity for job performance and training success ratings across countries and samples for all occupational groups (with the exception of training success ratings for police jobs). Most importantly, the pattern of results were similar to those found in meta-analyses done in North America (Salgado et al., 2003). Salgado et al. (2003) provided conclusive evidence that current measures of psychometric g are, “robust predictors of future job performance and training success across occupational categories, job complexity, and national cultures.” (p. 1076).

Bertua, Anderson, and Salgado (2005) extended Salgado et al.’s work to the United Kingdom (UK). Investigating 60 independent samples of job performance (N = 13,262) and 223 samples of training success (N = 75,311), the authors found uncorrected criterion-related validities for GMA – job performance of .19 (.42 when corrected for criterion unreliability and range restriction) and GMA – training success of .29 (.49 when corrected for criterion unreliability and range restriction). While the authors did not report the methods through which performance ratings
Hulsheger, Maier, and Stumpp (2007) extended the findings of European and US meta-analytic studies to Germany. Germany provides a unique scenario as the education system is track-based (students are sorted into different schools based on aptitude and expected career trajectory, eliminating much variability in applicant pools and predictor scores). The authors reported 90 independent samples for training success (N = 11,969) and nine for job performance (N = 746). Hulsheger et al., (2007) found significant uncorrected mean validity coefficients for GMA measures with supervisory ratings of job performance (.33; .53 when corrected for range restriction and criterion reliability) and training success (.31; .47 when corrected for range restriction and criterion reliability).

Additional research in Germany by Kramer (2009) examined the effect of GMA on work performance and career success (i.e., income and advancement) in a large sample of primary studies. Operational validities (corrected for range restriction and reliability) of GMA were assessed for job performance ratings (.66), training performance ratings (.62), income (.35), and advancement (.33). While Kramer (2009) utilized published articles and data sets, Ziegler, Dietl, Danay, Vogel, and Buhner (2011) investigated a number of selection methods within one large sample from a German organization. Ziegler et al., (2011) examined the selection of apprenticeship positions across eight separate occupational groupings (chemical skilled workers, pharmaceutical technicians, chemical laboratory workers, biology lab assistances, office communication assistants, foreign language clerks, electronic technicians, and mechanics) within a pharmaceutical organization. The results were computed from an objective final examination administered following the completion of the two-year apprenticeship. This written examination was
occupation-specific and based on material that they should have learned during their two-year period at the company. GMA was found to have an uncorrected mean validity of .22 across all occupational categories (.65 when corrected for range restriction and criterion reliability) for training success in apprenticeship positions (Ziegler, Dietl, Danay, Vogel, & Buhner, 2011).

Based on the results of these meta-analyses that span continents and decades, general intelligence has proven to be a highly valid predictor of training success and job performance. Uncorrected mean validity scores range from .12 to .46 with operational validities generally found in the .5-.6 range (Schmidt & Hunter, 1984, Bertua, Anderson, & Salgado, 2005; Hulsheger, Maier, & Stumpp, 2007; Kramer, 2009; Salgado et al., 2003; Ziegler et al., 2011). With the exception of Ziegler et al., (2011) and some selected samples (e.g., within Salgado et al., 2003 and Bertua et al., 2005) all meta-analytic data was procured from samples that used supervisor ratings of job performance and training success. While there are limitations with supervisor ratings (e.g., subjective source, reliability, criteria, etc.), given the similarity in results of Ziegler et al., (2011) compared to other meta-analyses, the limitations do not seem to affect the findings. The validity of GMA is supported across a wide range of occupations and objective criteria (e.g., sales performance, training exit exam, performance data, etc.; Bertua et al., 2005; Salgado et al., 2003; Ziegler et al., 2011, Berry, Clark, & McClure, 2011).

Despite the extensive meta-analyses assessing the relationship of GMA with supervisory ratings of job performance and training success, only a select few included moderating variables. Hulsheger, Maier, and Stumpp (2007) included publication date as a moderator in their analysis which was negatively related to their validity coefficients. Ziegler et al., (2011) included gender as a moderating influence in their analysis, which showed no differential effects. While many of
the meta-analyses include data that could provide evidence towards occupation as a moderator, it was often used solely to group occupations by complexity.

Job complexity has been analyzed alongside occupational category within GMA meta-analyses and moderates the relationship between general intelligence and performance. Hunter and Hunter (1984) found a significantly positive correlation between cognitive ability and job complexity, ranging from .27 for less complex jobs to .61 for highly complex occupations. Salgado et al., (2003) also grouped occupations by complexity. For occupations categorized as high, medium, and low job complexity, operational validities were .64, .53, and .51, respectively.

The aforementioned meta-analyses that followed the initial study by Hunter and Hunter (1984) provide substantial and irrefutable evidence for the validity of GMA in the prediction of training success and job performance. In order to strengthen the evidence supporting the use of GMA in selection, Hunter and Schmidt (1982) estimated that organizations foregoing the use of cognitive ability testing in hiring processes were losing eighty billion dollars a year in employee productivity. Hunter and Schmidt (1984) estimated a $15.61 billion increase in productivity with the use of GMA measures in the selection process of the entire US federal government. Schmidt (2002) stated that, “Given the overwhelming evidence showing the strong link between general cognitive ability (GCA) and job performance, it is not logically possible for industrial-organizational (I/O) psychologists to have a serious debate over whether GCA is important for job performance.” (p. 187).

Despite the overwhelming evidence supporting the predictive validity of GMA with job performance and training success, little research has been conducted to explain why this relationship exists. At the present time, the only explanation available is job knowledge which is considered to be a major determining factor in the performance of an individual’s job (Schmidt,
Hunter, & Outerbridge, 1986). Schmidt (2002) explained this relationship inversely, “not knowing what one should be doing- or even not knowing all that one should be doing- is detrimental to job performance.” (p. 201). Simply put, job knowledge is crucial to the performance of one’s job. The speed, amount, and application of job knowledge are affected by general mental ability. Thus, partially through the acquisition of job knowledge, GMA results in higher levels of job performance (Schmidt, 2002; Schmidt & Hunter, 1992).

Schmidt, Hunter, and Outerbridge (1986) provided support for the mediating role of job knowledge with four independent military samples (N = 1,474). The authors found that the major causal impact of mental ability was not on performance directly (path coefficient of .08; measured by work sample performance) but on job knowledge (path coefficient of .46; measured by a specific test of job knowledge) which indirectly affected work sample performance (path coefficient of .66). The indirect effect of GMA on job performance through job knowledge was twice as large as the direct effect. Therefore, job knowledge was a much stronger determinant of supervisor job performance ratings than sample work performance (Schmidt, Hunter, and Outerbridge, 1986). Despite this study, the extent to which I-O psychology understands additional mediators of the GMA-performance relationship is lacking. This is rooted in the absence of a deep understanding of the concept of psychometric g within I-O, possibly due to the overwhelming validity evidence (Scherbaum et al., 2012).

Future of g

GMA will likely become more important for selection in the future as the world of business is constantly changing, increasing in complexity, and requiring the continual integration of new technology and knowledge (Boal, 2004; Gatewood, Field, & Barrick, 2008; Pearlman & Barney, 2000). Murphy et al. (2003) reported that 81% of surveyed I-O psychologists believe that cognitive
ability will continue to become more and more important as complex competencies are required for job performance. It is therefore vitally important that I-O psychology continue to investigate the construct of intelligence. I-O has done well in validating the psychometric g model, however, we have fallen short when compared to other disciplines within and outside of psychology in attempting to understand the concept (Schmidt & Hunter, 2004). Understanding how g contributes to job performance is vital to the future development and use of the construct of intelligence. Many researchers and practitioners within I-O seem content to research measurement issues, adverse impact, and other issues surrounding g without increasing our understanding of the construct itself.

Many of the current psychometric g tests (e.g., Wechsler Adult Intelligence Scale (WAIS), Stanford-Binet Intelligence Scales, General Aptitude Test Battery (GATB), etc.) that are heavily used in education, business, and military settings but are often regarded as confounded by education, knowledge, and other factors not related to individual intelligence (Neisser et al., 1996). Understanding how g contributes to job performance will produce better selection tests. It may clarify why some individuals score below average on intelligence tests and allow them to understand where their difficulties arise. Undoubtedly, it may help in being able to strengthen individuals’ abilities, improving employee and organizational performance. Most importantly, a deeper understanding of psychometric g may shed new light on the highly controversial topic of group differences (the differential scoring of races on intelligence tests).

Scherbaum et al., (2012) argue that there is a prevailing idea in I-O that we have what we need to know and there is no further need for additional research. The tenets of psychometric g are seen as objective facts, that cannot be questioned and require no further construct development. Yet, many criticisms of the psychometric approach to intelligence exist outside the realm of I-O. Understanding and accepting the criticisms and controversies that surround general intelligence
can help develop a more complete view and approach to g. Further, the examination of competing theories of intelligence will help explore new directions and incorporate new findings into the psychometric concept. Therefore, the following section will briefly examine the common controversies and criticisms of psychometric g as well as competing theories of intelligence.

Controversial g

Psychometric g is, and has been, a hotly debated topic among researchers in many different fields (e.g., The Bell Curve by Herrnstein and Murray and the criticisms/defense that followed). Many of the controversial issues surrounding general intelligence are focused on group differences and measurement issues (e.g., differential scoring of races and gender differences in ability) and the alleged link between prominent g researchers and eugenics/racist ideologies (Neisser et al., 1996; Fancher, 1999; Jensen, 1999). Notwithstanding, criticisms of g often centre on a superficial understanding of the construct and the limited link to grounded cognitive and neurological abilities and structures. Interestingly, a few researchers have expressed criticism regarding the quality of biological and neurophysiological evidence towards the existence of g (discussed later; Partridge, 1999; Burns, 1999; Verleger, 1999; Tan, 1999, Bub, 1999).

Scherbuam et al., (2012) explain that the primary focus of criticisms against the psychometric g model stem from competing models, such as Sternberg’s Triarchic Theory of Human Intelligence (Sternberg, 2003) and the PASS Theory of Intelligence (planning, attention, simultaneous, and successive; Naglieri & Das, 2005). Unfortunately, the aforementioned theories, have seen little exposure, let alone acceptance, in I-O psychology.

Sternberg’s Triarchic Theory of Human Intelligence (Sternberg, 1985) posits a three-part intelligence that determines how well individuals deal with environmental changes throughout their lifespan: analytical (componential), creative (experiential), and practical (contextual).
Sternberg (1985) describes analytical intelligence as the cumulative effect of many functions/components of cognitive processing that reflect how an individual relates to his internal world (e.g., used in the analysis of complex mathematical problems or written texts). Sternberg claims that this type of intelligence is the one that is being measured by psychometric intelligence tests. Creative intelligence involves the ability to think creatively as well as react to novel situations and stimuli (e.g., used to create new ideas for research). Finally, practical intelligence involves the ability to handle everyday tasks and determines how an individual relates to the external world (e.g., used to figure out what is needed to succeed in the world, outside of having analytical and creative intelligence; Sternberg, 1985). While Sternberg (1997) postulates his theory based on his own empirical support, the research, evidence, and subsequently, his theory, have received substantial criticism regarding the extent and meaning of the supporting evidence (Gottfredson, 2003; Brody, 2003).

Sternberg’s theory represents one side of the intelligence debate, a common sense (i.e., layman’s) approach to intelligence, emphasizing real-world applications and development. The other side of the fence is represented by cognitive psychology and the evidence-based intelligence theories that emerge out of brain lesion and injury research. The dominant model, PASS, contends that planning, attention, simultaneous, and successive cognitive processes form the building blocks of intelligence (Naglieri & Das, 2002). These processes “form an interrelated system of functions that interact with an individual’s base of knowledge and skills” and are defined as follows:

Planning is a mental activity that provides cognitive control, use of processes, knowledge and skills, intentionality, and self-regulation;
- e.g., used to plan a problem solving approach

Attention is a mental activity that provides focused, selective cognitive focus over time and resistance to distraction;
- e.g., used to attend to the problem

Simultaneous is a mental activity that integrates stimuli into inter-related groups; and
Planning and attention can also be described as higher-order control processes used in self-regulation and monitoring. Planning is used in the development and application of plans of action while attention requires the detection of relevant stimuli and the inhibition of distracting stimuli. Simultaneous and successive processing coordinate the flow of information through working memory. Simultaneous processing involves grouping stimuli for ease of processing while successive processing helps individuals understand and form meaning based on the order of information.

Much of the research and neurophysiological evidence supporting PASS theory goes against psychometric g, stating that the brain is made up of separate yet interdependent functional systems. The PASS was developed from individuals with severe brain injuries and has been used as the theoretical basis for the Cognitive Assessment System (CAS; a human abilities test for children). Naglieri and Das (2002) compared the ability to predict scores on academic achievement tests of several traditional tests of intelligence to the CAS. The CAS accounted for 49% of the variance in academic achievement, compared to 35% for the WISC-III (Wechsler Intelligence Scale for Children). The CAS showed the best achievement prediction capability (Naglieri & Das, 2002).

The PASS theory and the CAS are typically used in the assessment and intervention of children with learning and reading disabilities. While much of the research and empirical evidence supporting the PASS comes from assessing cognitive difficulties in children, the PASS/CAS represents a new direction for increasing fairness in the testing of minority populations. The focus
on cognitive processes combined with the lack of vocabulary testing result in an assessment system that has shown less adverse impact for minority groups (Naglieri & Rojahn, 2001; Wasserman & Becker, 1999). The PASS’s ability to minimize group differences in intelligence testing, provide specific cognitive details regarding children’s academic difficulties, and predict achievement illustrates the need for psychometric g models to incorporate and benefit from the cognitive approach to intelligence.

The PASS’s cognitive and neuropsychological approach to intelligence represents new directions in intelligence research that can contribute to the further development of the psychometric approach. The incorporation of cognitive constructs and neurophysiological structures in the research and development of psychometric g will increase conceptual understanding and bring forth new directions in research. Cognitive and neuro-scientific evidence is critical to the substantiation of psychometric g. Psychometric g has suffered in its development and measurement due to the prevailing idea of g as an omni-present and mysterious conceptualization of intelligence grounded only in statistical concepts (Scherbaum et al., 2012). A shift towards a cognition rooted model allows for directed development of psychometric g towards a construct focused on universal human cognitive functioning. This focus will bridge the gap between the statistical concept of g and the cognitive abilities that direct intelligent behaviour. Linking these two domains allows for a better understanding of the relationship between g and job performance. Rather than relying on purely predictive evidence, this would allow researchers to break down performance on the job and map it onto cognitive functions that correspond with and make up general intelligence. This alternative approach to understanding cognitive ability and job performance increases understanding by removing generalized thinking about intelligence and creating a new model whereby intelligence can be studied from more than a factor analytic
perspective. The following section will examine cognitive and neuro-scientific evidence and propose the theoretical breakdown of g into fundamental human cognitive operations (given a specific task). By breaking down g into its cognitive operations, we can develop better theories of g and its relationship to behaviour and performance. Further, we can determine if cognitive operations explain more variance in criteria with substantially less adverse impact. In addition, it should allow for more specific hypotheses with respect to which cognitive operations predict which performance tasks for a finer analysis of these relationships.

Cognitive Operations

Parallel to the development of g, cognitive psychologists have been developing an understanding of the primary cognitive operations in the brain for several decades (Deary, Johnson, & Starr, 2010). As early as 1890 psychologists began researching cognitive differences, but it was not until the 1950s and 1960s that cognitive psychology was introduced as a discipline. Focused on the information processing that occurs between sensory inputs and the resulting motor outputs, cognitive psychology utilizes theories that deal with the processes of thought and inner experience. As part of a perception-action cycle human cognitive functioning operates by processing sensory information from the environment and uses it to, “guide the selection and execution of goal-directed actions.” (Neisser, 1967; MIT, 1999, p. 1). The thoughts and sensory processing are, “guided in part by selective attention; some of the products of perception are store in memory, and may in turn influence subsequent perception...[and] perform decision making and problem solving,” (MIT, 1999, p. 1). Attention, memory, decision making, and problem solving are only a few of the cognitive operations involved in processing sensory information. Other components include the speed of information processing, visual-spatial ability, learning, language, and many more.
Attention is seen as the primary driver of information processing as it operates selectively to govern what sensory information is received. Attention is responsible for, “(a) attentional orientation (the simple direction of attention to a particular stimulus); (b) selective (or focused) attention (giving attentional priority to one stimulus in favor of another); (c) divided attention (dividing attention between two or more different stimuli); and (d) sustained attention (attending to one stimulus over an increasing period of time)” (Coull, 1998, p. 344). A limited amount of this information is kept active in working memory (i.e., short-term memory), where it is stored for concurrent processing of reasoning and comprehension as well as further computing for problem solving (Becker & Morris, 1999). Attention and working memory have been linked together as sharing monitoring and information integrating functions that account for shared variance in reasoning ability. Both attention and working memory have been linked to higher-order cognitive functioning and aspects of g (Crawford, 1991; Stankov, 1983; Burns et al., 2009).

While working memory is utilized when actively engaged in thinking about and performing tasks, it encompasses different systems for verbal and nonverbal (spatial) information. The spatial information stored in working memory is a result of an individuals’ attention and is processed using their visual-spatial ability, the ability to manipulate two and three-dimensional figures (sometimes referred to as mental rotation). Visual-spatial ability is extensively used in the processing of information and complex problem solving when visual information is present. Visual-spatial ability has been correlated with g, mathematical problem solving and educational success, specific task performance, and the ability to form mental models in working memory to aid in reasoning and problem solving (Lohman, 1993, Hegarty & Kozhevnikov, 1999).

Beyond the actual cognitive operations themselves, the speed at which these are executed is a major component of how these operations contribute to higher-order cognition (i.e., problem
solving, learning, etc.). Processing speed can be considered as a mental capacity; the faster the cognitive processing, the higher the level of cognitive performance and functioning. Some researchers argue that processing speed, “could be an index of one fundamental capacity of the central nervous system and, as such, its variance might be shared with those of higher level cognitive tasks, because the speed with which so-called elementary cognitive operations can occur dictates the efficiency of more complex mental operations.” (Deary, 2000; Deary et al., 2010 p. 222). Processing speed has been positively correlated with measures of fluid intelligence and higher level cognitive functions as well as being negatively correlated with aging (Deary, Der, & Ford, 2001; Grudnik & Kranzler, 2001; Danthiir, Roberts, Schulze, & Wilhelm, 2005; Burns, Nettelbeck, & McPherson, 2009).

The aforementioned cognitive processes operate both independently and jointly to contribute to the formation of intelligent thinking and behaviour. Several of the neuro-anatomical structures linked to attention, working memory, visual-spatial ability, and processing speed function independently while still utilizing overlapping areas of the brain. Making sense of how cognitive processes and operations come together to form thoughts, ideas, and behaviour is a challenging task. One such model, designed to provide a directional approach to understanding the flow of information and cognitive processing, is the layered reference model of the brain (LRMB) developed by Wange et al. in 2006.

The LRMB provides an integrative model of the brain and intelligent human behaviour. Using bottom-up processing, behaviour is explained by 39 cognitive processes across six tiers: sensation, memory, perception, action, meta-cognition, and higher cognition. Higher-layer cognitive processes such as problem solving, learning, and decision making rely considerably on tiers of cognitive operations such as: perception (e.g., attention), memory (e.g., working memory),
meta-cognition (e.g., visual-spatial ability), and the overarching speed at which the interdependent processes are utilized (e.g., processing speed). When attempting to find a solution for a given problem, how an individual attends to the relevant information, stores and processes it, and manipulates it, can affect the outcome of the problem by impacting the quality of the solution generated. See Appendix G for a LRMB highlighting the interaction between tiered cognitive processes and problem solving.

Guiding higher cognition and subsequently the use and dedication of resources to lower-order cognitive processes is the proposed control system of the brain, executive function (EF). While missing from the LRMB, cognitive psychology and cognitive neuroscience have recently progressed towards the understanding of EF and how it relates to human functioning. Gilbert and Burgess (2008) state that most theories of executive functioning (of which there are many competing models) entail, “the modulation of lower-level processes by those at a higher level,” in order to regulate lower-level perceptual-analysis and output processes for the production of appropriate behaviour.

Within the LRMB framework, executive function can be thought of as an 8th tier, controlling, regulating, and restricting the processes found in the lower tiers. Executive function can be considered similar in conceptualization to psychometric g, involving a wide array of cognitive functioning, self-regulation of ability, and control of cognitive resources. A recent meta-analysis investigated the link between a deficit in executive functioning and attention-deficit/hyperactivity disorder (ADHD) finding that groups with ADHD (N = 3734) had significant impairment on all tasks measuring executive functioning. Medium effect sizes were found (.46-.60) but deficits in response inhibition, vigilance, working memory, and planning had the most consistent relationship with ADHD (Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005).
Recently, Barbey, et al., (2012) investigated the neural architecture of psychometric \(g \) and executive function. The researchers were particularly interested in whether psychometric \(g \) and executive function utilized common or distinct systems in the brain and if they operated using highly localized (e.g., PASS theory) or widely distributed (e.g., psychometric \(g \)) neural structures. Using brain-lesion patients and CT scans, psychometric \(g \) was found to be, “…associated with a distributed network of brain regions, sharing common anatomical substrates with Verbal Comprehension, Working Memory, Perceptual Organization, and Processing Speed…” (Barbey, et al., 2012, p. 5).

Furthermore, executive function and psychometric \(g \) were found to, “largely depend on shared neural substrates,” indicating that while not the same, executive function and general intelligence are highly overlapping constructs (Barbey et al., 2012, p. 6). Despite this overlap, select regions of brain activity were shown to be related to psychometric \(g \) independent of executive function, and vice versa. Psychometric \(g \) demonstrated unique engagement of visual-spatial processing areas, emphasizing the broad distribution of general intelligence. Psychometric \(g \) therefore reflects the effective integration of: spatial, motor, verbal, and executive processes through a shared set of cortical connections.

Furthermore, their results suggest that executive function and \(g \) utilized a combination of conceptual knowledge and executive processes, in which the communication between their associated areas is critically important (Barbey et al., 2012). The authors’ findings suggest that psychometric \(g \) and executive function are grounded in an overlapping and extensively distributed network of parietal and frontal brain regions. The findings by Barbey et al., (2012) are supported by a plethora of previous work on the neural substrates of psychometric \(g \) (e.g., Jung and Haier,
This unified neural architecture of executive function and general intelligence highlight the importance of the fronto-parietal network as the core system for cognitive integration and top-down control in the brain. Recent evidence suggests that the development of the fronto-parietal network was central to the evolution of the human brain, indicating its importance in the development of critical competencies for executive function and general intelligence (Semendeferi et al., 2001; Van Essen & Dierker, 2007; Barbey et al., 2012).

Barbey et al. (2012) provide the impetus for the proposed research. The unification of executive control and cognitive processes within a model of psychometric g supports the idea of an overarching general intelligence responsible for the executive control of delineated cognitive processes that contribute collectively to performance on tasks. The overlap between g, EF, and neuroanatomical cognitive functions helps draw a bigger picture, one which may help elucidate the relationship between intelligence and work performance.

The aforementioned research supporting the neural architecture of psychometric g and executive function provide evidence that, (i) general intelligence is more than just a statistical factor, (ii) general intelligence is grounded in neural substrates, (iii) the broad neural network of general intelligence supports the psychometric approach, (iv) general intelligence can be thought of as a network of cognitive operations and abilities that operate together and communicate seamlessly, and (v) general intelligence utilizes top-down executive functioning to regulate and control intelligent behaviour.
Given supporting evidence, the previously mentioned set of five principles provides a probable explanation for the relationship between a test measuring psychometric g and work performance. Currently, the pathway from g to performance is well understood in terms of predictive validity (i.e., we know g predicts work performance). However, little information is available on the underlying factors driving this relationship. The link between g, executive function, and higher-order cognitive processes provides the conceptual underpinnings for a theoretical mediation model between g, EF, and performance. This proposal will argue and present a research methodology for testing a mediation model in which it is hypothesized that the relationship between g and performance is mediated by the collective functioning of executive control and highly task-relevant cognitive processes. However, before the hypothesis and mediation is proposed, it is necessary to discuss the domain of work performance and related task performance.

Individual performance at work has been a core concept of I-O psychology for several decades. As organizations need individuals capable of performing their role well, much of the focus has been on the assessment of performance predictors. However, I-O has been instrumental in extending and clarifying the concept of work performance (Campbell, 1990). Campbell (1990) helped clarify the concept of job performance as an employee’s behaviour rather than the outcomes driven by such behaviour (e.g., actions taken to make a sale vs. revenue or sales numbers generated by the sale). The focus on behaviour as performance is important as it allows for the delineation of performance into a factor-analyzed and behaviour-based multidimensional construct.

Among the eight factors of job performance proposed by Campbell (1990), the first factor, task specific behaviours, refers to the core substantive tasks that differentiate one job from another. These core tasks drive the fundamental performance of the job and contribute substantially to the
productivity, effectiveness, and outcomes of the individual. Arguably, this first factor is the most important facet of any job, the tasks which an individual must complete as part of their job. Compared to, non-task specific behaviours (e.g. communication, effort, personal discipline, helping groups/colleagues, supervisor/leadership, and managerial tasks), task specific behaviours are the single most important focus of any one job. Given the abundance of predictive validity research, they are also the most heavily influenced by an individual’s cognitive functioning (Hulsheger et al., 2007; Hunter & Hunter, 1984; Salgado et al., 2003).

Murphy’s (1994) taxonomy of job performance also features task-oriented behaviours as the primary factor, indicating that performance on individual tasks is widely seen as primary and integral to the concept of work performance. Furthermore, Borman and Motowidlo (1993) divided performance into task performance and contextual performance. Task performance refers to the employee’s activities contributing to the organization’s technical core or job requirements (e.g., selling product) while contextual performance refers to those behaviours which support the environment of the organization (e.g., organizational citizenship behaviours) (Borman & Motowidlo, 1993). In summation, necessity dictates that the core factor contributing to job performance is performance in task specific behaviours as they contribute to an organization’s productivity, effectiveness, and profitability.

However, some controversy still exists surrounding the measurement of job performance in research and practice. Many studies use subjective measures of job performance (i.e., supervisor ratings) in place of objective measures (i.e., sales performance) (Bertua et al., 2005; Maier & Stumpp, 2007; Salgado, et al., 2003). Yet, even studies utilizing objective measures of job performance suffer from misguided use, utilizing measures of outcomes, rather than behaviours, as discussed by Campbell (1990). Therefore, it is necessary that any measures of performance be:
i) task focused, ii) objectively measured, and iii) measure performance that is not influenced by external factors (e.g., sales are influenced by environment, economy, production, client relations, etc.). The assessment of performance under these three restrictions guides the utilization of laboratory-based measurement of performance using a task that provides objective performance data that is not influenced by external factors.

Given the requirements of measures of performance, a laboratory-based task performance experimental model is necessary. Previous unpublished research by Risavy (2009), Williams (2010), Stermac-Stein (2010), and Penner (2011) utilized a simple novel task in a controlled laboratory environment to investigate various contributing factors of task and work performance (i.e., personality, goal setting, goal orientation, and GMA). Using a 75-item CAPTCHA set (Completely Automated Public Turing test to tell Computers and Humans Apart; see Figure 1), the previously mentioned researchers examined the effects of various constructs on individual task performance with the goal of informing work performance. Williams (2010) and Penner (2011) validated the effects of goal setting on the CAPTCHA performance. Risavy (2009), Williams (2010), and Stermac-Stein (2010) explored the differential effects of personality on CAPTCHA performance, examining the higher performance of conscientious participants. Penner (2011) investigated the relationship between GMA (as measured by the Wonderlic Personnel Test - Pretest), goal setting, and CAPTCHA task performance. Irrespective of the effect of goal setting, GMA correlated significantly with CAPTCHA task performance ($r = .34$, $p < .01$), providing the groundwork for the current study. Penner (2011) provides the evidence for the relationship between general intelligence and task performance as a valid proxy for the relationship between g and work performance. Therefore, Hypothesis 1 will serve as both a replication of previous
findings and as an effort to establish a relationship between intelligence and performance in the current study:

Hypothesis 1: Psychometric g will significantly predict performance on the CAPTCHA task above and beyond typing speed.

Establishing the relationship between g and performance is a critical step in being able to further explore the function of cognitive operations in driving the connection between intelligence and task performance.

Individual cognitive functioning contributes to the performance of the CAPTCHA task in the following ways: i) selectively attending to the overall CAPTCHA and its individual items, ii) discerning and mentally rotating individual letters and numbers, iii) holding individual letters/numbers and combinations of characters in working memory until each CAPTCHA is fully deciphered and input, iv) combining and processing all of the previous operations as fast as possible, and finally, v) typing into the textbox on the laptop. All of this must be done while simultaneously attending to real-time accuracy and speed feedback. Given the cognitive functioning involved in completing the CAPTCHA task, it is theorized that executive function, attention, working memory, visual-spatial ability, and processing speed are the primary cognitive drivers of performance on the task, outside of environmental and motivational factors (which have been explored by previous research, see: Risavy (2009), Williams (2010), and Stermac-Stein (2010)).

Given the research elucidating its neural architecture, psychometric g can be thought of as a connected network of cognitive abilities (i.e., verbal, spatial, and motor abilities, working memory, processing speed, attention, problem solving, etc.). The scope and amount to which these
abilities are engaged depends substantially on the task involved. Within a highly complex work scenario, it would be expected that all the underlying cognitive operations would contribute to the performance of an individual on that task. Alternatively, given a simpler task, such as completing a CAPTCHA, only a selection of the cognitive abilities would be utilized. The selection of cognitive operations utilized in the completion of the CAPTCHA (i.e., executive function, attention, working memory, processing speed, and visual-spatial ability) should mediate the relationship between g and CAPTCHA task performance. Therefore, it is hypothesized that:

Hypothesis 2: The relationship between psychometric g and performance on the CAPTCHA task will be mediated by Executive Function, Attention, Working Memory, Visual-Spatial Ability, and Processing Speed.

This hypothesis serves to explore the relationship between intelligence and performance, through the lens of cognitive functioning. Understanding of the contribution of each individual cognitive operation to the intelligence-performance relationship in this context will help drive further exploration and discovery.

Given the overlap between g and EF, the selection of cognitive operations (relating to EF and performance on the CAPTCHA task- based on theoretical evidence), and the relatively unexplored domain of research within I-O Psychology, the nature of the research is fundamentally exploratory. Further hypotheses, beyond the two proposed, including but not limited to factor analysis of the tasks and their relationship to latent g and EF factors would be premature.

Chapter 2. Method

Participants

Ninety four participants were be recruited through the University of Guelph
Undergraduate Participant Pool. Participants signed up for the study individually but participated as a group of 6 in order to facilitate a larger sample size. Participants were undergraduate students currently enrolled in a first-year psychology course and were granted course credit for participation in the study. The gender distribution of the sample was 50 females and 44 males, with an average age of 19.13. On average, participants had worked in part-time positions for 2.39 years and 2.28 months and in full-time positions for .56 years and 1.40 months.

Materials

For a more detailed description of the measures used, see Appendix B. The following section presents a brief description of the tasks used to represent each latent ability.

Psychometric g

Participants’ GMA was assessed using the WPT Pretest, a valid measure of cognitive ability (Dodrill & Warner, 1988; McKelvie, 1989). Wonderlic data shows adequate internal consistency, ranging from .88 to .94, outside data sources ranging from .83 to .89, and test-retest reliability range from .82 to .94 (McKelvie, 1989; Wonderlic Inc., 1992). As a timed, online test, the WPT allots a maximum of eight minutes to complete 30 questions. The questions range from mathematical equations to verbal competency questions. The test yields one score of GMA for each participant.

Executive Function

Executive function was measured using the Hanover Stroop (Krantz, n.d.). Produced by the Department of Psychology at Hanover College, this test is a computerized and modified version of the original Stroop Test (Stroop, 1935). The lack of item-level data did not allow for internal consistency reliability statistics to be computed during this study’s administration. However, previous research has examined the test-retest reliability of the Stroop task. Strauss et
al. (2005) provide strong evidence for high test-retest reliability of the Stroop color-word task. All coefficients presented are greater than .7 (Strauss et al., 2005).

Attention

Attention was measured by the Ruff 2 & 7 Selective Attention Test. The 2 & 7 Test measures both sustained and selective attention. The test was ordered from Psychological Assessment Resources, Inc. and takes 5 minutes to administer. Normative data is provided in the test manual. The 2 & 7 Test is derived substantially from a theoretical foundation but is heavily used in neuropsychological research as a valid measure of attention (Neuropsychological Assessment, 1992). Alpha and split-half coefficients (for each index of performance) from the standardization sample (N = 360) are all above .80, with some above .95. Internal consistency reliability statistics are presented by computing a Cronbach’s alpha coefficient. The 2 & 7 Test exhibited high internal consistency in this sample population (α = .93).

Working Memory

Working memory was assessed using a modified operation span task (Daneman & Carpenter, 1980; Turner & Engle, 1989). The task was developed by the author for use in the study. A sufficiently large body of research has shown good reliability and validity of memory span tasks, including operation span (Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; Engle et al., 1999). Internal consistency reliability statistics are presented by computing a Cronbach’s alpha coefficient. The OSpan task exhibited high internal consistency in this sample population (α = .87).

Visual-Spatial Ability

Visual-spatial ability was assessed using a redrawn Vandenberg and Kuse mental rotations test (MRT). This task asked participants to state if images of block shapes are the same,
not the same, or mirror images of each other, requiring individuals to mentally rotate and overlay each image. Mental rotation research has a long-standing history in cognitive psychology and the MRT is the original and most widely used measure of visual-spatial ability (Caissie, Vigneau, & Bors, 2009). Internal consistency reliability statistics are presented by computing a Cronbach’s alpha coefficient. The MRT exhibited high internal consistency in this sample population ($\alpha = .90$).

Processing Speed

Processing speed was measured using simple and four-choice reaction time tasks, cognitive-experimental-level assessments. Deary, Liewald, and Nissan (2011) provide a free and easy-to-use computerized version of the reaction time tasks used widely in applied psychology. This newly developed task correlates highly with existing reaction time tasks and is reliable. Item level data was not acquired for this study’s administration of the CAPTCHA task and therefore, internal consistency statistics could not be computed. The authors of the task provide initial reliability statistics. Internal consistency as computed by Cronbach’s alpha was very high for the choice reaction time task ($\alpha = .97$; Deary, 2011).

Task Performance

Task performance was assessed using the CAPTCHA task, a timed, 5-minute task where participants decode a scrambled series of numbers and letters, 6-8 characters long. The CAPTCHA task provides performance data on the number of correct responses, number of completed items, percent correct, percent completed, number of incorrect responses, and overall performance on the task. Item level data was not acquired for this study’s administration of the CAPTCHA task and therefore, internal consistency statistics could not be computed. However,
the CAPTCHA task has been used in previous research in the past several years and provides a reliable outcome criterion (Risavy, 2009, Stermac-Stein, 2011, Williams, 2011, Penner, 2012).

Procedure

Participants who signed up for the study were scheduled for a one-hour timeslot in a laboratory simultaneously alongside five other participants. Each participant was first given the information/consent form (Appendix A) and then completed a brief demographics questionnaire on a laptop computer (Appendix B). Each participant was then asked to complete the WPT (Appendix C) and then the following tasks: Stroop Task, Ruff 2 & 7, Reading Span, Mental Rotation Task, Single and Four Choice Reaction Time Task (Appendix D).

Following the completion of the cognitive operations tasks, participants completed the CAPTCHA task (Appendix E). Following the task, participants were given a second questionnaire to fill out, assessing their perception of their own task performance, stress, as well as any open-ended thoughts they had about the study. Finally, they were provided with the debrief sheet (Appendix F) and second consent form (Appendix G). The materials in Appendices A, B, C, D, F, and G were provided to participants in a paper-based format. The CAPTCHA task was administered using laptop computers. Participants were given short breaks periodically during the 1-hour session to limit cognitive loading and prevent test-fatigue.

Analysis

Descriptive statistics, correlations, and reliabilities were computed in SPSS for all variables. Multiple regression analyses were used to test relationships and interactions between variables. West, Aiken, and Krull (1996) outline the steps needed to: structure the multiple regressions, code variables, center variables and conduct tests needed for the data analysis of the study.
A mediation analysis was used to assess Hypothesis 2. A Preacher and Hayes (2008) bootstrapped mediation was used to test Hypothesis 2. Two mediation analyses were run. The first mediation used latent variables created using CFA scores found in AMOS. The second analysis was a multiple mediation model computed using observed variables. Variables were further explored using latent and observed variable path models in SPSS AMOS. Further, post-hoc exploratory data analysis investigated additional measurement and path models using goodness of fit statistics in SPSS AMOS.

The data were reviewed for missing values, outliers, and skewness/kurtosis. Individuals with missing data were removed from the dataset and any participant with a significantly higher or lower score (as determined by a z-score of ± 3.29) compared to the rest of the sample had their data point recoded to the next highest or lowest score. The z-score of ± 3.29 was used as a cutoff value for identifying variables with significant positive or negative skew. Only one variable (RT) was identified as having a slight positive skew (5.13) and was fixed by applying a square-root function to achieve a normal distribution. Reliabilities were computed using Cronbach’s Alpha and were compared against a minimum cutoff value of .70.

The variables used and the computation of them can be seen in Table 1. Composites of Executive Function (EF) and psychometric g were computed in SPSS, for use in regression analyses, based on path loadings provided by the measurement model found in Figure 3.

Chapter 3. Results

Means, standard deviations, skewness, and kurtosis can be found in Table 2 in the Appendix of Tables. Correlations and reliabilities for all variables included in the study can be found in Table 3 in the Appendix of Tables.

The single best predictor of the task performance (CAPTCHA) was typing speed (WPM;
$r = .47, p < .001$), followed by working memory (OSPA; $r = .31, p < .01$), and psychometric g (WPT; $r = .28, p < .01$). As seen in Table 3, all of the individual tests of cognitive functioning had non-significant positive relationships with CAPTCHA performance, with the exception of the working memory task, the OSPAN. The Ruff 2 & 7 test of Attention did not significantly correlate with any other cognitive task in the battery except for the reaction time task. It did, however, correlate with the ad-hoc measure of Stress that was completed by participants following the task battery. The Stress measure did not significantly correlate with any other measure of cognition in the study. The Ruff 2 & 7 did not significantly correlate with psychometric g as measured by the Wonderlic. Interestingly, age and CAPTCHA performance did not correlate significantly. Given that age and cognitive ability are highly correlated in research (and replicated in this study; $r = -.19, p < .05$), the lack of relationship between age and performance on the criterion measure is of note.

Of the cognitive tests used, only three provided enough item level data for internal consistency reliability to be computed. All other tests’ reliabilities were investigated through literature searches and were deemed acceptable (i.e., > .70). As seen in Table 3, the MRT, the RUFF and the created OSPAN task had Cronbach’s alpha reliabilities greater than .86, which is well above the cut-off for psychological testing purposes.

Previous research indicates that while g and EF are similar and potentially overlapping, the delineation of contributing cognitive abilities to each, uniquely or shared, is not well understood (Barbey, et al., 2012). Given the exploratory nature of the research, it is important to understand how each cognitive operation (i.e., Attention, Working Memory, Processing Speed, etc.) individually contributes to the latent constructs of g and EF. In order to do so, Exploratory Factor Analysis is used. Factor loadings of each measure onto latent factors serve to help
understand the differentiation between g and EF.

An Exploratory Factor Analysis (EFA) was performed in SPSS using a Principal Component Analysis and an Eigenvalue cutoff of 1.0. The unrestricted EFA using a Promax rotation method extracted three factors with minimal cross-loading (see Table 5). The first factor contained Typing Ability [WPM] and Task Performance [CAPTCHA], the second factor included Psychometric g [WPT], Task Performance [CAPTCHA], and Working Memory [OSPA], and Visual-Spatial Ability [MRT], and the third factor contained Processing Speed [RT], Attention [RUFF], and Executive Function [STROOP].

Table 4 and 6 represent alternative EFAs aimed at further exploring the breakdown of latent factors. The EFA from Table 4 does not include the covariate, Typing Speed [WPM] or the criterion, Task Performance [CAPTCHA] but still exhibits a similar pattern of task breakdown (i.e., separation of g and EF measures). Table 6 represents an EFA that serves to further validate the g and EF dichotomy by limiting the solution to two factors. However, the first factor includes factor loadings for all variables except Typing Speed [WPM]. The second factor includes factor loadings from Typing Speed [WPM], Task Performance [CAPTCHA], and Executive Function [STROOP].

Preliminary analysis of the three factor EFA (Table 5) suggests that psychometric g and EF represent empirically distinct constructs followed by a third factor, representing performance. However, the EFA in Table 6 illustrates that the separation of EF and g may not be very clear. The second factor present in Table 6 appears to be the performance factor from the three factor EFA in Table 5. The somewhat unclear nature of the EFA results suggests that further analysis is needed. Confirmatory Factor Analyses (CFA) were utilized to verify the three-factor finding.

Several CFAs were performed using AMOS in SPSS. Table 7 presents the results of the
CFAs and illustrates the calculations used to compute chi-square difference tests and their values. Measurement Model 1 (see Figure 1) tests the possibility of all predictor variables (excluding WPM) fitting under 1 variable, presumably Executive Function due to the five cognitive tasks compared to only one measure of psychometric g [WPT]. Model fit is poor, $\chi^2 (9) = 13.93, p = .125$, CFI = .92, CMIN/DF = 1.547. Comparatively, (see Measurement Model 2 in Table 7 and Figure 2) once you remove psychometric g [WPT], the model fit improves, $\chi^2 (5) = 2.97, p = .71$, CFI = 1, CMIN/DF = .594, indicating a distinction between EF and g.

Measurement Model 3 (see Figure 3) represents the EFA from Table 6 in which all variables were restricted to two factors, $\chi^2 (8) = 5.64, p = .69$, CFI = 1, CMIN/DF = .704.

Finally, Measurement Model 7 represents the EFA from Table 5 and can be seen in Figure 7 in Appendix F. This model represents the same structure as Measurement Model 3 with the addition of Typing Speed [WPM] and Task Performance [CAPTCHA] under a third latent variable. Additionally, it represents the same variables as Measurement Models 5 and 6 (Figures 5 and 6 respectively). Compared to Models 5 and 6, the three factor structure improves dramatically, $\chi^2 (17) = 19.72, p = .29$, CFI = .97, CMIN/DF = 1.16. Therefore, the three-factor approach from the EFA is confirmed. This finding is supported by the decrease in AIC and BIC values from a one and two factor approach to the three factor model (see Table 7).

Following confirmation that three factors are present, including the separation of g and EF into distinct but correlated latent variables, SEM path analysis was used to preliminarily investigate the hypotheses. Table 10 (Table 8 presents a condensed version) and Figures 8 through 16 in Appendix G illustrate the SEM results. SEM Models 1, 2, and 3 were tested to illustrate the effect of ignoring the EFA results and to test the theoretical assignment of measures to their (proposed) respective latent factor. As can be seen in Table 8, all three models indicate
poor fit. Models 4 through 6 represent exploratory work using two factor EFA results, of which no substantial results are found. Model 7 is a simple recreation of Hypothesis 1 using observed variable path analysis. A regression discussed later on confirms the validity of Hypothesis 1, as seen in SEM Model 7, \(\chi^2 (48) = 0.478, p = 0.49, CFI = 1, \text{CMIN/DF} = 0.478 \).

SEM Model 8 and 9 (see Figure 15 and 16) represent latent variable path diagrams exploring the structural model proposed by the three factor EFA. Model 8 represents a moderation approach to predicting performance. Model 9 represents a mediation approach to predicting performance with the latent EF variable as the mediator. In both models, F1 is the criterion variable with loadings from Typing Speed [WPM] and Task Performance [CAPTCHA]. F2 represents general intelligence with loadings from Psychometric g [WPT] and Working Memory [OSPA] and F3 represents Executive Function with loadings from Visual-Spatial Ability [MRT], Attention [RUFF], Executive Function [STROOP], and Processing Speed [RT].

The fit statistics for Model 8 and 9 could not be calculated due to an inadmissible solution. This error was most likely caused by a model variance value that was negative. Further investigation revealed that the variance associated with F1 was negative, known as a Heywood case. McDonald (1985) states that the most common and probable cause of a Heywood case is an insufficient number of variables for each latent factor. McDonald recommends that each factor be represented by at least 3 or 4 observed variables. One potential solution is to utilize a generalized least squares or unweighted least squares method in AMOS. However, this approach failed to remedy the problem. Newsom (2012) states that a common cause of Heywood cases is empirical underidentification, a positive degrees of freedom number but a lack of covariance information (likely due to only having two observed variables for a latent factor in a large model. Given the fixed number of variables, this Heywood case makes SEM testing an inappropriate
choice for Hypothesis 2. Therefore, linear regressions were used to confirm Hypothesis 1 and test Hypothesis 2.

A linear regression was used to test Hypothesis 1. CAPTCHA performance was regressed on WPM and WPT. WPM was entered separately in the first block. The result of this first regression was significant [$R^2 = .23$, $F(1, 92) = 25.85$, $p < .01$]. WPT accounted for an additional 6% of the variance in CAPTCHA task, $R^2 = .29$, $F(2, 91) = 17.60$, $p < .01$. Therefore, Hypothesis 1 was supported.

A Preacher and Hayes (2008) multiple mediation analysis was used to test Hypothesis 2. Two mediations were conducted, one with latent variables representing the factor breakdown of EF and g, and one with multiple mediators as per the specifications of Hypothesis 2. Prior to running the mediations, latent variables were created in SPSS to represent Executive Function and psychometric g, based on the EFA and CFA results. These latent variables were created using the factor loadings in Figure 3. Scores on each cognitive task were multiplied by their factor loading and then summed to create a composite variable. Psychometric g was composed of the Wonderlic task, the Operation Span task, and the Mental Rotation Task. The Executive Function composite was composed of the Ruff 2 & 7, the Stroop, and the Deary-Liewald reaction time task.

The first mediation analysis, run with latent variables, did not result in a partial or full mediation (see Figure 18 in Appendix F). The second mediation analysis, run with multiple observed variable mediators, returned mixed results (see Figure 19 in Appendix F). The effect of the Wonderlic task on CAPTCHA performance was mediated by the Operation Span task. However, none of the other tasks had a significant effect on CAPTCHA performance. Therefore, Hypothesis 2 was not supported.
A linear multiple regression was conducted to test the interaction between the latent EF and g factors on CAPTCHA performance. CAPTCHA Performance was regressed on, WPM, g, EF, and the interaction of EF and g. WPM was entered in the first block as a covariate, the second block contained EF and g, and the third block contained the interaction of EF and g. WPM accounted for 23% of the variance in CAPTCHA performance, $R^2 = .23$, $F(3, 90) = 8.74$, $p < .01$. EF and g accounted for an additional 13% of the variance in CAPTCHA, $\Delta R^2 = .13$, $F(5, 88) = 9.69$, $p < .01$. The interaction between EF and g did not account for any significant additional variance in CAPTCHA performance, $\Delta R^2 = .01$, $F(6, 87) = 8.22$, $p < .01$. EF alone did not significantly predict CAPTCHA performance ($\beta = -.01$, $t(87) = -.10$, ns). Psychometric g did significantly predict CAPTCHA performance ($\beta = .40$, $t(87) = 3.99$, $p < .01$).

Chapter 4. Discussion

The goals of this study were to investigate the cognitive operations involved in psychometric g, understand its relation to Executive Function, and evaluate the role of cognitive factors in predicting task performance. Understanding the relationship between general intelligence, EF, and cognitive factors, and how they form intelligent behaviour in the workplace is an important goal of this study. Through this understanding, this study hopes to reevaluate the current approach to intelligence research in I-O Psychology, advance our understanding of psychometric g both within and outside of I-O, and integrate disciplines by combining I-O research with cognitive psychology. Furthermore, the more practice based goals of this study are to use the newfound insights into general intelligence to establish more advanced protocols for developing intelligence assessments and in the process, help alleviate the adverse impact currently plaguing traditional measures of intelligence. Most importantly, the primary impetus for this research was and remains Scherbaum’s et al., (2012) call for a reimagining of intelligence
research in I-O. This study hopes to spur future research into general intelligence and EF in I-O Psychology and serve as a building block for further investigation. This section begins by discussing the results from the previous section and elaborating on their meaning in the context of the current study.

Replication of the findings associating task performance with general intelligence was the goal of Hypothesis 1. This replication was successful, general intelligence as measured by the Wonderlic Personnel Pretest positively predicts performance on the CAPTCHA measure. Given previous research using the same measure of performance (e.g., Penner, 2012), this study sought to gain a deeper understanding of that relationship by adding a measure of typing speed. Interestingly, typing speed correlated significantly with performance on the CAPTCHA task but not with general intelligence. However, when accounting for typing speed, general intelligence only predicts six percent of the variance in CAPTCHA performance. This result indicates that an individual’s ability to type quickly is a much better predictor of CAPTCHA performance than is general intelligence. Initially, this might seem plausible considering that ability to type quickly and accurately could be related to intelligence, however, there is a non-significant correlation between typing speed and psychometric g ($r = .09, ns$) and the difference between zero-order and part correlations in the regressions was minimal (i.e., dropping by no more than three one-hundreds).

Examining the relationships between the cognitive tasks assigned to measure specific cognitive operations and the CAPTCHA task provide interesting results. Most of the cognitive tasks did not significantly and positively predict performance on the CAPTCHA task, with the notable exception of the OSpan task, which had a large relationships with the CAPTCHA task. The relationship between working memory, general intelligence, and CATPCHA performance is
worth exploring further.

The counterintuitive pattern of results for the Ruff 2 & 7 test of Attention may be due to its design and use as a neuropsychological test. Its primary use is in clinical applications, rather than performance measurement, and thus may not be suitable for picking up the higher end performance variance that would generally be associated with university students. Further, its focus on sustained and selective attention through the process of digit searching may not be wholly applicable to the CAPTCHA task.

In terms of the relationship between psychometric g and cognitive abilities, all of the cognitive functioning tasks (except attention and EF) correlated significantly with g (i.e., those cognitive tasks predict higher levels of g with higher levels of cognitive functioning). Again, this provides evidence towards issues with the selection of the task used to assess attention, rather than the objective relationship between general intelligence and attention.

This study explores new avenues of research within I-O Psychology by seeking to understand the relationship between a heavily I-O focused construct (i.e., g) and a heavily brain and cognition focused construct (i.e., Executive Function). The author first sought to establish the independence of psychometric g and EF. Separate EFAs and CFAs support the idea that psychometric g and EF are functionally distinct but related given the measures used in this study. Table 5 illustrates a three-factor structure that supports this idea. This factor structure provides separate but related g and EF factors. The first factor represents a type of performance factor. Careful consideration lead the author to believe that this first factor (Typing Speed, CAPTCHA, Stroop) represented a contextual performance factor that included underlying familiarity or ability with computer keyboards (e.g., the Stroop task had participants performing the task using the keyboard and generally would do better if they did not have to look down for their
keystrokes). In accordance with Spearman’s theory of intelligence, this factor would represent *specific* ability, as it is contextual to the tasks and setting it is performed in.

The second factor that was extracted is thought to represent general intelligence as its primary loadings were from the Wonderlic and the Operation Span task and the Mental Rotation Task. The Operation Span task and the Wonderlic are the only two tasks that include forms of verbal and mathematical ability in them, thereby representing classical measures of psychometric intelligence, whereas the others are considered more pure measures of cognitive functioning.

The third factor therefore represents some form of global Executive Function, as defined by the inclusion of processing speed (RT), attention (RUFF), and executive function/response regulation and inhibition (STROOP). This factor represents a more cognitive-based approach to intelligence in that Executive Function is comprised of and regulates the cognitive operations involved in planned, intelligent behaviour. Therefore, this three-factor representation differentiates between psychometric intelligence and neural-cognitive intelligence/Executive Function.

As detailed previously, latent variables of *g* and EF were created using the CFA factor loadings based on the 3-factor structure above. Correlations between these factors provide an interesting look at the disparity between EF and *g*. CAPTCHA performance is highly correlated with *g* (*r* = .36) but not EF (*r* = .18). However, there is a strong positive correlation between EF and *g* (*r* = .37). These correlations, along with the 3-factor structure, indicate that EF and *g* are distinct but related factors.

Hypothesis 2 was examined in the light of having two distinct but related factors, representing EF and *g*. Hypothesis 2 was not supported, the mediation of the *g*-performance relationship was not successful. However, it appears as though working memory is driving the
relationship behind intelligence and performance on the criterion.

Extrapolating this relationship to workplace job performance, EF would add no predictive power above and beyond general intelligence. However, previous research supports the idea that EF could be a useful predictor when examining the cognitive-work performance relationship (Scherbaum et al., 2012). This is by no means conclusive evidence shutting the door on EF. The relationship between EF and \(g \) espoused in this research does not provide a complete picture. As well, the intelligence-working memory relationship should be investigated further as it illustrates some interesting questions regarding the performance of working memory and its role in intelligence.

The discussion that follows will review the CAPTCHA task, evaluating the overlay with cognitive operations. Further, it will seek to understand the CAPTCHA task and performance within the context of \(g \) and Executive Function. Further, it will discuss the implications for \(g \) and EF from a testing perspective, and finally the future research that is need to fully investigate the relationship between EF and \(g \) and the application of this research approach to other task performance domains.

Williams (2013) highlights the connection between speed and accuracy, as measured by the CAPTCHA task, and their relation to effective organizations. “Businesses value employees who put forth a considerable amount of persistence and effort into tasks at hand, however, without executing these tasks with speed and meeting deadlines, this attention to detail does not lead to efficiency. The goal of all organizations is to make profit through organizational efficiency, where effective task performance is critical.” (Campbell, et al., 1990; as cited in Williams, 2013, p. 4). The CAPTCHA task provides exactly that, a simple, novel task for participants that focuses on accuracy and speed. Participants must decipher strings of letters and
numbers and use a keyboard to enter the characters into an on-screen text box. Participants are given 5 minutes to attempt to decipher up to 75 unique letter/number strings while simultaneously provided with real-time feedback on their accuracy and speed (as separate percentages of correct responses and completed responses).

From a participant’s perspective, in order to decipher and respond to the string correctly, they must: maintain focus on the string of scrambled and rotated letter/numbers, mentally separate individual characters that are overlapping, mentally orient characters that may be rotated, hold identified characters in their memory as they continue to unscramble more characters in the string, process all or some of their identified characters for entry into the text box, and finally translate mental images into keystrokes for entry. It is important to note that all of this must be done with precision and speed as they attempt to decipher up to 75 strings in 5 minutes, which is likely impossible for the average participant. Further, the complexity and difficulty of the strings of characters has been increased substantially from previous studies (i.e., Stermac-Stein, 2011, Williams, 2011).

Evaluating the nuanced features of the CAPTCHA task and the individual mental processes that participants must undertake in order to attempt the task provides a framework for understanding the overlay of the cognitive operations selected for this study. Moving through the participants’ thoughts and behaviours during the task with a focus on cognitive operations illustrates the applicability of both intelligence and Executive Functioning during the task: as the individual maintains focus on the string and selects individual characters to decipher, they are utilizing attentional processes of the brain. While they mentally separate individual characters and orient those that have been rotated, they are utilizing selective attention and visual-spatial ability. As they identify characters and begin to hold them in mental storage for later entry, they
are utilizing their working memory. When participants begin to process their characters for entry into the textbox and begin typing the letters, they are utilizing their cognitive processing speed. Throughout this process, individuals often mistake some letter for numbers, some numbers as letters, some similar letters and other letters, and so on. In order to avoid incorrect identification and entries, participants must utilize their response inhibition and impulse control in order to correctly identify the character that may look similar to another. This, coupled with their overall management and control of their cognitive processes, is done through their Executive Functioning. This entire process, managed under the control of EF is done quickly and efficiently. Participants average response rate per CAPTCHA string was 12.17 seconds. All of the above processes and functions were done repeatedly in (roughly) 12 second intervals for up to five minutes.

Participants completing the CAPTCHA task theoretically rely on the following cognitive operations for performing the task: attention, working memory, visual-spatial ability, processing speed, and executive function. These theoretical links informed the selection of cognitive tasks for the study: the Ruff 2 & 7 (attention), Operation Span (working memory), Mental Rotation Task (visual-spatial ability), Deary-Liewald Reaction Time (processing-speed), and the Stroop task (executive function). Together, these tasks and their respective cognitive functions (among others) comprise an overarching Executive Function ability that delineates and regulates cognitive operations in the brain. However, previous evidence supports the ability of psychometric g to predict performance on the CAPTCHA task (Penner, 2012; Williams, 2013). Therefore, what is driving performance on the CAPTCHA task, general intelligence or Executive Functions control over individual cognitive operations?
Implications

This research provides insight into the underlying factors contributing to general intelligence, Executive Function, and job performance. The knowledge gained from this research has both theoretical and practical benefits. Theoretically, the research sheds new light on psychometric g, addresses the cognitive ability research deficit in I-O, and acts as a catalyst for further research into the cognitive underpinnings of intelligence. Furthermore, there are potential implications for adverse impact and the understanding of individual differences.

Adverse impact is defined as, “...when the selection rate for a protected group is lower than that for the relevant comparison group (which has the higher selection rate).” (Hackett, Catano, & Wiesner, 2009, p. 88). Adverse impact is most often associated with the use of psychometric intelligence tests in hiring and selection procedures. Current thinking on adverse impact and intelligence testing focuses on the dominance of crystallized intelligence in current psychometric intelligence tests, particularly the Wonderlic Personnel Test (Matthews & Lassiter, 2007). Crystallized intelligence is commonly thought of as the knowledge or information gained through life and educational settings (Flanagan, McGrew, & Ortiz, 2000). Further, “crystallized intelligence includes the ability of the individual to apply this acquired knowledge when faced with problems. Usually, measures assessing crystallized intelligence employ language skills, vocabulary, a degree of cultural and scientific knowledge and the ability to understand oral communication.” (Bell, et al., 2002; as cited in Williams, 2013, p. 8).

An understanding of cognitive ability tests, the crystalized knowledge utilized in them, and the adverse impact produced by them, provides critical implications for the domain of research emphasized in this study. The examination of alternative forms of intelligence testing (i.e., Executive Function) presents a potential solution to the problematic individual differences
seen in traditional psychometric g tests. Previous alternatives to traditional measures of intelligence (e.g., Ravens Progressive Matrices) that attempt to focus more on fluid intelligence (i.e., natural cognitive ability not influenced by learning, education, and life) have taken steps in the right direction but ultimately fail to provide a solution devoid of adverse impact (Cook, 2009; Hausdorf, LeBlanc, Chawla, 2003).

Investigation of cognitive focused measures of intelligence/ability testing for application in the workplace is an avenue of research that is relatively unexplored (Scherbaum et al., 2012). Cognitive tasks and Executive Functioning provide a potential solution that may be able to reduce reliance on verbal and mathematical ability, thereby reducing crystallized intelligence, focusing on cognitive abilities that are less susceptible to practice and education effects, reducing adverse impact, and creating new avenues of test development in I/O Psychology.

The new avenue of test development for I/O Psychology will provide an alternative approach to developing predictive validity measures for job performance. Focusing on developing tests for the workplace around cognitive abilities and EF allows for more focused selection and development. Understanding how specific cognitive operations are involved in specific tasks, roles, and jobs will allow for more nuanced testing and insight. Rather than testing for general mental ability, organizations using tests of specific and overarching cognitive functions will be able to decrease adverse impact and increase performance through targeted development programs focusing on specific cognitive functions.

Fundamentally, this research does not provide the evidence necessary to allow the aforementioned implications to come to fruition, however, it does provide a starting ground in which to launch further studies. Before discussing what future research may come out of this investigation, it is important to consider the limitations of the present study and how they may
have affected the results.

Limitations

Several of the common limitations plaguing social science research are present in this study. Utilization of an undergraduate student population at a major research university presents generalizability concerns when discussing job performance in an organization. Further, university students most likely possess higher than average intellect and ability due to the entrance requirements of major Canadian universities. These students come from a Western, Educated, Industrialized, Rich, and Democratic (WEIRD) population and global comparisons are thus severely limited.

Further limitations are present in the design of the study. Having participants complete cognitive tasks for credit in a laboratory environment may increase motivational confounds and influence their ability and focus on the tasks. Moreover, having a battery of cognitive tests of varying types may impact performance through mental exhaustion or selective effort. While the order of tests was altered every session, all six participants in each session must complete the battery in the same order due to administrative constraints. It was observed that some tests were favoured heavily compared to others in terms of enjoyment (i.e., participants did not enjoy completing the OSPAN task) which may impact directed effort.

Completing these tasks in a group environment may also influence participants who are either competitive or weary of others seeing their scores. While participants were never given information on others’ performance, the close environment may naturally influence their perceptions of competition.

The lack of support for Hypothesis 2 is likely due to a multitude of factors. Several issues are present with the selection of tasks and criterion. Most notably, the CAPTCHA task
may not have evoked a high enough level of complex cognitive functioning needed to establish a significant relationship with Executive Function. While the CAPTCHA task utilizes a substantial amount of lower level cognitive operations, the missing link with problem solving, reasoning, planning, and flexibility may be limiting the amount of higher-order functioning typically present in Executive Function. The selected cognitive tasks all play a fundamental role in contributing to these higher-order operations but may not be utilized to their full extent during the CAPTCHA task.

Further, the unsuitability of the Ruff 2 & 7 as a measure of attention in a work performance context was a substantial factor in limiting the applicability of the results. While previously discussed, the inability to extract predictive variance out of the only measure of pure attentional processing severely limits the results of the study. Attention is thought to play a critically important role in EF and overlap extensively with intelligent functioning (Coull, 1998).

Additionally, the CAPTCHA task is more related to typing ability than originally thought. The single best predictor of the CAPTCHA task, by a large margin, is typing ability. The lack of relationship between typing ability and psychometric g, means that there is no overlap between the variance accounted for by typing ability and general intelligence. Therefore, a large proportion of the variance in CAPTCHA performance in unaccounted for. Previous research provides mixed results regarding motivation and its role in predicting CAPTCHA performance (e.g., Stermac-Stein, 2011; Williams, 2011).

Most importantly, EF as a construct is not as clearly defined as general intelligence. Therefore, the researcher utilized a definition of EF that fit best with the model of the research, one that comprises solely cognitive tasks linked to the criterion variable. While EF is often discussed in terms of attention and working memory, current thinking also includes higher-level
concepts such as problem solving, reasoning, planning, and execution (Chan et al., 2008). Therefore, a partial content valid operationalization of EF might have limited the ability of EF to predict performance. It is hard to extrapolate the influence of this limitation, as the CAPTCHA criterion only allowed for g or EF to influence certain aspects of performance (i.e., deciphering letters/numbers, holding them in memory, etc.).

Further limitations are present in domain of performance covered by the CAPTCHA task. As the CAPTCHA only measures performance in a limited and specific task environment, generalizability of performance across task and role domains is limited. It is believed that the CAPTCHA task represents fundamental cognitive operations and abilities that are present in a large proportion of tasks and work contexts, the limited scope of performance may not provide the most adequate representation of performance on the job. This limitations provides ample opportunity for future research through expansion of the performance domain.

Future Research

Further research is needed as EF presents an exciting pathway into exploring job performance. Current knowledge on intelligence predicting work performance is focused solely on using tasks that largely involve components of verbal and mathematical reasoning, which are often thought to be highly influential in producing adverse impact. Executive Function provides a potential solution by allowing “intelligence” as a predictor to be interpreted as purely cognitive functioning. This side-stepping of general intelligence should allow for cleaner measurement as it has the potential to ignore more social and environmental factors of learning and education (i.e., crystallized intelligence) than do traditional measures of psychometric g.

Future research should seek to expand the performance domain in order to investigate the domain of influence that EF can have when higher-order performance concepts are involved (i.e.,
reasoning and planning). Current research suggests that as jobs become more complex, general intelligence is more predictive of performance (Hunter, 1984). Is it possible that at those high levels of complexity, EF could be a better or cleaner predictor of performance? This current research is limited as the complexity of the task is relatively low and requires very little high-level processing in terms of executing successful performance on the task. Expansion of the construct of work performance in the laboratory is a crucial step in moving this area of research forward.

Future research should look towards expanding the performance domain in a laboratory setting. Utilizing a complex performance domain opens the door to a wide variety of Executive Functions that are not seen at the task level. Through incorporating a higher level of performance objectives and behaviours (e.g., a sales interaction), the investigation of EF reaches the levels seen by general intelligence. On an equal playing field, EF is theorized to have a substantial effect on performance, through reasoning, planning, problem solving, decision making, and complex thought processes (Chan et al., 2008).

Currently, the Raven’s Progressive Matrices (RPM) provides the highest-level and most abstract measurement of general intelligence. However, at its core it can be thought of as pattern recognition. Linking this style of thinking and measurement of intelligence is more difficult than establishing a case for Executive Function, which can be thought of as the control centre of high-level cognitive functioning.

Conclusion

This research aimed to investigate the most influential concepts in I-O psychology. Further understanding of psychometric g and work performance is crucial to the progression and advancement of these concepts and the field of I-O. Continued understanding of psychometric g
and the related aspects of Executive Function and its underlying cognitive functions will further validate its relationship with job performance and continue to develop a deeper comprehension of the key drivers of employee performance.
References

Fancher, R.E., (1999.) A Historian’s Look at the g Factor. *Psycoloquy*: 10(058)

Johnson, W., Nijenhuis, J. T., & Bouchard, T. J. (2008). Still just 1 g: Consistent results from five test batteries. *Intelligence, 36*(1), 81–95. Doi:10.1016/j.intell.2007.06.001

Appendix of Tables

Table 1. Computation of Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPM</td>
<td>Total words per minute as reported by website task</td>
</tr>
<tr>
<td>WPT</td>
<td>Raw psychometric g score provided by Wonderlic</td>
</tr>
<tr>
<td>RT (CorrMean)</td>
<td>Average response time of correct responses in Four-Choice Reaction Time Task</td>
</tr>
<tr>
<td>CAPTCHA</td>
<td>Multiplicative of participant’s speed and accuracy percentage data on CAPTCHA task</td>
</tr>
<tr>
<td>MRT</td>
<td>Sum of total correct responses on Mental Rotation Task as provided by scoring instructions</td>
</tr>
<tr>
<td>OSPAN</td>
<td>Multiplication of participants sum score on words and sum score on operations</td>
</tr>
<tr>
<td>RUFF</td>
<td>Overall attention performance score as provided by Ruff 2 & 7 scoring instructions</td>
</tr>
<tr>
<td>STROOP</td>
<td>Difference in response time between congruent and incongruent trials</td>
</tr>
</tbody>
</table>
Table 2. Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>94</td>
<td>17.0</td>
<td>31.0</td>
<td>19.13</td>
<td>1.76</td>
<td>3.64</td>
</tr>
<tr>
<td>PTY</td>
<td>94</td>
<td>0.0</td>
<td>14.0</td>
<td>2.39</td>
<td>2.64</td>
<td>1.47</td>
</tr>
<tr>
<td>FTY</td>
<td>94</td>
<td>0.0</td>
<td>7.0</td>
<td>0.56</td>
<td>1.43</td>
<td>2.96</td>
</tr>
<tr>
<td>WPM</td>
<td>94</td>
<td>14.00</td>
<td>96.00</td>
<td>44.45</td>
<td>17.21</td>
<td>1.05</td>
</tr>
<tr>
<td>WPT</td>
<td>94</td>
<td>13.0</td>
<td>30.0</td>
<td>22.52</td>
<td>3.78</td>
<td>-0.14</td>
</tr>
<tr>
<td>RT</td>
<td>94</td>
<td>-555.0</td>
<td>-303.0</td>
<td>-399.48</td>
<td>57.58</td>
<td>1.22</td>
</tr>
<tr>
<td>MRT</td>
<td>94</td>
<td>9.0</td>
<td>45.00</td>
<td>28.34</td>
<td>9.09</td>
<td>-0.37</td>
</tr>
<tr>
<td>RUFF</td>
<td>94</td>
<td>55.44</td>
<td>478.82</td>
<td>245.37</td>
<td>83.16</td>
<td>1.08</td>
</tr>
<tr>
<td>OSPAN</td>
<td>94</td>
<td>88.00</td>
<td>1110.0</td>
<td>505.53</td>
<td>254.06</td>
<td>0.59</td>
</tr>
<tr>
<td>STROOP</td>
<td>94</td>
<td>-647.0</td>
<td>69.0</td>
<td>-285.41</td>
<td>172.49</td>
<td>0.85</td>
</tr>
<tr>
<td>CAPTCHA</td>
<td>94</td>
<td>533.40</td>
<td>3333.64</td>
<td>2039.73</td>
<td>594.32</td>
<td>0.03</td>
</tr>
</tbody>
</table>

PTY = Part-Time Years Work Experience, FTY = Full-Time Years Work Experience, WPM = Words Per Minute, WPT = Wonderlic Personnel Test Pre-Test, RT = Deary-Liewald Reaction Time task, MRT = Mental Rotation Task, RUFF = Ruff 2 & 7 Selective Attention Test, OSPAN = Operation Span Task, STROOP = Hanover Stroop Task, STRESS = Post-Hoc Measure of Stress, CAPTCHA = CAPTCHA Task
<table>
<thead>
<tr>
<th>Variable</th>
<th>Gender</th>
<th>Age</th>
<th>PTY</th>
<th>FTY</th>
<th>WPM</th>
<th>WPT</th>
<th>RT</th>
<th>MRT</th>
<th>RUFF</th>
<th>OSPAN</th>
<th>STROOP</th>
<th>STRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTY</td>
<td>--</td>
<td>.395**</td>
<td></td>
</tr>
<tr>
<td>FTY</td>
<td>--</td>
<td>.579**</td>
<td>0.116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPM</td>
<td>-.072</td>
<td>-.133</td>
<td>-.030</td>
<td>0.162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPT</td>
<td>.200</td>
<td>-.182</td>
<td>-.106</td>
<td>.208*</td>
<td>.072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>.377**</td>
<td>.053</td>
<td>-.019</td>
<td>0.028</td>
<td>.129</td>
<td>.225*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT</td>
<td>.406**</td>
<td>-.140</td>
<td>-.026</td>
<td>0.110</td>
<td>-.023</td>
<td>.218*</td>
<td>.373**</td>
<td>.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUFF</td>
<td>.149</td>
<td>.141</td>
<td>0.128</td>
<td>.167*</td>
<td>.065</td>
<td>-.009</td>
<td>.263*</td>
<td>.133</td>
<td>.930</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSPAN</td>
<td>.224*</td>
<td>-.207*</td>
<td>.240**</td>
<td>0.123</td>
<td>.021</td>
<td>.476**</td>
<td>.312**</td>
<td>.211*</td>
<td>.160</td>
<td>.870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STROOP</td>
<td>.002</td>
<td>.032</td>
<td>0.013</td>
<td>0.158</td>
<td>.105</td>
<td>.046</td>
<td>.188</td>
<td>.051</td>
<td>.167</td>
<td>.116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRESS</td>
<td>--</td>
<td>-.047</td>
<td>-.091</td>
<td>0.098</td>
<td>.082</td>
<td>.084</td>
<td>-.107</td>
<td>.013</td>
<td>-.207*</td>
<td>-.075</td>
<td>.116</td>
<td></td>
</tr>
<tr>
<td>CAPTCHA</td>
<td>-.051</td>
<td>-.138</td>
<td>-.140</td>
<td>.140</td>
<td>.468**</td>
<td>.277**</td>
<td>.147</td>
<td>.184</td>
<td>.107</td>
<td>.309**</td>
<td>.122</td>
<td>.066</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (1-tailed). * Correlation is significant at the 0.05 level (1-tailed). Values along the diagonal represent reliability (Cronbach’s alpha). PTY = Part-Time Years Work Experience, FTY = Full-Time Years Work Experience, WPM = Words Per Minute, WPT = Wonderlic Personnel Test Pre-Test, RT = Deary-Liewald Reaction Time task, MRT = Mental Rotation Task, RUFF = Ruff 2 & 7 Selective Attention Test, OSPAN = Operation Span Task, STROOP = Hanover Stroop Task, STRESS = Post-Hoc Measure of Stress, CAPTCHA = CAPTCHA Task
Table 4. Exploratory Factor Analysis without Covariate and Criterion

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPT</td>
<td>.866</td>
<td>-.277</td>
</tr>
<tr>
<td>RT</td>
<td>.445</td>
<td>.505</td>
</tr>
<tr>
<td>MRT</td>
<td>.491</td>
<td>.239</td>
</tr>
<tr>
<td>OSPAN</td>
<td>.779</td>
<td>.008</td>
</tr>
<tr>
<td>RUFF</td>
<td>-.074</td>
<td>.769</td>
</tr>
<tr>
<td>STROOP</td>
<td>-.076</td>
<td>.640</td>
</tr>
</tbody>
</table>

Table 5. Exploratory Factor Analysis of All Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPM</td>
<td>.888</td>
<td>-.165</td>
<td>.115</td>
</tr>
<tr>
<td>WPT</td>
<td>.106</td>
<td>.823</td>
<td>-.276</td>
</tr>
<tr>
<td>RT</td>
<td>-.043</td>
<td>.428</td>
<td>.536</td>
</tr>
<tr>
<td>CAPTCHA</td>
<td>.757</td>
<td>.278</td>
<td>.015</td>
</tr>
<tr>
<td>MRT</td>
<td>-.188</td>
<td>.551</td>
<td>.262</td>
</tr>
<tr>
<td>OSPAN</td>
<td>.052</td>
<td>.768</td>
<td>-.002</td>
</tr>
<tr>
<td>RUFF</td>
<td>.000</td>
<td>-.058</td>
<td>.762</td>
</tr>
<tr>
<td>STROOP</td>
<td>.192</td>
<td>-.125</td>
<td>.611</td>
</tr>
</tbody>
</table>

Table 6. Exploratory Factor Analysis of All Variables Restricted to Two Factors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPM</td>
<td>-.172</td>
<td>.900</td>
</tr>
<tr>
<td>WPT</td>
<td>.587</td>
<td>.117</td>
</tr>
<tr>
<td>RT</td>
<td>.708</td>
<td>-.010</td>
</tr>
<tr>
<td>CAPTCHA</td>
<td>.191</td>
<td>.775</td>
</tr>
<tr>
<td>MRT</td>
<td>.677</td>
<td>-.165</td>
</tr>
<tr>
<td>OSPAN</td>
<td>.700</td>
<td>.073</td>
</tr>
<tr>
<td>RUFF</td>
<td>.387</td>
<td>.031</td>
</tr>
<tr>
<td>STROOP</td>
<td>.220</td>
<td>.218</td>
</tr>
</tbody>
</table>
Table 7. Measurement Models

<table>
<thead>
<tr>
<th>Model Name</th>
<th>CMIN/DF</th>
<th>P</th>
<th>GFI</th>
<th>AGFI</th>
<th>CFI</th>
<th>PCFI</th>
<th>PCLOSE</th>
<th>RMSEA</th>
<th>AIC</th>
<th>BIC</th>
<th>CHISQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>General fit rules</td>
<td></td>
<td>< 3</td>
</tr>
<tr>
<td>1. CFA: 1 Factor with WPT</td>
<td>1.547</td>
<td>0.125</td>
<td>0.95</td>
<td>0.883</td>
<td>0.922</td>
<td>0.553</td>
<td>0.255</td>
<td>0.077</td>
<td>37.926</td>
<td>68.445</td>
<td>13.926</td>
</tr>
<tr>
<td>2. CFA: 1 Factor without WPT</td>
<td>0.594</td>
<td>0.705</td>
<td>0.988</td>
<td>0.963</td>
<td>1</td>
<td>0.5</td>
<td>0.795</td>
<td>0</td>
<td>22.968</td>
<td>48.401</td>
<td>2.968</td>
</tr>
<tr>
<td>3. CFA: 2 Factor from EFA (covary)</td>
<td>0.704</td>
<td>0.688</td>
<td>0.98</td>
<td>0.947</td>
<td>1</td>
<td>0.533</td>
<td>0.807</td>
<td>0</td>
<td>31.636</td>
<td>64.699</td>
<td>5.636</td>
</tr>
<tr>
<td>4. CFA: 2 Factor (3 each)</td>
<td>0.981</td>
<td>0.448</td>
<td>0.973</td>
<td>0.928</td>
<td>1</td>
<td>0.533</td>
<td>0.611</td>
<td>0</td>
<td>33.849</td>
<td>66.912</td>
<td>7.849</td>
</tr>
<tr>
<td>5. CFA: All variables under 1 factor</td>
<td>2.269</td>
<td>0.001</td>
<td>0.897</td>
<td>0.815</td>
<td>0.752</td>
<td>0.537</td>
<td>0.011</td>
<td>0.117</td>
<td>77.38</td>
<td>118.073</td>
<td>45.38</td>
</tr>
<tr>
<td>6. CFA: All variables under 2 factors</td>
<td>1.477</td>
<td>0.082</td>
<td>0.932</td>
<td>0.872</td>
<td>0.911</td>
<td>0.618</td>
<td>0.245</td>
<td>0.072</td>
<td>62.072</td>
<td>105.308</td>
<td>28.072</td>
</tr>
<tr>
<td>7. CFA: All variables in 3 factors (from EFA)</td>
<td>1.16</td>
<td>0.289</td>
<td>0.954</td>
<td>0.904</td>
<td>0.973</td>
<td>0.591</td>
<td>0.527</td>
<td>0.041</td>
<td>57.712</td>
<td>106.034</td>
<td>19.72</td>
</tr>
</tbody>
</table>

Chi-square difference test for Model 1 (df = 9) and 2 (df = 5) = 10.992, df = 4, p = .027

Chi-square difference test for Model 1 (df = 9) and 3 (df = 8) = 8.29, df = 1, p = .004

Chi-square difference test for Model 5 (df = 20) and 6 (df = 19) = 17.308, df = 1, p = .000

Chi-square difference test for Model 6 (df = 19) and 7 (df = 17) = 8.352, df = 2, p = .015
<table>
<thead>
<tr>
<th>Model Number</th>
<th>CMIN/DF</th>
<th>P</th>
<th>GFI</th>
<th>AGFI</th>
<th>CFI</th>
<th>PCFI</th>
<th>PCLOSE</th>
<th>RMSEA</th>
<th>AIC</th>
<th>BIC</th>
<th>CHISQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>General fit rules</td>
<td>>.05</td>
<td>>.95</td>
<td>>.80</td>
<td>>.90</td>
<td>>.05</td>
<td><.05</td>
<td>< 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM Model 1</td>
<td>2.494</td>
<td>0</td>
<td>0.895</td>
<td>0.811</td>
<td>0.708</td>
<td>0.506</td>
<td>0.004</td>
<td>0.127</td>
<td>81.887</td>
<td>122.579</td>
<td>49.887</td>
</tr>
<tr>
<td>SEM Model 2</td>
<td>1.578</td>
<td>0.052</td>
<td>0.929</td>
<td>0.865</td>
<td>0.893</td>
<td>0.606</td>
<td>0.181</td>
<td>0.079</td>
<td>63.983</td>
<td>107.219</td>
<td>29.983</td>
</tr>
<tr>
<td>SEM Model 3</td>
<td>1.504</td>
<td>0.068</td>
<td>0.928</td>
<td>0.87</td>
<td>0.901</td>
<td>0.515</td>
<td>0.222</td>
<td>0.074</td>
<td>62.089</td>
<td>102.781</td>
<td>30.089</td>
</tr>
<tr>
<td>SEM Model 4 (2 factor-2vs3each)</td>
<td>1.952</td>
<td>0.008</td>
<td>0.916</td>
<td>0.84</td>
<td>0.823</td>
<td>0.559</td>
<td>0.048</td>
<td>0.101</td>
<td>71.09</td>
<td>114.326</td>
<td>37.09</td>
</tr>
</tbody>
</table>
Appendix A: Information/Consent Form

Consent to Participate in Research

Title of Project: CAPTCHA Task Study

You are asked to participate in a research study conducted by Jonathan Stermac-Stein and Dr. Peter Hausdorf, from the Department of Psychology at the University of Guelph. The results will be contributed to Jonathan’s Master’s thesis research.

If you have any questions or concerns about the research, please feel free to contact either Jonathan Stermac-Stein (jstermac@uoguelph.ca) or Dr. Peter Hausdorf (519.824.4120 x53976; phausdor@uoguelph.ca).

PURPOSE OF THE STUDY
The main purpose of this study is to understand performance on cognitive tasks and the CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) task. The CAPTCHA task involves deciphering a string of distorted letter and numbers and inputting them into a computerized text box.

PROCEDURES
If you volunteer to participate in this study, we would ask you to do the following things:

1) Read a description about a new laboratory task (i.e., the CAPTCHA task),
2) Answer questions about yourself and the CAPTCHA task
3) Complete six cognitive-based tasks, and
4) Complete the CAPTCHA task.

Please note that participation will take no longer than 120 minutes.

POTENTIAL RISKS AND DISCOMFORTS
The questions asked and the tasks are innocuous and there are no reasonably foreseeable risks, discomforts, and/or inconveniences associated with the current study.

POTENTIAL BENEFITS TO PARTICIPANTS AND/OR TO SOCIETY
Participants will learn about laboratory research methods in general and specifically, psychological research. You may not benefit from participating in this study.

Regarding the scientific community, this study may help to redress a gap in the industrial and organizational psychology literature.

Please note that the results will not be made available to participants while completing the study, as the tasks require further scoring in order to produce a meaningful result. Participants are asked to email the researchers if they wish to receive their results once they have been scored. Participants who wish to receive information regarding the final results of the research study may contact the researchers and will be notified when they are available.

PAYMENT FOR PARTICIPATION
As a participant in this study you will receive one participation credit.

CONFIDENTIALITY
Every effort will be made to ensure confidentiality of any identifying information that is obtained in connection with this study. All data will be stored for seven years without identifying information. Identifying information will be immediately destroyed following participation in this study. Your unique ID number will be stored instead and any link of your information to your ID number will be removed completely. Data will be stored in a locked filing cabinet within a locked room. Electronic data will be stored on password-protected computers that are locked within a room. Data will not be shared with anyone other than in an aggregated format so as to not reveal individual participant information.

PARTICIPATION AND WITHDRAWAL
You can choose whether to be in this study or not. If you volunteer to be in this study, you may withdraw at any time without consequences of any kind (participants will still get course credit if they withdraw). You may exercise the option of removing your data from the study (by letting the researchers know of your decision). You may also refuse to answer any questions you don't want to answer and still remain in the study. The investigator may withdraw you from this research if circumstances arise that warrant doing so.

If you volunteer to be in this study, you may withdraw at any time (simply inform the experimenter).

RIGHTS OF RESEARCH PARTICIPANTS
You are not waiving any legal claims, rights, or remedies because of your participation in this research study. This study has been reviewed and received ethics clearance through the University of Guelph Research Ethics Board. If you have questions regarding your rights as a research participant and/or the use and safety of human subjects in this research project, contact:

Research Ethics Coordinator
Telephone: (519) 824-4120, ext. 56606
Thanks for considering to participate in our study!

Jonathan Stermac-Stein
jstermac@uoguelph.ca
Department of Psychology
University of Guelph

Dr. Peter Hausdorf
phausdor@uoguelph.ca
Department of Psychology
University of Guelph

SIGNATURE OF RESEARCH PARTICIPANT

I have read the information provided for the study “CAPTCHA Task Study” as described herein. My questions have been answered to my satisfaction, and I agree to participate in this study. I have been given a copy of this form.

Name of Participant (please print)

Signature of Participant

_________________________ ______________________
Date

SIGNATURE OF WITNESS

Name of Witness (please print)

Signature of Witness

_________________________ ______________________
Date

[The witness is ideally NOT the investigator, but if there is no readily available alternative, the investigator can act as witness.]
Appendix B – Test Materials

Participant ID Number: _______________

Please respond to the following questions.

General Demographic Questions:

1) What is your sex? _____ Female _____ Male _____ Other

2) How old are you? _____ (in years)

3) How much part-time work experience do you have? _____ Years, _____ Months

4) How much full-time work experience do you have? _____ Years, _____ Months

Typing Test (10 Fast Fingers)

What was your Words Per Minute (WPM) result? ________

How many correct words? ________

How many wrong words? ________

What is your percentile score (percentage better than)? ________

Stroop Experiment

1. Condition: XXX Coloured

 Stroop RT: ________

 Stroop Accuracy: ________

2. Condition: Congruent Words

 Stroop RT: ________

 Stroop Accuracy: ________
3. Condition: Incongruent Words

Stroop RT: __________

Stroop Accuracy: __________

Operation Span

Write T or F for each presented equation. Each set represents several slides, therefore, you must write across, not down.

When prompted, write the words below.

Practice Trial

Set (T/F):

Words:

ACTUAL TRIALS

SET 1:
WORDS:

SET 2:
WORDS:

SET 3:
WORDS:

SET 4:
WORDS:

SET 5:
WORDS:

SET 6:
WORDS:

SET 7:
WORDS:

SET 8:
WORDS:

SET 9:
WORDS:

SET 10:
WORDS:
[TO BE ADMINISTERED AFTER THE CAPTCHA TASK HAS BEEN COMPLETED]

1) How well did you do on the CAPTCHA task?
A: ___

2) What percentage of the CAPTCHAs did you complete?
A: ___

3) What was your accuracy score on the CAPTCHA task?
A: ___

For the following 5 questions, use the scale below to answer.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>Disagree</td>
<td>Slightly Disagree</td>
<td>Neither Agree nor Disagree</td>
<td>Slightly Agree</td>
<td>Agree</td>
<td>Strongly Agree</td>
</tr>
</tbody>
</table>

4) I felt stressed during the study: 1 2 3 4 5 6 7

5) I was frustrated by the tasks: 1 2 3 4 5 6 7

6) I was stressed by the time pressures: 1 2 3 4 5 6 7

7) I was stressed by the feedback: 1 2 3 4 5 6 7

8) I found the tasks difficult: 1 2 3 4 5 6 7
9) I enjoyed the tasks:

Appendix C – Cognitive Tasks

General test of typing speed

The 10 Fast Fingers online typing test will be used to assess participants’ typing speed as a measure of both computer familiarity and speed at which they will be able to enter the CAPTCHA letters and numbers. The typing test can be found online at: http://10fastfingers.com/typing-test/english

The following is a screenshot of the test.

Wonderlic Personnel Test – General Mental Ability (g)

Participants’ GMA will be assessed using the WPT, a valid measure of cognitive ability (Dodrill & Warner, 1988; McKelvie, 1989). Wonderlic data shows adequate internal consistency, ranging from .88 to .94, outside data sources ranging from .83 to .89, and test-retest reliability range from .82 to .94 (McKelvie, 1989; Wonderlic Inc., 1992). As a timed, online test,
the WPT allots a maximum of eight minutes to complete 30 questions. The questions range from mathematical equations to verbal competency questions. The test yields one score of GMA for each participant.

The following 2 questions are a sample of the test:

1. How many of the four pairs listed below are exact duplicates?

 - 12345 12345
 - 9120651 9120561
 - 13201201 13210210
 - 87101101 87101171
 - 66663333 66663333

CREDITABLE CREDULOUS - Do these words

(1) have similar meanings (2) have contradictory meanings (3) mean neither the same nor opposite

Executive Function – Stroop Test

Executive Function will be measured using an online Stroop Test called the Stroop Experiment, published by John H. Krantz from Hanover College. This online version of the popular Stroop Test, allows for adjustment of a multitude of settings and group administration. Participants will be given three successive trials, first coloured X’s in order to become familiar with the task, then a colour-word printed in the same colour (e.g., YELLOW), followed by a non-congruent colour-word trial (e.g., YELLOW printed in blue font). This sequence mimics the paper version Victoria Stroop Test. Participants will respond by pressing the appropriate key that
matches the colour of the word or font (e.g., “b” for BLUE or YELLOW printed in blue font, depending on the trial). Each trial will be 20 items and be completed as fast as possible. Participants will be presented with information on the last screen, which will need to be recorded onto a separate sheet of paper. This information will be used to determine their score/result on this task, and does not in itself constitute their score on the task. The results of this task and all other tasks will be provided to participants who email the researcher following their participation. The Stroop Test correlates moderately with other measures of response inhibition (the key facet of Executive Function); Chafetz & Matthew, 2004; May & Hasher, 1998). This task utilized three task trial sections, making it substantially shorter than the 100+ item versions of the test that are often used, yet is more sensitive to difficulties in response inhibition (a key facet of EF; Klein et al., 1997). Used as a tool in the measure of EF, Stroop tests consistently see activation in the frontal lobe during participation in the task (the neuroanatomical location of executive functioning; Spreen et al., 2006; Carter & van Veen, 2007). It also correlates with some measures of attention and working memory, however, this is to be expected as executive function is thought to regulate and control lower level cognitive processes (Weinstein et al., 1999; Kane & Engle, 2003).
Attention – Selective attention test

Attention will be measured by a created selective attention test. It will take 5 minutes to administer. It will measure both sustained and selective attention. It will consist of 20 trials of a visual search and cancellation task. Respondents will be asked to detect and mark all occurrences of pre-determined digits (e.g., 3 and 8). In the first 10 trials, the pre-determined digits will be embedded among letters that serve as distractors. In the next 10 trials, the pre-determined digits will be embedded among numbers. Hits and errors are used to score the test. Speed is measured by the total number of correct hits. Accuracy represents the number of hits to possible hits ratio. Selective attention test are used in neuropsychological research as a valid measure of attention (Neuropsychological Assessment, 1992). Ruff describes the test as follows,

The test consists of a series of 20 trials of a visual search and cancellation task. The respondent detects and marks through all occurrences of the two target digits: "2"
and "7." In the 10 Automatic Detection trials, the target digits are embedded among alphabetical letters that serve as distractors. In the 10 Controlled Search trials, the target digits are embedded among other numbers that serve as distractors. Correct hits and errors are counted for each trial and serve as the basis for scoring the test. Speed scores reflect the total number of correctly identified targets (hits). Accuracy scores evaluate the number of targets identified in relation to the number of possible targets. (Ruff, 2008)

Example of first 10 trials
A3BCDE8FG3HIJK8L3MN8OP8QR3TY3V8WXY3X

Example of second 10 trials
234675824689576513423279546532832198576293

Working Memory – Operation Span Task

Working memory will be assessed using a modified operation span task. The task presented ten trials to participants. Each trial was composed of two to six Powerpoint slides on the computer that auto-advanced every 3 seconds. Each slide in the trial would present participants with a mathematical expression that had already been solved and a simple English word. The participant was required to judge whether the expression was correctly solved by writing down True or False (T/F) while simultaneously trying to remember all of the words presented. Following each trial, participants are given unlimited time to write down all of the word they can remember. Practice trials will familiarize participants with the task. Operation span is designed to measure simultaneous storage and transformation of information utilized in working memory.

Visual-Spatial Ability – Mental Rotations Test

Visual-spatial ability will be assessed using a redrawn Vandenberg and Kuse mental rotations test (MRT). This task will ask participants to state if images of block shapes are the same, not the same, or mirror images of each other, requiring individuals to mentally rotate and overlay each
image. Mental rotation research has a long-standing history in cognitive psychology and the MRT is the original and most widely used measure of visual-spatial ability (Caissie, Vigneau, & Bors, 2009). The following is an accurate representation of a potential item on the test. However, the MRT we are using was designed by Dr. Michael Peters of the University of Guelph and each item includes a sample image and 4 answer options, of which the participant must choose the image that contains the accurate but rotated figure.

(a) ![Sample Image](image.png)

(b) ![Sample Image](image.png)

Mental Rotation Test—Are these two figures the same except for their orientation?

Processing Speed – The Deary-Liewalk Reaction Time Task

Processing speed will be measured using simple and four-choice reaction time tasks, cognitive-experimental-level assessments. Deary, Johnson, and Starr (2010) describe the tasks, using self-contained reaction time boxes, as follows, “For simple reaction time there were eight practice trials and 20 test trials. Simple reaction time testing was followed by four-choice reaction time. For four-choice reaction time there were eight practice trials and 40 test trials. The interval varied between 1 and 3 s for both simple and four-choice reaction time. For simple reaction time, participants pressed a key when a zero appeared in an LCD window. For four-
choice reaction time, participants pressed the appropriate key when 1, 2, 3, or 4 appeared in the window; participants kept the index and middle fingers of their left and right hands lightly on the keys between trials. Participants made few errors on the four-choice reaction time test. Scores for these tests were means for simple and four-choice correct response reaction times.” (p. 222). The task will take approximately five minutes to administer.

Fig. 1 Screen shots of the Deary-Liewald task for the simple reaction time task (left) and the choice reaction time task (right).
Appendix D - CAPTCHA Task

Instructions: As indicated in the task information and prior instructions, this part of the task will involve deciphering 75 strings of 6–8 distorted letters and numbers. Please focus on the computer screen and when the CAPTCHA is presented, please input your response into the field below each CAPTCHA—please note that only uppercase (i.e., capital) letters are included in the task and thus, it does not matter if you input upper or lowercase letters in your response. You also do not need to worry about entering spaces between characters (CAPTCHAs do not account for space between the characters). After inputting your response and pressing the enter key, the next CAPTCHA will be presented. First, we will give you the opportunity to respond to two practice CAPTCHAs. Press enter when you are ready to begin the two practice CAPTCHAs.

![CAPTCHA Image 1]

![CAPTCHA Image 2]

Instructions: Now that the practice CAPTCHAs have been responded to, please ask the researcher any questions that you might have; if you do not have any questions, then please proceed to the actual CAPTCHA task. Press enter when you are ready to begin the actual CAPTCHA task.

![CAPTCHA Image 3]
The main goal of this study was to test what cognitive functions/operations are involved in cognitive ability (psychometric g) that predicts task performance. Much research has been done regarding the link between cognitive ability and performance. Comparatively less research has been done regarding the underlying cognitive functions that contribute to cognitive ability. In the current study, the researchers were attempting to predict task performance based on cognitive operations and psychometric g. The model that the researchers have created relies upon the notion that the link between cognitive ability and task performance is mediated by a group of cognitive functions.

As part of a larger program of research, the results of the current study may help to redress a gap in the industrial and organizational psychology literature (i.e., testing a model of performance regarding a specific task; the underlying cognitive processes involved in psychometric g). It is important to integrate and extend these two conceptualizations because together they may be able to better predict performance, and create a better understanding of general mental ability.

Lastly, in order to get participants engaged in thinking about our task, a cover story (i.e., that the task was actually being used to help a large ticket sales company) was invoked; however, in reality, there is no large ticket sales company. The deception around the large ticket sales company was used to get participants engaged in the task, yet the actual purpose of the task was to assess participants’ general mental ability and performance on specific cognitive operations and a simple novel task.

Thank you for your participation in this study. We appreciate your contribution to our program of research. If you have any further questions about the study, please contact either:

<table>
<thead>
<tr>
<th>Jonathan Stermac-Stein</th>
<th>Dr. Peter Hausdorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>jstermac@uoguelph.ca</td>
<td>phausdor@uoguelph.ca</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>University of Guelph</td>
<td>University of Guelph</td>
</tr>
</tbody>
</table>
Appendix E: Second Consent Form

Title of Project: CAPTCHA Task Study

The purpose of this second consent form is to allow participants the opportunity to agree with a second consent form following the revealing of the deception to ensure a fully informed consent. As indicated on the Debrief Form, in order to get participants engaged in our task, a cover story (i.e., that the task was actually being used to help a large ticket sales company) was invoked; however, in reality, there is no large ticket sales company.

If you have any questions or concerns regarding this deception please feel free to discuss them with the experimenter.

If, after having read about the deception invoked in this study, you are still willing to allow the researchers to use your results in their analyses, please complete the information below.

Thanks for your participation in our study!

Jonathan Stermac-Stein
jstermac@uoguelph.ca
Department of Psychology
University of Guelph

Dr. Peter Hausdorf
phausdor@uoguelph.ca
Department of Psychology
University of Guelph

SIGNATURE OF RESEARCH PARTICIPANT

I have read the information about the deception provided for the study “CAPTCHA Task Study” as described herein. My questions have been answered
to my satisfaction, and I agree to allow the researchers to use my results in their analyses. I have been given a copy of this form.

Name of Participant (please print)

Signature of Participant

Date
Appendix F – Models

Table 9. Extended View of Measurement

<table>
<thead>
<tr>
<th>Model Name</th>
<th>CMIN/DF</th>
<th>P</th>
<th>GFI</th>
<th>AGFI</th>
<th>CFI</th>
<th>PCFI</th>
<th>PCLOSE</th>
<th>RMSEA</th>
<th>AIC</th>
<th>BIC</th>
<th>CHISQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>General fit rules</td>
<td></td>
<td>< 3</td>
</tr>
<tr>
<td>1. CFA: 1 Factor with WPT</td>
<td>1.547</td>
<td>0.125</td>
<td>0.95</td>
<td>0.883</td>
<td>0.922</td>
<td>0.553</td>
<td>0.255</td>
<td>0.077</td>
<td>37.926</td>
<td>68.445</td>
<td>13.926</td>
</tr>
<tr>
<td>2. CFA: 1 Factor without WPT</td>
<td>0.594</td>
<td>0.705</td>
<td>0.988</td>
<td>0.963</td>
<td>1</td>
<td>0.5</td>
<td>0.795</td>
<td>0</td>
<td>22.968</td>
<td>48.401</td>
<td>2.968</td>
</tr>
<tr>
<td>3. CFA: 2 Factor from EFA (covary)</td>
<td>0.704</td>
<td>0.688</td>
<td>0.98</td>
<td>0.947</td>
<td>1</td>
<td>0.533</td>
<td>0.807</td>
<td>0</td>
<td>31.636</td>
<td>64.699</td>
<td>5.636</td>
</tr>
<tr>
<td>4. CFA: 2 Factor (3 each)</td>
<td>0.981</td>
<td>0.448</td>
<td>0.973</td>
<td>0.928</td>
<td>1</td>
<td>0.533</td>
<td>0.611</td>
<td>0</td>
<td>33.849</td>
<td>66.912</td>
<td>7.849</td>
</tr>
<tr>
<td>5. CFA: All variables under 1 factor</td>
<td>2.269</td>
<td>0.001</td>
<td>0.897</td>
<td>0.815</td>
<td>0.752</td>
<td>0.537</td>
<td>0.011</td>
<td>0.117</td>
<td>77.38</td>
<td>118.073</td>
<td>45.38</td>
</tr>
<tr>
<td>6. CFA: All variables under 2 factors</td>
<td>1.477</td>
<td>0.082</td>
<td>0.932</td>
<td>0.872</td>
<td>0.911</td>
<td>0.618</td>
<td>0.245</td>
<td>0.072</td>
<td>62.072</td>
<td>105.308</td>
<td>28.072</td>
</tr>
<tr>
<td>7. CFA: All variables in 3 factors (from EFA)</td>
<td>1.16</td>
<td>0.289</td>
<td>0.954</td>
<td>0.904</td>
<td>0.973</td>
<td>0.591</td>
<td>0.527</td>
<td>0.041</td>
<td>57.712</td>
<td>106.034</td>
<td>19.72</td>
</tr>
</tbody>
</table>
Table 10. Path Models

<table>
<thead>
<tr>
<th>Model Number</th>
<th>CMIN/DF</th>
<th>P</th>
<th>GFI</th>
<th>AGFI</th>
<th>CFI</th>
<th>PCFI</th>
<th>PCLOSE</th>
<th>RMSEA</th>
<th>AIC</th>
<th>BIC</th>
<th>CHISQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>General fit rules</td>
<td></td>
<td>>.05</td>
<td>>.95</td>
<td>>.80</td>
<td>>.90</td>
<td>>.05</td>
<td><.05</td>
<td>< 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM Model 1</td>
<td>2.494</td>
<td>0</td>
<td>0.895</td>
<td>0.811</td>
<td>0.708</td>
<td>0.506</td>
<td>0.004</td>
<td>0.127</td>
<td>81.887</td>
<td>122.579</td>
<td>49.887</td>
</tr>
<tr>
<td>SEM Model 2</td>
<td>1.578</td>
<td>0.052</td>
<td>0.929</td>
<td>0.965</td>
<td>0.893</td>
<td>0.606</td>
<td>0.181</td>
<td>0.079</td>
<td>63.983</td>
<td>107.219</td>
<td>29.983</td>
</tr>
<tr>
<td>SEM Model 3</td>
<td>1.504</td>
<td>0.068</td>
<td>0.928</td>
<td>0.97</td>
<td>0.901</td>
<td>0.515</td>
<td>0.222</td>
<td>0.074</td>
<td>62.089</td>
<td>102.781</td>
<td>30.089</td>
</tr>
<tr>
<td>SEM Model 4 (2 factor-2vs3each)</td>
<td>1.952</td>
<td>0.008</td>
<td>0.916</td>
<td>0.84</td>
<td>0.823</td>
<td>0.559</td>
<td>0.048</td>
<td>0.101</td>
<td>71.09</td>
<td>114.326</td>
<td>37.09</td>
</tr>
<tr>
<td>SEM Model 5 (2 factor, 3 each)</td>
<td>2.017</td>
<td>0.005</td>
<td>0.914</td>
<td>0.837</td>
<td>0.811</td>
<td>0.55</td>
<td>0.037</td>
<td>0.105</td>
<td>72.316</td>
<td>115.552</td>
<td>38.316</td>
</tr>
<tr>
<td>SEM Model 6 (model 3 w/o WPT)</td>
<td>1.564</td>
<td>0.081</td>
<td>0.943</td>
<td>0.887</td>
<td>0.899</td>
<td>0.6</td>
<td>0.215</td>
<td>0.078</td>
<td>49.9</td>
<td>85.506</td>
<td>21.9</td>
</tr>
<tr>
<td>SEM Model 7 (WPT only)</td>
<td>0.478</td>
<td>0.49</td>
<td>0.997</td>
<td>0.98</td>
<td>1</td>
<td>0.333</td>
<td>0.538</td>
<td>0</td>
<td>10.478</td>
<td>23.194</td>
<td>0.478</td>
</tr>
</tbody>
</table>
Figure 1. CFA 1 Factor with WPT
Figure 2. CFA 1 Factor Without WPT
Figure 3. CFA 2 Factor from EFA (covary)
Figure 4. CFA 2 Factor (3 each)
Figure 5. CFA All variables under 1 factor
Figure 6. All variables under 2 factors
Figure 7. All variables in 3 factors (from EFA)
Appendix G – Path Models

Figure 8. SEM Model 1
Figure 9. SEM Model 2

- e1
- e2
- e3
- e4
- e5
- e6

RSTROOPperf, RUFOperf, OSpan, SUMMRT, RCorrMean

ExecFunc

WPT_Q

CAPTCHAPERF

WPM

A series of diagrams showing the relationships between various performance metrics and other variables, with arrows indicating the direction of influence and coefficients representing the strength of the relationship.
Figure 10. SEM Model 3
Figure 11. SEM Model 4
Figure 12. SEM Model 5
Figure 13. SEM Model 6
Figure 14. SEM Model 7
Figure 15. SEM Model 8
Figure 16. SEM Model 9
Figure 17. Layered Reference Model of the Brain
Figure 18. Mediation Model for Hypothesis 2
Figure 19. Multiple Mediation Model for Hypothesis 2