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ABSTRACT 

 

SIMULATION OF SPATIAL AND TEMPORAL VARIABILITY OF SOIL MOISTURE 

USING THE SIMULTANEOUS HEAT AND WATER (SHAW) MODEL: 

APPLICATIONS TO PASSIVE MICROWAVE REMOTE SENSING 

 

Swapan Kumar Roy         Advisor: 

University of Guelph, 2014        Dr. Aaron A. Berg 

 

Agricultural management practices and land surface heterogeneity may impact soil moisture 

retrieval at the footprint scales of passive microwave remote sensing. To evaluate the potential 

impact of land heterogeneity, it was necessary to identify a hydrological model that could 

simulate soil moisture spatial variation due to differences in soil texture, land management and 

crop type.   In this study, the SHAW model was evaluated for its capacity to accurately simulate 

the impact of land management technique.  SHAW simulated soil moisture showed good 

agreement with the observed temporal variations of soil moisture data. Given this performance, 

SHAW was coupled to a radiative transfer model and used to assess the impact of sub-pixel 

heterogeneity (e.g. soil moisture, texture, land cover) on measured brightness temperature. When 

the spatial variability was accounted for, the error between the simulated brightness temperatures 

and the SMOS (Soil Moisture and Ocean Salinity) satellite observations and was improved over 

simulations that do not account for sub-pixel variability. These results have importance for 

improving the assimilation of soil moisture and downscaling passive microwave estimates of soil 

moisture to smaller regions.    
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1.1 Introduction 

Soil moisture is an important component of the hydrological cycle as it plays an integral role in 

mass and energy exchange between the land surface and the atmosphere. Soil moisture can be 

used in forecasting of air temperature and precipitation, for example, Koster et al. (2011) 

demonstrated that the long-lead predictability of air temperature can be improved with the 

initialization of soil moisture in land-atmospheric coupling model. Knowledge of the soil 

moisture state is also important for: irrigation scheduling, nutrient/ fertilizer management plan, 

site-specific management of some plant diseases and insects, crop yield predictions, and plant 

health (Jayasundara et al., 2007; Moran et al., 2004). It is also evident that an extreme of soil 

moisture interferes with agricultural practices leading to reduced agricultural income or the need 

for financial compensation from governmental and insurance organizations. For example, above 

average precipitation when coupled with delayed snow melt contributed to the 2011 Assiniboine 

River flood in western Manitoba, one of the most expensive natural disasters in Canadian 

prairies. The flooding of agricultural fields reduced agricultural production, resulting in 3 million 

acres remaining unseeded (Manitoba, 2013). At the other extreme, reduced soil moisture during 

drought conditions also greatly impact agricultural production. In United States, the 2012 severe 

drought affected 80% of agricultural land, affecting global crop prices particularly for soybeans 

and corn (USDA, 2012). Therefore, the development of modelling and observations systems 

useful for the prediction and observation of soil moisture could have numerous potential 

applications.  

 

An important consideration for soil moisture modelling is the impact of land management 

practices on soil moisture amount and variability at the scale of agricultural fields. In Canada, 
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traditional farming practice follows conventional tillage (CT) where tillage machinery is used to 

break-up soil to increase porosity, incorporate crop residues/ weeds and nutrient for plant growth. 

However, no till (NT) practice has increased from 7% to 56% from 1991 to 2011 in Canada as 

research suggests that NT methods improve soil ecology, result in less erosion and save on fuel 

and labor costs (Statistics Canada, 2011). Typically, NT results in wetter topsoil due to large 

number of micro-pores and existing crop residues. Several studies in Canada and US found a 

difference in drainage between CT and NT, and found inconsistence results (Arshad et al., 1999, 

Patani et al., 1996). A water budget approach presented in McCoy et al. (2006) using 

precipitation, evaporation from eddy covariance, change in water storage from water 

reflectometer and runoff from ponding method found that soil drainage using CT method was 

slightly greater than NT. Using similar monthly water budget approach as described by McCoy 

et al. (2006), Jayasundara et al. (2007) reported 7-12% higher nitrogen (NO3-N concentrations) 

leaching loss for CT compared to NT during 2000-2004 which is important for Ontario farmers 

for nutrient management plans. Given the large changes occurring land management practice 

over Canada, it is important to understand how sensitive hydrological simulation models are to 

land management practices in water budget simulations. 

 

Passive microwave remote sensing techniques are rapidly being developed for determining soil 

moisture in the upper soil layer at large scales (Entekhabi et al., 2010; Kerr et al., 2012). These 

techniques have great potential for large scale, all weather monitoring of soil moisture at the 

surface, and when combined with hydrological models and data assimilation systems, can be 

used to determine full root zone soil moisture estimates. As methods are developed to improve 

the estimation of soil moisture using passive microwave remote sensing techniques, it is 
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important to understand the role of surface heterogeneity, such as those produced by land 

management practice that may impact the soil moisture retrieval at large footprint (e.g. SMOS 

observation) scales. Land surface heterogeneity produces errors in soil moisture retrieval over 

large footprints where numerous factors can affect brightness temperature (which represents 

surface soil moisture) in non-linear way (Panciera et al., 2011). However, very few studies 

assessed the impact of agricultural land surface heterogeneity on soil moisture retrievals over 

highly heterogeneous agricultural land surface conditions. Therefore, it is the goal of this thesis 

to evaluate a hydrological model for the assessment of agricultural water budgets under different 

land management techniques and then use this model for assessing the impact of agricultural 

land management on retrievals of satellite brightness temperature used for the estimation of soil 

moisture.  

 

1.2 Research Aims and Objectives 

This research aims to evaluate the Simultaneous Heat And Water (SHAW) model for different 

agricultural management practices (CT and NT), and the effect of heterogeneity of land surface 

on integrated SHAW and with a radiative transfer modeled to simulate passive microwave 

brightness temperatures. The study has been carried out with the following objectives: 

a) to assess the effect of CT and NT on root zone soil moisture and soil temperature regimes 

using SHAW model for soybean agricultural fields; 

b) to assess the ability of SHAW to predict surface soil moisture under fields with different 

crops and soil texture; and  
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c) to assess the heterogeneity of land surface due to agricultural practice on simulated 

brightness temperatures to improve soil moisture retrievals from a radiative transfer 

model. 
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Motivation 

Soil moisture data are an important requirement for hydrological and weather forecasting models, 

as well as in agricultural watersheds. Traditionally, soil moisture is measured with direct or 

gravimetric soil moisture measurement method with field collected soil samples for oven drying 

in laboratory. This method is destructive and not suitable for large scale mapping. Therefore, 

indirect methods using soil sensor based on dielectric properties of soil water is becoming 

popular due to its reliable, fast and non-destructive nature. The use of soil sensors in a field is 

affected by rodents and vehicle trafficking during agricultural management operations. Moreover, 

indirect measurement is not sufficient for large areas where soil moisture is widely varied with 

precipitation occurrence, soil texture, slope, vegetation, and agricultural management. The 

literature indicates that agricultural land management practices (tillage) impact soil water 

budgets, and that no tillage is gaining popularity over conventional tillage in Canada (McCoy et 

al., 2006; Statistics Canada, 2011). In practice, soil moisture information from surface to deeper 

soil layers is very important for agricultural producers. Therefore, it is necessary to investigate 

the effects of different tillage methods on soil water budgets for the whole root zone soil profile 

using available agricultural hydrological models, like the SHAW (Simultaneous Heat and Water) 

model. 
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Abstract 

Conventional tillage (CT) practices often result in unacceptable levels of wind erosion due to the 

burial of crop residues and exposure of fine soil particles. Therefore, no till (NT) systems with 

minimum disturbance and operational costs are gaining popular widely in Canada. It is well 

known that changes to soil tillage practices can influence soil moisture and soil temperature 

regimes. The objective of this study is to investigate the SHAW (Simultaneous Heat and Water) 

model for simulating management effects of tillage practice on soil temperature and moisture 

regimes for soybean growing season under conventional and no-tillage managements during 

2010. The model was run with supplied weather, site characteristics, plant growth, and initial soil 

moisture and soil temperature data in paired CT and NT treatments. The NT treatment was 

observed to retain more surface soil moisture over the extended summer period (July-September) 

compared to CT due to the interception of soil moisture by existing crop residue. During the 

early growing season, CT gained more surface soil moisture than NT due to disturbance of the 

soil or adopted tillage operation. Overall, the SHAW simulated soil moisture at different soil 

depths followed the general trends of the observed field data. At the overall root zone soil, the 

average root mean square errors (RMSEs) for conventional tillage and no-tillage for the soybean 

growing season were found to be 0.042 m
3
 m

-3 
and 0.028 m

3
 m

-3
, respectively. The trends 

between surface simulated soil moisture and observed data for CT and NT were almost similar (r 

> 0.70**) at all soil depths. The average SHAW over-predicted soil temperatures were 2.6˚C for 

CT and 1.9 ˚C for NT for 1-m soil profile throughout the growing season. Overall, SHAW 

proved adequate in simulating soil moisture and temperature over 1 m soil profile, and therefore 

it may serve as a useful modeling tool for tillage and residue management.  
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Keywords: hydrological modeling (SHAW), soil moisture, soil temperature, conventional tillage 

and no tillage  

 

2.1. Introduction 

Soil moisture is an important component in the atmospheric moisture cycle having impacts on 

agriculture, modeling of land/atmosphere interaction, hydrology, forestry and engineering. It 

links the hydrologic cycle and the energy budget of land surfaces by regulating latent heat fluxes. 

The soil moisture availability at the root level of vegetation affects plant growth and ultimately 

moisture availability in the root zone is more important than precipitation occurrence. In 

agricultural watersheds, soil moisture content information has been used for irrigation scheduling, 

site-specific management of diseases and insects, improving crop yield prediction, indicator of 

plant health, mobility of farm management vehicles, etc. (Moran et al., 2004). Furthermore, the 

knowledge of initial soil wetness state has been shown to improve the forecast of the air 

temperature and precipitation (Drewitt et al., 2012). Therefore, improvement of soil moisture 

estimation has broad reaching implications.  

 

Direct measures of soil moisture can be obtained using gravimetric methods, where soil samples 

are collected from the field and brought back to the laboratory for weighing and drying (Klute, 

1986). Unfortunately, this method is destructive, laborious and expensive particularly when 

repeated over long time intervals. Therefore, in-situ measurements of the “dielectric” properties 

of soils, which when related to the soil moisture (Topp et al., 1980) are useful for reliable, fast 

and non-destructive measurement. For these techniques, the dielectric constant is strongly 

dependent on the volumetric moisture content of soil and almost independent of soil density, 
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texture, temperature and used frequencies in measurement (Jackson, 1990; Topp et al., 1980). 

Electrical measurements of soil moisture are not without problems, however, as installed sensors 

on agricultural fields are affected by animals (rodents) and management activities during tillage, 

planting, fertilizing and harvesting. Furthermore, it is evident that in-situ soil moisture varies 

widely both spatially and temporally at the field scale due to spatio-temporal variations of 

precipitation, soil texture, slope, vegetation, etc. Therefore, in-situ measurements of soil moisture 

are generally representative of a small area of an agricultural field. Nevertheless, soil moisture 

estimates at field scale are typically scarce both spatially and temporally for operational uses. As 

a result, hydrological models remain a very important tool for researchers to provide estimates of 

spatial and temporal variation in land surface moisture.  

 

At the field scale, the variability of surface soil moisture is not only affected by precipitation, soil 

texture, slope, etc., but it is also affected by adopted land management practices (Arshad et al., 

1999; Fuentes et al., 2004; McCoy et al., 2006). In Canada, traditional farming practice has 

focused on conventional tillage (CT) practices where conventional tillage machinery is used to 

break-up the soil thereby increasing porosity and allowing for increased air exchange for plant 

root growth. It is also an effective way of incorporating crop residues and manure or nutrients 

evenly, destroying weeds and breaking up sod fields (Reicosky and Saxton, 2006; Statistics 

Canada, 2011). Despite these potential advantages of CT agriculture, farmers have increasingly 

substituted conventional tillage with no-till (NT) seeding techniques or conservation tillage in 

recent decades. No-till is less ecologically disruptive as specialized machinery is used to slice a 

thin slit into the soil to deposit seeds. This technique is less disruptive of the soil ecology, and 

typically results in less erosion with potential savings on fuel and labor costs for the producers 
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(Reicosky and Saxton, 2006; Statistics Canada, 2011). Furthermore, the application of no-till 

practices typically results in wetter root zone soil profiles as the water holding capacity of soil is 

increased due to a larger number of micro-pores. Nationally, the proportion of land prepared for 

seeding using no-till practices increased from 7% to 56% from 1991 to 2011 in Canada 

(Statistics Canada, 2011). The largest gains in no-till occurred in Saskatchewan and Alberta, but 

no-till seeding also increases rapidly in Ontario, Manitoba and British Columbia.  

 

The management differences between CT and NT can lead to differences in soil physical 

properties. Several studies in Canada and the northern United States focused on measuring the 

difference in drainage between CT and NT using tile drain monitoring, lysimeters and 

infiltration, and have found inconsistent results (Arshad et al., 1999; Patni et al., 1996, Shipitalo 

and Edwards, 1993). McCoy et al. (2006) described soil water balances for CT and NT 

management systems in Elora Ontario where precipitation from a nearby weather station, 

evapotranspiration from eddy covariance system, change in water storage from water content 

reflectometers (WCR), runoff and change of water table level were all analyzed over multiple 

growing seasons. McCoy et al. (2006) reported that the amount of subsurface deep drainage for 

2001-2003 of CT was slightly greater (about 9%) than the NT which could be due to enhanced 

interception by crop residue left on the surface of NT treatment. It is noted that fields were well 

drained with subsurface systematic drainage system with negligible slope. Using similar monthly 

water budget approach as described by McCoy et al. (2006), Jayasundara et al. (2007) reported 

7-12% higher nitrogen (NO3-N concentrations) leaching loss for CT compared to NT during 

2000-2004 which is important for Ontario farmers for nutrient management plan. Therefore, it is 

understood that land management practice has important controls on soil moisture budgets.      
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The simultaneous heat and water (SHAW) model, a one dimensional vertical model was 

developed initially by Flerchinger and Saxton (1989) to simulate freezing and thawing of soils. 

SHAW has also been used for modeling agricultural water budgets as it can account for effects 

of tillage, residues and vegetation canopy over a wide range of conditions (Wang et al., 2009; 

Parkin et al., 1999). Given the large changes occurring land management practice over Canada, it 

is important to understand how sensitive hydrological simulation models are to land management 

practice on water budget simulations. Therefore, the overarching objective of this study is to 

evaluate the sensitivity and realism of the SHAW model water budget simulations to varying 

agricultural land management practices. The specific objectives of this study are: (i) to assess 

effects of CT and NT on rootzone soil moisture and soil temperature regimes, and (ii) to test 

SHAW’s ability to simulate management effects on soil moisture and soil temperature 

distribution. 

 

2.2. Materials and Methods 

2.2.1 Treatments 

The field study was initiated in early 2000, where two no tillage (NT) and 2 conventional tillage 

(CT) plots (each 100 m x 150 m) were established at the University of Guelph Research Station 

at Elora, Ontario, Canada (43˚38ˊ29.05˝N, 80˚24ˊ46.03˝W, 340 m). The experiment site was 

almost level with 0-1% slope towards North-West direction. The soil at the site is an imperfectly 

drained Guelph silt loam (Morwick and Richards, 1946). The soil parent material is 20-22 m in 

thickness above the bedrock and systematic tile drainage was installed at the site in 1960 at a 

drain spacing and depth of about 15 m and 0.75 m, respectively (McCoy et al., 2006). Average 
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texture percentages of the test fields were sand = 32%, silt = 51%, and clay = 17% in 0-5 cm soil 

layer (Table 2.1). Soil physical properties of the both CT and NT plots were similar although 

these properties varied slightly spatially from location to location as well as in different soil 

depths within the field. McCoy (2002) reported that there was no significant change in the 

physical soil properties within those plots converted to NT during samplings between 1999 and 

2002. The average field soil properties and literature-extracted parameters are shown in Table 

2.1.  

 

Table 2.1: Soil properties of CT and NT  

Depth Saturated hydro-

conductivity 
(Ks) 

Bulk 

density 

(s) 

Porosity 

 

(s) 

Sand Silt Clay Organic 

matter 

Pore size 

distribution 
parameter 

(b) 

Air entry 

potential 

(e) 

m cm h-1 kg m-3 m3 m-3 % % % %  m 

0-0.05 0.40 1550 0.45 32 51 17 2 3.34 -0.11 
0.05-0.25 0.40 1550 0.45 32 51 17 1.6 3.34 -0.11 

0.25-0.55 0.41 1610 0.41 42 43 15 1.1 3.72 -0.10 

0.55-0.85 0.45 1660 0.40 44 42 14 0.6 4.23 -0.10 

Source: Fallow et al., 2003; McCoy, 2002; McCoy et al., 2006 

 

Prior to 2000, the site was in a traditional conventional tillage and the crop sequence (soybean-

corn-winter wheat) was maintained on the no tillage and conventional tillage experimental plots. 

Over the conventional tillage plots, intensive tillage was practiced by moldboard ploughing in 

the fall to a depth of 15 cm followed by spring disking. In no tillage practice, seeds were planted 

with a no-till drill in one pass.  

 

On 18 May 2010, the plots were planted with soybean at the rate of 81 lbs/acre (Dekalb DKB 00-

99) along with a herbicide (Dual 2 Magnum @ 0.7 L/acre) in both the conventional (sites 1 & 4) 

and no tillage plots (sites 2 & 3). The crop residue affecting the plots was corn which was 

harvested in October 2009. The presence of heavy corn residue cover was evident in the no 
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tillage fields before planting of soybeans. Herbicide Weathermax (0.67L/acre) and Assure II 

(0.05L/acre) were applied in both managements on 15
th

 June and 7
th

 July of 2010 during 

vegetative growth of soybean (pers. comm. to Susantha). On 27
th

 September 2010, soybean was 

harvested from both conventional and no tillage fields.  

 

2.2.2 Instrumentation and Monitoring  

The daily weather data, such as wind speed (km h
-1

), solar radiation (W m
-2

), relative humidity 

(%), air temperature (˚C) and precipitation (mm), were collected from a nearby meteorological 

station (approximately 200 m from the site) during growing season of 2010. The differing 

management plots were monitored from the beginning of April 2010 to the end of September 

2010 using soil moisture and soil temperature sensors. The average soil data, including moisture 

content and temperature for CT and NT, were recorded every hour in 4 sets of instruments in 

four locations of 4 experimental plots. Multiple data sets were recorded to avoid missing data or 

malfunctioning of any sensor. Moreover, average data of each management was calculated to 

avoid errors. The installed instruments were: water content reflectometers (WCR) (Model 

CS615, Campbell Scientific Inc.) (Figure 2.1) and thermocouples (Model #107, Campbell 

Scientific Inc.) (McCoy et al., 2006). The 30 cm long WCR waveguides (0.32 cm diameter, 3.2 

cm apart) were installed vertically at three different depths within each treatment to give average 

soil moisture contents for the 0.10-0.40 m, 0.40-0.70 m and 0.70-1.00 m depths, and at an angle 

to give the average soil moisture content for 0-0.10 m soil depth. The thermocouples were 

installed at the midpoint of each soil depth range measured by the WCR, i.e., at 0.05, 0.25, 0.55 

and 0.85 m depths. Data loggers recorded hourly values for soil moisture content and 

temperature measurements. The horizontal separation distance was maintained to allow 
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installation into undisturbed soil and to avoid interference of vertical moisture movement on 

subjacent probes. The details of installation and calibration of sensor with in-situ volumetric soil 

moisture measurements are presented in McCoy et al. (2006). It is noted that the WCR probes 

allowed for indirect measurement of soil moisture content, by using the effect of changing 

dielectric constant on applied electromagnetic waves. During plantation and harvesting 

operations of soybean, sensors in the top 0.05 m and 0.25 m of soil depths were removed and 

then reinstalled immediately thereafter. 

 

 

 

 

 

 

 

 

2.2.3 The SHAW Model and Parameters for Simulations  

Simultaneous Heat and Water (SHAW) model uses information on vegetation canopy, snow and 

surface residues to describe one-dimensional coupled water and heat flow in soils and is 

described fully in Flerchinger and Saxton (1989), Flerchinger (2000) and Flerchinger et al. 

(2003). In this study, the SHAW model requires local daily weather data (air temperature, 

relative humidity, wind speed, precipitation and solar radiation), estimated and recorded site 

characteristics (saturated hydraulic conductivity, pore size distribution index, air entry potential, 

Water Reflectometer 

Figure 2.1: Installation of soil moisture sensor – Campbell Scientific model (CS 615). 
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porosity, bulk density, texture, organic matter, etc.) and plant growth (height, dry biomass, leaf 

area index, etc.) data. 

 

Inputs for SHAW simulations were determined primarily based on the available field 

measurements while other parameters were obtained from the literature (Tables 2.1-2.3). The 

fraction of soil surface covered by crop residues was assumed based on observation of no tillage 

plots. Dry biomass load in kg/ha and albedo of surface residues under NT were derived from 

previous studies (McCoy, 2002; Fernhout and Kurtz, 1999; Flerchinger, 2000) and is presented 

in Table 2.2. Soil samples representing the soil surface and major soil horizons were taken at the 

depths of 0.05, 0.25, 0.55 and 0.85 m in each treatment. The average bulk density, organic matter 

and particle size distribution were determined by standard methods and are referred to McCoy 

(2002). Saturated hydraulic conductivity, pore size distribution index and porosity were extracted 

from Rawls et al. (1982) based on texture of Guelph silt loam soil. As the purpose of this 

analysis was evaluate the ability of the model to simulate water budgets over differing tillage 

practices, a large parameter optimization exercise was not performed as part of this work. Rather 

soil hydrological parameter values were obtained from published sources and software 

documentation.   

 

Table 2.2: Input parameters for SHAW modeling 

Parameter Conventional tillage No tillage 

Fraction of surface covered by residue - 0.90 

Albedo of residue - 0.23 

Dry weight of residue on surface, kg ha
-1

 - 6,000 

Thickness or depth of residue layer, cm - 2 

source: Flerchinger, 2000; McCoy, 2002 
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Table 2.3: Input parameters for soybean growth in CT and NT 

Day of year 

2010 

Average 

height of 

plant 

Average 

width of 

leaves 

Dry 

biomass of 

plant 

Leaf area 

index 

Effective 

rooting 

depth 

 m cm kg m
-2

  m 

Mar 31 0 0 0 0 0 

May 18 0 0 0 0 0 

May 30 0.1 2 0.03 0.1 0.1 

Aug 27 0.75 10 1 2 1.6 

Sep 27  0.7 1 1 0.8 1.5 

Sep 28 0 0 0.2 0 1.4 

source: Allen et al., 1998; Mayaki et al., 1976; Thies et al., 1995 

 

The SHAW model was used to simulate soil temperature and moisture content over the entire 

field experimental period. The soil domain or profile for the modeling was assumed as 3 m deep 

to allow uniform downward flow of soil water through the root zone soil depth where model 

(one-dimensional vertical type) neglected later flow during the execution as well as uniform 

drainage through existed subsurface tile drains since 1960 in the experimental sites. The domain 

was discretized into a total of 22 nodes, conforming to three morphological layers of 0 to 0.25 m, 

0.25 to 0.55 m, and 0.55 to 0.85 m and corresponding to the positions of the soil moisture and 

temperature sensors. For water flow, a unit-gradient boundary condition was used for the lower 

boundary and a specified flux (observed precipitation) for the upper boundary (Flerchinger, 

2000). Similarly for heat flow, a unit-gradient boundary condition was used for the lower 

boundary and atmospheric weather condition (field-observed air temperature) was used for the 

upper boundary condition. The initial conditions for moisture and heat flow consisted of 

observed soil moisture and temperature profiles on 01 April 2010.  However, a simulation that 

initializing the model in the early spring with soil moisture at field capacity and at average air 

temperature over the various soil depths produced a simulation that was nearly identical to the 

simulations initialized with observed values. The variation between RMSEs was within 10% 
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while model initialized with observed soil moisture and soil temperature. The soybean was 

planted in both management conditions on May 18 and harvested on September 27 in 2010. Plant 

growth data for soybean in silt loam soil for this experiment were extracted from available 

literature (Allen et al., 1998; Mayaki et al., 1976; Thies et al., 1995), and is shown in Table 2.3. 

 

2.2.4 Statistical Analysis  

Two-sample differences in means t-tests were used to determine differences in moisture contents 

and soil temperatures between CT and NT. It is noted that observations of both CT and NT are 

dependent within the individual successive samples throughout the same time series. 

Additionally, root mean square error (RMSE) to check accuracy and coefficient of determination 

of liner regression (R
2
) to evaluate significant trends between SHAW-simulated and field-

observed soil moisture and temperature at various depths under the CT and NT are reported to 

corroborate the results of the SHAW model with observations. 

 

2.3. Results and Discussion 

2.3.1 Observed Soil Moisture Content  

Soil textural properties of the CT and NT plots were similar, except residues that covered about 

90% of NT plots (Jayasundara et al., 2007; McCoy, 2002; McCoy et al., 2006). Residues in CT 

plots were removed and partially incorporated into soil during fall tillage using a disk ripper. 

Temporal variations of precipitation and soil moisture in the two treatments are shown in Figure 

2.2. Precipitation from April to September 2010 in the experimental site was 550.8 mm; 768 mm 

precipitation was received from January – December 2010 that is within one standard deviation 

of the average annual rainfall totals for this region (863 ± 126 mm; Parkin et al., 1999). Surface 
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soil moisture at 0.05 m and 0.25 m of both CT and NT had significantly greater response to 

occurrence of precipitation than measurements of soil moisture at 0.55 m and 0.85 m. The 

sensors were replaced after planting in the CT plot and NT plot (May 20, 2010), therefore 

recorded soil moisture data for the 0.05 m and 0.25 m of soil depths were only available from 

20
th

 May onward. These surface soil sensors were removed again from 20
th

 September to 11
th

 

October during the harvesting activities. Therefore, periods of missing data are observed in 

Figure 2.2b and c. Sensors at 0.55 m and 0.85 m of soil depths were kept in CT and NT plots 

during planting and harvesting operations. The recording of data in sensors of NT plots started 

from 20
th

 May and continued until end of the soybean growing season, i.e. 26
th

 September 

(Figure 2.2).   

 

In the CT treatment, the top 0.05 m and 0.25 m of soil dried during May and August months to 

about 0.18 m
3
 m

-3
, but the subsoil below 0.30 m retained moisture near 0.22 – 0.26 m

3
 m

-3
. 

Surface soil moisture at 0.05 m and 0.25 m showed significant response to the occurrence of 

precipitation.  The surface soil was wetter in the CT than in the NT, in particular in beginning of 

summer i.e. until 10
th

 July, however later in the year, the surface soil of NT remained relatively 

wetter than CT during the drying period (July-September) (Figure 2.2d). McCoy et al. (2006) 

also observed similar trends for 1-m profile soil water storage extracted from WCR sensors for 

CT and NT treatments during the dry year 2002.  They reported that the drainage of CT was 24% 

higher than NT treatment and interception of CT was 6% lower than NT treatment during a drier 

year in 2002 at the same location. The surface soil moisture of NT remained comparatively 

wetter than CT during the drier period from August-September (Figure 2.2d) when the presence 

of crop residues has likely reduced surface evaporation as well as surface water run-off 
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(Reicosky and Saxton, 2006). The enhanced soil moisture at 0.25 m in the NT treatment in fall 

(Figure 2.2d) may be related to more available macropores in the undisturbed soil along due to 

dried roots of the previous crop. It is noted that several applications of herbicide was used to 

control weeds. Therefore, roots from previous crops at 0.25 m soil depth might intercept soil 

moisture in NT during dry period from middle of July to September. Moreover, Elliot et al. 

(2000) reported that preferential flow was slightly reduced by the tillage passes in CT due to the 

disruption of macropore continuity. Arshad et al. (1999) and Shipitalo and Edwards (1993) 

reported that steady-state infiltration in silt loam soil at surface was 30-60% greater under NT 

than under CT after 20 years of continuous management.  

 

The soil moisture content below the 0.05 m depth was generally higher than that in the top 0.05 

m for both CT and NT plots (Figure 2.2b and c). For the CT plot, soil moisture contents at 0.05 

m and 0.25 m were similar and decreased from almost 0.30 m
3
 m

-3
 in June to 0.12 m

3
 m

-3
 at end 

of August. For the same period, soil moisture content at the top 0.05 m and 0.25 m in the NT plot 

also decreased from almost 0.30 to 0.15 m
3
 m

-3
 while soil moisture content at 0.55 m was stable 

or varied between 0.15 and 0.21 m
3
 m

-3
. Low soil moisture values at end of August were due to 

relatively low precipitation and evapotranspiration of the maturing soybean crops. Soil moisture 

content at 0.85 m in both plots was above 0.20 m
3
 m

-3
 most of the time.  
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Figure 2.2: (a) Observed daily precipitation; (b) observed soil moisture at different depths in CT; (c) 

observed soil moisture at different depths in NT; and (d) difference in soil moisture between CT and NT. 
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The paired t-tests showed that, over the entire monitoring period from May to September 2010, 

the moisture contents measured with the Campbell Scientific probes at each depth except 0.25 m 

of soil depth were significantly different between the two treatments using a t-test (t-statistic > 5 

for n = 124 where the t-critical value assuming two-tail = 1.97) (Figure 2.3a). At most depths, 

average moisture contents in CT were higher than in NT, but at the 0.25 m depth, average 

moisture contents of both treatments were found to be not significantly different (Figure 2.3a) 

where t-statistic = 0.97 for n = 124. The adoption of NT management practice in the 

experimental site was only about 10 years which may not be enough time to restore original 

hydraulic properties of NT soil especially at surface layers. The average moisture content 

differences are nearly equal between the treatments at the 0.05 m depth (in Figure 2.3a); however, 

at different time of the year differences are visible.  For example, the higher soil moisture is 

observed in the CT during the early growing season (May-July) while higher soil moisture is 

observed in the NT during late growing season (August-September) (Figure 2.2d). After 20
th

 July 

2010, the soil moisture continuously decreased in both NT and CT until the onset of the rainfall 

beginning (3
rd

 September 2010). Drury et al. (1999) also reported higher soil moisture for the no-

tillage treatment during the drying period as the soil remained cooler and presence of residues.  

 

2.3.2 Observed Soil Temperatures 

The average soil temperatures at the various depths of NT in experimental site were consistently 

found to be cooler compared to CT plot (Figure 2.3b; t-statistic > 15; n=124) except 0.85 m of 

soil depth. Drury et al. (1999) reported that the daily average soil temperatures for clay loam soil 

at top soil (5-10 cm depths) were 1.6-1.9˚C warmer in the CT than corresponding NT. The very 

large difference in soil temperatures at 0.85 m was unexpected. 
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2.3.3 Simulated Soil Moisture Contents 

The SHAW model is physically-based model where soil moisture is mainly governed by porosity, 

pore size distribution index, air entry potential and saturated hydraulic conductivity (Flerchinger 

et al., 2012). In this study, the SHAW-simulated moisture contents followed the general trend of 

the observational data (Figure 2.4a and b). For the NT treatment, soil moisture in each soil layer 

was better simulated than under CT possibly due to smaller variations in soil moisture content 

under NT treatment (Figure 2.4c and d). As shown in Figure 2.4, SHAW under predicted surface 

soil moisture at different soil depths of CT and NT (especially in wet period) which could be due 

to over prediction of soil evaporation or errors in precipitation records or inaccurate soil 

characteristics data. Wang et al. (2010) also experienced underestimation using SHAW in the 

early part (January – March) of the seasons in 2004 and 2005 and they reported it be typically 

due to inaccuracy of challenging snow measurements during winters.  

Figure 2.3: Averaged (a) moisture contents and (b) soil temperatures for conventional tillage (CT) 

and no tillage (NT) for 20 May to 20 September 2010 at different measurement depths. Asterisks 

denote significant difference at 0.05 probability level  

* * 
* 

* * 
* * 
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For the CT treatment, SHAW under-estimated soil moisture for each soil depth during whole 

soybean growing season; however, the differences between the modeled results and observations 

were small (Figure 2.4c). Absolute differences in soil moisture between simulated and observed 

data were in most cases less than 0.05 m
3
 m

-3
 (Figure 2.4c and d). Larger deviations between 

simulations and measured values were observed, mainly for the surface soil at 0.05 m depth, 

during rainy days in September. SHAW underestimated the moisture content in the seed zone at 

0.05-0.25 m of soil depth and it continuously underestimated the moisture content in the root 

zone (Figure 2.4c and d). The minimum SHAW-simulated soil moisture for the 0.55 m depth 

was 0.10 m
3
 m

-3
 for CT and 0.12 m

3
 m

-3
 for NT (Figure 2.4a and b) during September which was 

almost below the wilting point (0.133 m
3
 m

-3
) for silt loam soil (Rawls et al., 1982). Based on a 

sensitivity study of several model parameters including residue thickness, root depth and leaf 

area index, Wang et al. (2010) reported that the increase of residue thickness increased surface 

soil moisture regardless of leaf area index. Therefore, it is likely the increased residue thickness 

input into the SHAW for the NT simulations increased surface soil moisture at 0.05 m compared 

to CT (Figure 2.4a and b). Surface residue parameters are mainly influenced by tillage and its 

thickness is always an important factor, especially on near-surface soil moisture. From Figure 

2.4e, simulated soil moisture of NT plot looks bit higher than that of CT plot which is due to 

effect of input parameters of SHAW model. The surface soil of NT remained relatively wetter (> 

0.02 m
3
 m

-3
) than CT especially during the drying period (July-September). It is noted that 

observed surface soil moisture of NT also remained comparatively wetter than CT during the 

drier period from August-September (Figure 2.2d) due to presence of crop residues in NT plots.  
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Figure 2.4: (a and b) Simulated moisture contents for conventional tillage (CT) and no 

tillage (NT), (c and d) differences between observed and simulated data, and (e) differences 

between simulated CT and NT data.  
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RMSE values for volumetric soil moisture content for all depths were in the range of 0.03 to 0.05 

m
3
 m

-3
 and 0.01 to 0.03 m

3
 m

-3
 for CT and NT, respectively (Table 2.4). The low values of the 

RMSE confirm good agreement between SHAW-simulated and field-observed soil moisture 

contents. Of note, these results were obtained without extensive model calibration, which 

suggests that the SHAW model has a very good potential for soil moisture simulation in this 

region. However, it is noted that these results also benefit from initialization to observations; it is 

likely that a less realistic initialization have model drift. For the SHAW model, Li et al. (2012) 

reported that RMSD (root mean square deviation) varied from 0.016 to 0.042 m
3
 m

-3
 for non-

irrigated cultivation. It is noted that overall errors in 0.55 m and 0.85 m soil depths were smaller 

than those of surface soil depths for CT and NT treatments which may be attributed to lower 

temporal variation of soil moisture in subsoil.  

 

Overall correlation between simulated and observed soil moisture was lower at surface soil 

compared to deeper soil depths (Table 2.4). The average correlation obtained in this study for CT 

and NT treatments for both treatments was 0.87** over the 1-m soil profile. These relationships 

are higher than those determined by Wang et al. (2010) who reported 0.81 for 1.2 m soil profile 

using SHAW. These results indicate that SHAW is able to simulate the seasonal progression of 

soil moisture in this region under different land management regimes.  
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Table 2.4: RMSE between SHAW-simulated and field-observed soil moisture and temperature 

 Depth RMSE  r 

 (m) CT NT  CT NT 

Moisture 

content  

(m
3
 m

-3
) 

0.05 0.0381 0.0266  0.7391 0.8248 

0.25 0.0599 0.0351  0.8847 0.8874 

0.55 0.0339 0.0331  0.9374 0.8482 

0.85 0.0397 0.0197  0.9400 0.9328 

Average  0-1.00 0.0429 0.0286  0.8753 0.8733 

Temperature 

(˚C) 

0.05 2.5601 2.3901  0.9315 0.9331 

0.25 1.7290 1.9684  0.9631 0.9449 

0.55 1.2680 1.7805  0.9786 0.9505 

0.85 4.8673 1.5785  0.9813 0.9702 

Average 0-1.00 2.6061 1.9294  0.9637 0.9497 

 

2.3.4 Simulated Soil Temperatures  

Observed and simulated soil temperatures are shown in Figure 2.5. The general trend of the soil 

temperature was well simulated by SHAW, although a few discrepancies between SHAW 

estimations and field observations were up to 5˚C at 0.85 m soil depth. Generally, observed soil 

temperatures were higher in CT than in NT at all soil depths which also reported by Drury et al. 

(1999) for top soil (0-0.10 m soil depth). SHAW tended to over-predict soil temperature during 

the soybean growing season. The discrepancies between observed and simulated soil temperature 

were most distinct in the surface layers as well as in 0.85 m soil depth. The reduced observed soil 

temperature compared to simulated soil temperature at 0.85 m soil depth was unexpected. The 

difference between observed and simulated soil temperature in NT may minimize by availability 

of reduced water or drainage at this depth. The input parameters for SHAW were very similar for 

the CT and the NT, except for the surface residues. SHAW simulated soil temperature of NT was 

slightly better than CT. However, overestimation of simulated soil temperature was observed at 

all soil depths in both treatments. Li et al. (2012) also reported overestimation of predicted soil 

temperature using SHAW model for 0.60 m soil profile. The RMSE values for soil temperature 

for different depths (Table 2.4) were in the range of 1.2 to 4.8˚C and 1.5 to 2.3˚C for the CT and 
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NT, respectively, with the largest discrepancy occurring at the lower most depth of 0.85 m in CT. 

However, as discussed previously an error in the sensor may have occurred. Besides 0.85 m 

depth in CT treatment, the accuracy of soil temperature prediction increased with soil depth for 

both CT and NT. The average RMSE of soil temperature from 1.5 to 2.6˚C simulated by SHAW 

was comparable to the results of the RMSD from 0.5 to 4.2˚C in Li et al. (2012). For the 

simulations performed the average correlation was above 0.94 (Table 2.4) suggesting that the 

trends of simulated soil temperature for CT and NT were very similar to the observed temporal 

pattern of soil temperature for all soil depths. Li et al. (2012) also reported SHAW predicted soil 

temperature showed 0.87 - 0.98 of correlation for the soil depth of 0.075 - 0.52 m and correlation 

increased with the increased of soil depth. The increased correlation at higher soil depth is due to 

the dampened fluctuation of soil temperature at those soil depths.  
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Figure 2.5: Observed and simulated soil temperatures (daily averages) at different depths for 

CT and NT.  

Conventional Tillage (CT) No Tillage (NT) 
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2.4. Conclusions 

This study documents some of the effects of tillage management systems on soil water budgets 

under a soybean crop system. Over the crop year, the NT treatment had higher soil moisture in 

the upper soil layers and particularly later in the growing season than observed in CT treatment. 

Simulations of these conditions using SHAW demonstrate that SHAW typically under-predicted 

soil moisture content at all soil depths except surface soil of NT. However, SHAW simulations 

of soil moisture content followed the general trend of the observed data suggesting that can be 

used for reasonable simulation of soil water budgets for this region under different land 

management practices. Generally, the absolute differences in soil moisture between observed and 

simulated data were mostly less than 0.05 m
3
 m

-3
 over both treatments. For simulation of soil 

temperature, SHAW over-estimated soil temperatures for the CT and NT by up to 2.5˚C on 

average over the entire experimental period. Maximal deviations between measurements and 

simulations were up to 5˚C at the 0.85 m soil depth. The trend of soil temperatures, nonetheless, 

was well described by the SHAW model. Therefore, SHAW model has some capacity for the 

prediction of soil moisture and temperature under different agricultural management practices. 
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Effect of Land Surface Heterogeneity on 

Simulated and Observed Brightness 

Temperature  
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Motivation 

Sparse in-situ measurements are not sufficient to represent soil moisture for large areas as soil 

moisture varies widely both spatially and temporarily due to spatio-temporal variations in 

precipitation, soil texture, slope, vegetation, and agricultural management practices. Microwave 

remote sensing (at L-band) is useful to estimate soil moisture at large scales due its advantages in 

prediction accuracy for all weather monitoring and frequent availability over different satellite-

based remote sensing techniques. The limitations of L-band passive microwave remote sensing 

are its sensitivity to the thermal emission from 2-5 cm soil depth and low spatial resolution (~40 

km) of available satellites. Due to low spatial resolution, the retrieval of soil moisture or 

brightness temperature is affected by various land surface heterogeneities, like – variations in 

soil moisture, soil temperature, soil roughness and vegetation water content. There are limited 

studies that investigate the effect of land surface heterogeneity on retrieval of soil moisture 

accuracy. Given the sensitiveness of Simultaneous Heat and Water (SHAW) model to analyze 

water budget for 1-m soil profile of conventional and no tillage agricultural management 

practices (in Chapter 2), there is an opportunity to use the SHAW model to estimate soil 

moisture for incorporation into the Land Parameter Retrieval Model (LPRM) to estimate the 

brightness temperature associated with heterogeneous landscapes. It is necessary to investigate 

the impact of land surface heterogeneities on the brightness temperature errors obtained from the 

combined SHAW and LPRM models for in a region with variation in soil texture and crop cover. 

The errors are determined by comparing modeled brightness temperature with measurements 

made by the Soil Moisture and Ocean Salinity (SMOS) satellite. 
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Abstract 

Soil moisture plays a significant role in productive crop growth and farm operations. Correct 

estimation of soil moisture is important and useful in irrigation scheduling, nutrient/ fertilizer 

management plan, site-specific management of disease and pests, monitoring of crop yields and 

indication of plant health. Due to limitations of in-situ soil moisture measurements, and low 

resolution of microwave remote sensing of soil moisture, a model that simulates soil moisture 

coupled with a radiative transfer model could potentially be used for downscaling passive 

microwave measurements to provide a higher resolution soil moisture product. The Soil 

Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) provided an opportunity 

to evaluate spatial and temporal variations in soil moisture patterns across a region of similar size 

to the scale of two passive microwave pixels. There were two objectives for this study. The first 

was to investigate the ability of the Simultaneous Heat and Water (SHAW) model to simulate 

surface soil moisture as compared to in situ measurements for various soil texture and crops. The 

second was to assess the impact of land surface heterogeneity on brightness temperature. The 

SHAW model simulated soil moisture followed the general trends of the observed field data. The 

average root mean square error (RMSE) for surface soil moisture was 0.05 m
3
 m

-3
.
 
The 

correlation between SHAW and in situ measurements were 0.38 to 0.86 for surface soil moisture. 

The lowest correlation for surface soil moisture was observed for sand soil. The horizontal 

polarized brightness temperature from a radiative transfer model, using soil moisture from the 

SHAW model, followed the general trends of the horizontal polarized SMOS brightness 

temperature (r = 0.72**). Accounting for land surface heterogeneities, sub-grid estimates of soil 

moisture and soil temperature were of critical importance and explained errors between the 

simulated brightness temperature and SMOS observations (r > 0.48**). Soil roughness and 
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vegetation water content have insignificant influence on the variation of brightness temperature 

difference.  

Keywords: hydrological modeling (SHAW), soil moisture, forward radiative transfer model, 

brightness temperature, heterogeneity 

 

3.1. Introduction 

Knowledge of soil moisture is important for a number of agricultural applications including 

irrigation scheduling, site-specific management of some plant diseases and pests, crop yield 

predictions, and plant health (Moran et al., 2004). Many studies report that sparse in-situ 

measurements are not sufficient to measure soil moisture for large areas as soil moisture varies 

widely, both spatially and temporally due to variations in precipitation, soil texture, slope, 

vegetation, and agricultural management practices (Jackson, 1990; Liu et al., 2011; Klute, 1986; 

McCoy et al., 2006). Therefore, measurements of soil moisture from satellite platforms that 

average over larger regions will have many potential benefits.  

 

Remote sensing of soil moisture is based on the measurement of the dielectric properties of 

liquid water within the soil, which has a dielectric constant of ~80, contrary to dry soil with a 

dielectric constant  < 4 at L-band (Wang and Schmugge, 1980). Among different satellite-based 

remote sensing techniques (optical, thermal infrared, active microwave), passive L-band 

microwave remote sensing is considered more advantageous for estimating soil moisture as it has 

shown higher accuracy, has less sensitivity to water vapor in the atmosphere, is able to estimate 

soil moisture where vegetation is present (limited to regions with less than 5 kg m
-2

 vegetation 

water content), and has higher return frequency (2-3 days) (Entekhabi et al., 2010; Kerr et al., 
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2012; Moran et al., 2004; Njoku et al., 2003). Active microwave remote sensing systems are 

more affected by surface roughness, topography and vegetation than passive systems (Dobson et 

al., 1986; Dubois et al., 1995; Oh et al., 1992). A microwave radiometer measures the emitted 

energy (in the microwave frequency) from the land surface, which is dependent on surface soil 

moisture, surface temperature, surface roughness, vegetation water content, and vegetation 

structure (Jackson and Schmugge, 1991; Owe et al., 2008; Wigneron et al., 2001).  

  

Currently, passive microwave L-band brightness temperatures at 1.4 GHz are available from the 

Soil Moisture and Ocean Salinity (SMOS) satellite with a temporal resolution of 2-3 days and a 

spatial resolution of 43 km (Kerr et al., 2012). The SMOS satellite was launched by European 

Space Agency (ESA) in November 2009. With the aim of obtaining soil moisture measurements 

at a higher spatial resolution, the National Aeronautics and Space Administration (NASA) plans 

to launch the Soil Moisture Active Passive (SMAP) satellite in October 2014 (Entekhabi et al., 

2010). The SMAP mission will provide soil moisture products at low (36 km), high (3 km) and 

intermediate (9 km) spatial resolutions, using measurements from the radiometer, radar and a 

combination of radiometer and radar, respectively. The soil moisture products are required to be 

within ± 0.04 m
3 

m
-3

 of the actual soil moisture within the top five centimeters of the soil when 

the vegetation water content is ≤ 5 kg m
-2

 for a spatial resolution from ~10 km to ~40 km 

(Entekhabi et al., 2010).  

 

Due to limitations of in-situ measurements (low spatial resolution) and remotely sensed estimates 

of surface soil moisture (large spatial extent but low sensing depth), model driven soil moisture 

is necessary to understand detailed hydrologic process, and water budgets through the root zone 



36 

(Njoku et al., 2003; Schlenz et al., 2012). One hydrological model that has been used 

successfully for modeling root zone hydrological process is the Simultaneous Heat And Water 

(SHAW) model, a physically based one-dimensional vertical model that was developed by 

Flerchinger and Saxton (1989) to simulate freezing and thawing of soils. This model requires 

either measured or estimated parameters and can be used with or without calibration for various 

applications. Flerchinger et al. (2012) and Wang et al. (2010) used the SHAW model to estimate 

soil moisture because it accounts for the effects of climate, residue, topography, tillage 

management, soil characteristics and vegetation canopy, and moreover, it has shown to 

successfully simulate heat movement, evapotranspiration, soil temperature, soil moisture and 

freezing depth in wide range of conditions including seeding germination, vegetation, weed 

emergence, irrigated and rain fed cultivation, etc. Compared to the Decision Support System for 

Agrotechnology Transfer-Cropping System Model (DSSAT-CSM), Wang et al. (2010) reported 

that the SHAW model improved the prediction of root zone soil moisture (RZSM) at 0-120 cm 

depth for conventional wheat cultivation with high correlation (r = 0.81). Li et al. (2012) 

reported that root mean square deviation (RMSD) between SHAW simulated soil moisture and 

observed soil moisture varied from 0.016 to 0.042 m
3
 m

-3
 for non-irrigated rye.  

 

Radiative transfer models are used to estimate surface soil moisture using measured brightness 

temperature (Tb) at microwave frequencies (Njoku et al., 2003; Owe et al., 2008). Owe et al. 

(2008) used the Land Parameter Retrieval Model (LPRM) and found that the daily average 

surface soil moisture from the Tb measured by the Advanced Microwave Scanning Radiometer 

for Earth Observing System (AMSR-E) satellite, at 6.96 GHz (C-band), compared well to ground 

measurements taken at 10 cm depth. They also reported that satellite observations were highly 
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sensitive to changes in soil moisture at the surface because the surface layer (<1 cm) dries much 

faster than deeper layers (>5 cm). The LPRM was also successfully used at the L-band frequency 

using SMOS scale observations from airborne flight to predict surface soil moisture at lower 

varied incidence angles (2 ~ 44˚) where canopy information was not required (De Jeu, et al., 

2009). Land surface heterogeneity produces some error in soil moisture retrieval at large 

footprint scales (e.g. SMOS observations), where uncertainty in soil moisture, soil temperature, 

soil texture, surface roughness and vegetation water content exist (Davenport et al., 2008; 

Panciera et al., 2011). However, there are a small number of studies that have assessed this 

problem of land surface heterogeneity using passive microwave data as most studies have been 

conducted in regions with smooth topography, partial vegetation and had limited ground 

sampling using airborne L-band data over an area the size of a SMOS pixel (Panciera et al., 

2011). After successful downscaling of low resolution heterogeneous SMOS observations to 

high resolution or point measurement, there is an opportunity to test its assimilation into land 

surface models for root zone soil moisture retrieval (Panciera et al., 2008).  

 

The limitation of remote sensing and models in estimating soil moisture are the result of various 

factors including: accuracy, uncertainty of observations, low spatial resolution, availability of 

satellite, etc. (Alavi et al., 2009; Reichle and Koster, 2004; Zhan et al., 2006; Liu et al., 2011). 

Therefore, data assimilation (DA) of remote sensing data into process-based models is required 

to extract information to reduce errors and provided moisture at different soil depths and to make 

the data more accessible to users. In fact, the basic principle of data assimilation is to combine 

the information from measurements and models of the earth system into an optimal estimate of 

the geophysical fields of interest (Reichle, 2008). The satellite observed brightness temperatures 
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(Tb) are generally assimilated into Land Surface Models (LSMs) to improve soil moisture 

estimates due to uncertainties in land surface parameters in the retrieval algorithms (Richle, 

2008; Richle et al., 2008). For example, Dumedah et al. (2011) studied use of genetic algorithms 

(GAs) in data assimilation due to limitations of error in prediction. The first assimilation 

procedure generated a time series of soil moisture by assimilating brightness temperature from 

the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) into the 

Land Parameter Retrieval Model (LPRM). The second procedure generated assimilated soil 

moisture by assimilating the soil moisture from LPRM into the Canadian Land Surface Scheme 

(CLASS) model. The retrieved soil moisture dataset was evaluated and it was found that the 

accuracy and temporal pattern of soil moisture compared to in-situ data was improved (overall r 

= 0.45 to 0.56 at 20 cm soil depth). 

 

The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) was a pre-launch 

validation campaign to evaluate soil moisture retrieval algorithms for the SMAP mission 

(McNairn et al., 2013). The campaign was conducted from June 6 to July 17, 2012 

(approximately 6 weeks), over a region approximately 15 km x 70 km in an agricultural region 

south of Winnipeg, Manitoba (Canada). The vegetation land cover consisted of a large variety of 

crop types, some permanent grasslands and mixed forest cover (McNairn et al., 2013). Over the 

study region a very large range in soil textures is present ranging from sands to clays 

(Rowlandson et al., 2013). Given the variety of land surfaces and soil textures, SMAPVEX12 

provided an opportunity to evaluate the impacts of land surface heterogeneities on brightness 

temperature retrievals from SMOS. The main objective of this study was to estimate brightness 

temperature using a radiative transfer model connected to a hydrological model. The combined 
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model was used to evaluate the sensitivity of L-band brightness temperature estimates to 

observed variability in soil moisture, soil temperature, soil roughness and vegetation water 

content, and compare these estimates to SMOS observed brightness temperature. Two versions 

of the radiative transfer model were evaluated where one assumed heterogeneous land cover and 

the other homogeneous land cover in the simulation of brightness temperature.   

 

3.2. Data and Methodology 

3.2.1 SMAPVEX12 Field Campaign and Recorded Parameters  

The SMAPVEX12 field campaign site was located near Elm Creek (98˚0ˊ23˝W, 49˚40ˊ48˝N), 

Manitoba (McNairn et al., 2012). The experimental site is shown in Figure 3.1. The soil texture 

varied from heavy clay in the eastern portion of the study region to sandy soil in the west (AAFC, 

2010). Changes in the topography of the region are minimal with a slope of 0-2% and NE aspect 

(AAFC, 2010; Walker, 2012). The major cultivated agricultural crops in the study area were 

cereals and oilseeds. Most of the crops were seeded in April/May and harvested in 

August/September. The typical field size varied from 20-30 to 50-60 hectares. The 

SMAPVEX12 measurements (soil and vegetation) were taken in 55 field sites, with continuous 

in-situ surface soil moisture measurements in 40 fields through installation of network stations 

for the duration of the campaign. The location of SMAPVEX12 site and temporary network 

stations are shown in Figure 3.1. Descriptions of the vegetation and soil samples taken during the 

field campaign can be found in McNairn et al. (2013) and Rowlandson et al. (2013).  
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Figure 3.1: Location of SMAPVEX12 study site with field ID number (solid circle = 

in-situ temporary network station; solid cross = center of pixels A and B; solid square 

= 15 km x 15 km area of pixels; dotted rectangle = CaPA forecasted precipitation 

pixels, 7 km x 11 km; contours = areas of different soil type).  
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During the field experiment, temporary soil moisture stations were installed in 40 out of 55 

SMAPVEX12 fields (Figure 3.1). However, for this study only 31 of the temporary soil moisture 

stations were used due to the malfunctioning sensors. The soil texture and crop type of each 

selected temporary network field site is shown in Table 3.1. These in-situ network sites (Figure 

3.2) had Stevens Hydra Probes (Stevens Water Monitoring Systems, Inc., Portland, OR, USA) 

installed horizontally at approximately 5 cm depth and soil moisture was recorded hourly. The 

temporary stations were installed at the end of May and removed after field campaign in Mid-

July 2012. Details regarding the calibration of the probes installed at the temporary network 

stations can be found in Rowlandson et al. (2013).  
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Table 3.1: Soil characteristics at 0.05 m depth and land coverage of 31 temporary network field 

sites during SMAPVEX12 campaign 

 

Field X Y Soil Soil Texture Bulk Crop VWC Average Roughness 

    

Sand Clay Density 

 

Range 

RMS 

height 

Corr. 

length 

  (m) (m)   % % (kg m-3)   (kg m-2) mm mm 

13 561656.95 5515231.78 Loamy sand 84.2 10.3 1.29 Pasture 0.08-0.12 0.50 9.20 

14 568587.55 5503930.25 Sand 94.2 4.4 1.30 Soybean 0.11-0.91 0.86 11.75 

21 561676.32 5513370.60 Sandy clay loam 51.0 34.6 1.27 Pasture 0.50-0.32 1.34 53.00 

31 573410.34 5510233.43 Sandy clay  4.3 39.9 1.08 Wheat 1.60-2.31 0.59 7.25 

34 575150.10 5503688.25 Heavy clay 4.4 66.8 0.88 Soybean 0.07-0.98 0.66 64.00 

41 573490.04 5505534.18 Heavy clay 4.5 64.0 0.82 W. wheat 4.60-1.30 1.69 35.00 

45 576559.71 5503481.39 Heavy clay 2.1 70.2 0.81 Wheat 2.00-2.36 0.85 6.50 

52 573570.98 5499294.85 Sandy clay loam 52.3 29.6 1.20 Soybean 0.11-2.18 1.65 55.50 

53 573999.22 5498529.79 Sandy clay loam 57.8 29.1 1.21 Corn 0.02-3.27 0.55 15.50 

54 574006.07 5497135.74 Sandy loam 75.1 18.6 1.30 Corn 0.09-4.61 0.54 15.25 

55 581830.20 5497814.33 Heavy clay 4.0 70.9 0.98 Wheat 1.15-2.29 0.90 8.00 

61 573630.54 5495242.55 Loamy sand 83.3 11.8 1.34 Canola 0.90-2.75 0.75 9.00 

62 573622.27 5495489.64 Sand 90.0 7.6 1.41 Corn 0.06-3.12 0.57 27.00 

63 575031.72 5495495.80 Loamy sand 86.6 9.7 1.12 Soybean 0.06-0.98 0.65 14.00 

64 575009.84 5496895.45 Sandy clay loam 61.5 28.7 1.18 Soybean 0.04-0.25 1.14 6.50 

71 574262.46 5493599.96 Sand 93.5 6.3 1.40 Corn 0.02-3.01 0.55 36.25 

72 573669.42 5492789.66 Sand 93.6 4.9 1.41 Corn 0.02-3.60 0.46 5.50 

74 571733.87 5490523.75 Loamy sand 86.6 7.8 1.30 Wheat 1.20-2.30 1.20 14.00 

81 574264.04 5490270.72 Loamy sand 84.8 9.6 1.16 Wheat 1.20-1.53 0.74 7.50 

82 572218.29 5490289.89 Sandy loam 74.8 13.8 1.18 Soybean 0.04-2.28 0.78 8.50 

84 574523.14 5490330.29 Sandy loam 73.1 16.7 1.34 Canola 0.59-3.18 0.83 8.00 

85 578439.23 5488135.55 Clay 15.1 47.3 0.91 Wheat 1.92-1.59 0.96 8.50 

91 574356.80 5487232.00 Loamy sand 87.9 7.9 1.07 Wheat 1.83-1.60 1.05 19.50 

94 575381.92 5486192.06 Sandy loam 70.8 18.3 1.28 Corn 0.16-2.67 0.99 35.20 

104 580140.29 5498897.62 Heavy clay 3.2 69.8 1.00 Wheat 0.20-3.67 0.95 8.00 

112 579992.60 5493904.55 Heavy clay 3.4 65.7 0.97 Soybean 0.03-0.54 0.55 6.75 

113 579971.64 5494727.50 Heavy clay 3.4 63.6 1.04 Soybean 0.02-0.22 0.90 18.25 

114 576926.86 5494885.57 Clay 34.9 40.6 1.16 Soybean 0.05-0.92 0.40 28.70 

123 583592.00 5483047.77 Heavy clay 6.9 61.8 0.80 Soybean 0.02-0.65 1.85 24.75 

124 581383.22 5484080.19 Clay loam 26.6 37.7 0.95 Canola 3.20-5.50 1.30 9.50 

125 580349.74 5483798.18 Clay loam 36.6 35.2 1.00 Canola 2.50-6.03 1.30 6.70 

Note: X and Y followed Universal Transverse Mercator coordinate system (UTM Zone 14); soil texture and bulk 

density recorded closed to temporary network station; range of vegetation water content (VWC) varied from June to 

July; roughness parameters recorded during beginning of campaign; RMS = root mean square; Corr.= correlation 
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3.2.2 The SHAW Model and Required Parameters for Simulations  

The SHAW model requires local hourly weather data (air temperature, relative humidity, wind 

speed, precipitation and solar radiation), estimated and recorded site characteristics (saturated 

hydraulic conductivity, pore size distribution index, air entry potential, porosity, bulk density, 

texture, organic matter, etc.) and plant growth (height, dry biomass, leaf area index, etc.) data. 

Using these parameters, the SHAW model describes the one-dimensional coupled water and heat 

flow in soils through vertical profile extending from top of plant canopy to specified soil depth 

(Flerchinger and Saxton, 1989; Flerchinger et al., 2012). For details of model readers are referred 

to Flerchinger and Saxton (1989), Flerchinger (2000) and Flerchinger et al. (2003).  

 

Hourly air temperature, wind speed, relative humidity, solar radiation and precipitation are used 

as the upper boundary in SHAW model to define heat and water fluxes (Flerchinger, 2000). Due 

to unavailability of complete required hourly weather data from nearby meteorological stations at 

Carman and Elm Creek, the available hourly weather data (excluding precipitation) used in this 

study were collected from St. Adolphe weather station, located approximately 70 km north-east 

Figure 3.2: Temporary network station.  
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of the study region. Hourly precipitation data was extracted from 6-hour estimates at a 7 km x 11 

km spatial resolution from the Canadian Precipitation Analysis (CaPA) product from 

Environment Canada. Ten CaPA pixels used in this study are indicated by dotted rectangles in 

Figure 3.1. The CaPA data is derived from statistical interpolation where Canadian 

Meteorological Center (CMC) regional model is used as the background field with rain-gauge 

measurements and radar extracted rain rates as observations (CaPA, 2013; Mahfouf et al., 2007). 

CaPA data was used in this study due to an insufficient number of precipitation gauges within 

the study region.  

 

Inputs for the SHAW model simulations were determined from the available field measurements 

(soil texture, bulk density, crop height, crop dry biomass, LAI) while other parameter values 

(pore size distribution index, air entry potential, porosity, organic matter, leaf width and crop 

root depth) were obtained from the literature. In fact, the determination of these other parameters 

are costly, difficult and impractical (Flerchinger et al., 2012).  The SHAW model was used to 

simulate soil moisture for each SMAPVEX12 agricultural field which contained an in situ soil 

moisture station during the field campaign period. The soil domain or profile for the SHAW 

model was set at 1.3 m deep. The 1.3 m soil profile was chosen in the SHAW model because 

some crop roots (e.g. corn) may extend below 1 m during the mature stage of the growing season 

(Allen et al., 1998). The domain was discretized into a total of 15 nodes in the physically-based 

SHAW model calculating moisture at the 0-5 cm (0, 5, 10 cm) and 20-100 cm (20, 30, 40, 50, 60, 

70, 80, 90, 100, 110, 120, 130 cm) soil depths which correspond to the surface soil moisture 

(SSM) and root zone, respectively. For water flow, a unit-gradient (gravity flow) boundary 

condition was used for the lower boundary and a specified flux (observed precipitation) for the 
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upper boundary. Similarly, a unit-gradient boundary condition was used for the lower boundary 

and a specified flux (observed air temperature) for the upper boundary (Flerchinger, 2000). The 

model was initialized May 1, 2012 where the conditions for water and heat flow were set at field 

capacity soil moisture (based on soil texture) and air temperature. It was assumed that model 

stabilized prior to start of the field campaign. For each site, manual calibration was followed to 

get better fit between simulated soil moisture and observed soil moisture trends by adjusting 

unknown soil parameters. Trial-and-error based calibration was performed where minor 

adjustments to pore size distribution index and air entry potential were made to obtain minimum 

RMSE (Root Mean Square Error) between daily observed and simulated soil moisture at 0.05 m 

soil depth. Ranges for the pore size distribution index, air entry potential, saturated hydraulic 

conductivity, porosity and organic matter are presented in Table 3.2 and based on literature 

indicated. For calibration results of the SHAW model, Flerchinger et al. (2012) reported that 

outcomes of trial-and-error method worked quite well in comparison with stepwise and 

parameter optimization algorithms (Monte Carlo simulations) methods, with the lowest root-

mean-square deviation (RMSD) for loamy sand, sandy loam and silt loam. Many of the 

parameters necessary to run SHAW model were available from SMAPVEX12 field campaign 

and from the literature, and are listed in Table 3.2.  
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Table 3.2: Approximate range and source of input parameters of SHAW model 

Input Parameters Approximate Range Source 

Soil characteristics:   

 

 

Pore size distribution index 3.8 -12.22 (sand - clay) Abdel-Nasser, 1999 

 

Air entry potential, m  -0.009 - -0.71 (sand - clay) Abdel-Nasser, 1999 

 

Saturated hydraulic conductivity, cm/h 21 - 0.06 (sand - clay) Rawls et al., 1982 

 

Porosity 0.43 -0.47 (sand - clay) Rawls et al., 1983 

 

Bulk density, kg/cu. m 1.6 - 0.80 (sand - clay) SMAPVEX12 

 

Sand, %  3 - 95 SMAPVEX12 

 

Silt, %  4 -90 SMAPVEX12 

 

Clay, %  4 - 70 SMAPVEX12 

  Organic matter, %  0.10 – 10 (sand – clay) AAFC, 2010 

Plant characteristics: 

  

 

Height, m  0 - 2 SMAPVEX12 

 

Leaf width, cm  0 - 8 Allen et al., 1998 

 

Dry biomass, kg/sq. m   0 - 1.4 SMAPVEX12 

 

Leaf are index (LAI)  0 - 4 SMAPVEX12 

  Effective root depth, m  0 - 1.4 Allen et al., 1998 

Hourly weather data: 

  

 

Avg. air temperature, ˚C  3 - 28 St. Adolphe Station 

 

Relative humidity, %  20 - 97 St. Adolphe Station 

 

Wind speed, mile h
-1

  1 - 25 St. Adolphe Station 

 

Precipitation, inch  0 - 0.22 CaPA 

 Density of snow, g cm
-2

 0 St. Adolphe Station 

  Solar radiation, W m
-2

  0 - 700 St. Adolphe Station 

  

The SHAW model for estimating surface soil moisture was validated by the root mean square 

error (RMSE) and evaluated its significant trends by correlation co-efficient (r) using the 

simulated and observed soil moisture values. The RMSE and r were defined as: 

n

yx

RMSE

n

i

ii




 1

2)(
                          [3.1] 

 

 



 








n

i

n

i

ii

n

i

ii

yyxx

yyxx

r

1 1

22

1

)()(

))((
         [3.2] 



47 

where, x = observed soil moisture, y = simulated soil moisture, i = days of campaign period, and 

n = number days of field campaign.  

 

3.2.3 Microwave Radiative Transfer Model  

Soil microwave emission generally originates from the top surface layer where the emitting 

depth is governed by the dielectric characteristics of the near-surface moisture profile and is 

shallower for higher frequencies and for wetter soils. At the L-band (~1-2 GHz) frequency, the 

emitting depth is approximately 5 cm (Njoku et al., 2003). Microwave emission is referred to as 

brightness temperature (Tb) which is a function of the physical temperature and the emissivity of 

radiating body (Owe et al., 2001; Owe et al., 2008). The horizontal polarization of Tb at low 

passive microwave frequency represents surface soil moisture with more accuracy than vertical 

polarization (Moran et al., 2004; Owe et al., 2008). Soil moisture is typically estimated from 

passive microwave observations of Tb using model inversions of radiative transfer models. The 

Land Parameter Retrieval Model (LPRM), a radiative transfer model, initially developed for the 

C-, X- or Ku bands frequency with higher incidence angle range of 50 – 55˚ (Owe et al., 2001; 

Owe et al., 2008) and used to successfully estimate soil moisture using brightness temperature 

observations from the Advanced Microwave Scanning Radiometer – Earth Observing System 

(AMSR-E) (Owe et al., 2008), and has been used at L-band frequencies by De Jeu et al. (2009). 

The LPRM model is well described in Owe et al. (2001) and Owe et al. (2008). Adaptation to 

this model for this analysis and the necessary model parameters are described in Table 3.3.  



48 

Table 3.3: Values and source of input parameters of LPRM model for L-band frequency 

Input Parameters Approximate Range/Value Source 

Radiative characteristics: 

  

 

Frequency (f), GHz  1.4 Panciera et al., 2011 

 

Polarization mixing fraction (Q)   0 Wigneron et al., 2001 

 Incidence angle (u), ˚ 40 Panciera et al., 2011 

Soil characteristics (at 0.05 m soil depth):   

 

 

Soil moisture (Ws), m
3
 m

-3
 0.03 – 0.43 SHAW estimation 

 Wilting point (WP) 0
#
 Wang and Schmugge, 1980 

 Soil/canopy temperature (Ts), ˚C 13.7 – 29.7 SHAW estimation 

 Porosity 0
#
 Wang and Schmugge, 1980 

 Bulk density, g cm
-3

 1.6 - 0.80 (sand - clay) SMAPVEX12 

 

Sand (S)  0.03 – 0.95 SMAPVEX12 

 

Clay (C)  0.04 – 0.70 SMAPVEX12 

  Average RMS height, mm  0.40 – 1.85 (sand – clay) SMAPVEX12 

 Average correlation length, mm 5.50 – 64.00 (sand – clay) SMAPVEX12 

Plant characteristics (for selected 6 crops): 

  

 

Vegetation single scattering albedo (ω)  0 Mo et al., 1982; ATBD, 2010 

 

Vegetation parameter (b)  0.04 – 0.30 Jackson and Schmugge, 1991 

 Vegetation water content (Wv), kg m
-2

 0.02 – 6.03 SMAPVEX12 

Atmospheric characteristics: 

  

 

Atmospheric opacity (τa)  0.01 ATBD, 2010 

 Extraterrestrial brightness temperature, K 2.7 Martin, 2004 

 Weighted mean temperature (Tm), K 70.2+0.72 Ts Bevis et al., 1992 
#
 values assigned 0, but model utilizes soil texture and bulk density to estimate 

Soil surface roughness effects the microwave emission and scattering from the soil (Wigneron et 

al., 2001). Wigneron et al. (2001) reported that the roughness parameter (hs) is a function of 

surface root mean square (RMS) height (s), correlation length (l) and dynamics of surface soil 

moisture (Ws). They also reported that hs was independent of incidence angle and polarization 

for rough surfaces at L-band frequency. For a wide range of surface soil moisture (0.03-0.35 m
3
 

m
-3

), they developed the following equation. 

 
C

B

ss
l

s
WAh 








           [3.3] 



49 

where A=0.5761, B=-0.3457, and C=0.4230. The values of average RMS height and correlation 

length were obtained for each field in the SMAPVEX12 experiment when the field campaign 

started. In SMAPVEX12, roughness was measured using a 1-m portable pin-profilometer at two 

locations in each field to obtain the roughness parameters of RMS height (s) and correlation 

length (l). Average RMS height for Passive/Active L-band Sensor (PALS) flight is considered in 

this study where pin-profilometer placed perpendicular to the orbital track or low-altitude PALS 

flight lines in north-south direction (McNairn et al., 2013). It is noted that the flight lines were 

almost similar to the directions of the SMOS satellite movement. 

 

Vegetation emits microwave radiation, but also absorbs and scatters radiation coming from soil 

(Jackson and Schmugge, 1991). The canopy or vegetation transmissivity ( c ) is dependent on 

incidence angle and vegetation optical depth, where c =exp(-τ/cos u) and 0 ≤ c ≤ 1 (Njoku et 

al., 2003). The LPRM calculates the optical depth (τ) from Microwave Polarization Difference 

Index (MPDI) where MPDI is more than 0.01 for LAI < 4 at 6.6 GHz (Meesters et al., 2005). In 

this study, optical depth (τ) is calculated from vegetation water content (Wv) and vegetation 

parameter (b) where measured vegetation water content is available on a weekly basis from 

individual SMAPVEX12 fields. Jackson and Schmugge (1991) described the relationship 

between optical depth and vegetation water content as: 

 τ = b x Wv               [3.4] 

Jackson and Schmugge (1991) reported b-parameters for different crops at 21 cm or 1.4 GHz 

wavelength (0.05 for wheat, 0.113 for corn, 0.087 for soybeans, 0.30 for short grass, 0.08 for 

canola, and 0.04 for oat) from various studies. The b-parameter is dependent on plant type and 
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wavelength (Jackson and Schmugge, 1991). Daily vegetation water content data (Wv) was 

determined using linear interpretation between SMAPVEX12 sampling dates.  

 

3.2.3.1 SMOS Data 

Dumedah et al. (2013) examined the potential error between the 15-km L1c gridded brightness 

temperature product and the actual 42-km SMOS footprint brightness temperature. They found 

that the RMSE was about 4.5K with R
2
=0.97 for H-pol, with an RMSE closer to 5K for 

undulating land with high topographic roughness. Due to the similarities in brightness 

temperature between the 15-km gridded product and 42-km brightness temperature, the 15-km 

spatial resolution pixel is considered in this study. Two 15-km pixels fell within the agricultural 

portion of the SMAPVEX12 domain, and are labeled A and B in Figure 3.1. The UTM 

coordinates for the centers of pixels A and B are (578746.45mE, 5495840.72mN) and 

(589023.95mE, 5485991.21mN), respectively. The SMOS observations (processing level: Level 

1c with version 5.0.5) were at a range of incidence angles (15 ~ 63°) during the SMAPVEX12 

campaign period (01 June – 20 July). The brightness temperatures used in this study were 

restricted to incidence angles of 39.5~40.5˚ (≈ 40˚). The incidence angle was chosen as it will be 

the angle used for the SMAP mission. The brightness temperatures were available for night and 

day passes (6 am and 6 pm) during the period of the SMAPVEX12 campaign. 

 

3.2.3.2 Heterogeneous and Homogeneous Pixels Approach 

In this study, simulated coarse spatial resolution is considered as 15km x 15km pixels (2 squares 

A and B in Figure 3.1). During the SMAPVEX12 campaign, crop types for each field within the 

study domain were identified. Soil classification for the region is available from the Soil 
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Landscapes of Canada database (AAFC, 2010). The area under individual crops and soil class for 

each pixel was extracted in ArcGIS software and is shown in Table 3.4 and Figure 3.3. In each 

pixel, six major crops (forage crops or grass, oats, wheat, corn, canola and soybean) and three 

soil types (clay, sandy clay loam and loamy sand in pixels A and B) within individual pixel area 

are considered. The two heterogeneous pixel brightness temperatures were calculated from a 

total of 36 (6 crops x 3 soil texture classes x 2 pixels) different SHAW & LPRM model runs and 

the weighted land cover fractions of each of the 36 runs considered in each pixel (i.e. considering 

representative area of the heterogeneous characteristics of crops and soils within individual 

pixels). The soil moisture and soil temperature were extracted from the SHAW model, and 

vegetation water content and surface roughness were determined using the data obtained during 

the field campaign (Table 3.1). The minor missing areas in pixels A and B (in Figure 3.3) are 

homestead, wetland, broadleaf and other minor crops (sunflower, etc.).  

 



52 

Table 3.4: Area under individual crop and soil class for different pixels  

Crop 

Pixel Area (15 km x 15 km) 

  

 

Soil Pixel A Area Soil Pixel B Area 

    (sq. km) %   (sq. km) % 

Forage Crops Clay 1.30 

 

Clay 2.73 

 

 

Sandy Clay Loam 0.00 

 

Sandy Clay Loam 0.00 

 

 

Loamy Sand 1.90 

 

Loamy Sand 0.00   

Sub-total   3.20 1.52   2.73 1.30 

Oats Clay 25.60 

 

Clay 20.04 

 

 

Sandy Clay Loam 0.00 

 

Sandy Clay Loam 1.96 

 

 

Loamy Sand 4.20 

 

Loamy Sand 0.00   

Sub-total   29.80 14.14   22.00 10.49 

Wheat Clay 33.40 
 

Clay 49.40 
 

 
Sandy Clay Loam 5.40 

 
Sandy Clay Loam 4.24 

 

 
Loamy Sand 6.20 

 
Loamy Sand 0.00   

Sub-total   45.00 21.35   53.64 25.56 

Corn Clay 5.40 

 

Clay 11.40 

 

 

Sandy Clay Loam 2.30 

 

Sandy Clay Loam 7.45 

 

 

Loamy Sand 15.80 

 

Loamy Sand 0.00   

Sub-total   23.50 11.15   18.85 8.98 

Canola Clay 34.30 

 

Clay 44.00 

 

 

Sandy Clay Loam 6.60 

 

Sandy Clay Loam 6.70 

 

 

Loamy Sand 7.40 

 

Loamy Sand 0.00   

Sub-total   48.30 22.91   50.70 24.16 

Soybean Clay 43.00 
 

Clay 53.90 
 

 
Sandy Clay Loam 4.60 

 
Sandy Clay Loam 8.00 

 

 
Loamy Sand 13.40 

 
Loamy Sand 0.00   

Sub-total    61.00 28.94   61.90 29.50 

Total   210.80 100.00   209.82 100.00 
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 Figure 3.3: Area distribution of individual crops in 2 pixels.  
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For the homogeneous or traditional uniform pixel approach, the pixel is considered uniform in 

terms of land cover, soil texture, soil temperature, vegetation water content and surface 

roughness. Therefore, pixel average soil texture (sand, silt and clay) was calculated based on the 

weighted soil fractions of clay, sandy clay loam and loamy sand of the individual pixels 

(calculated from Table 3.4) and presented in Table 3.5. The average soil texture of pixels A and 

B was found to be clay. The uniform vegetation for each pixel was determined by selecting the 

most dominant crop within the pixel area. The crop type for pixel A and pixel B was determined 

to be soybean as it was about 29% of total area for pixel A, and 30% of total area for pixel B. 

The average soil moisture and soil temperature (extracted from SHAW model), vegetation water 

content and surface roughness were determined using the data obtained from these soil types and 

individual crops observed during the field campaign (Table 3.1). The two homogeneous pixel 

brightness temperatures were calculated from a total of 2 (1 crop x 1 soil texture class x 2 pixels) 

different SHAW and LPRM model runs. 

 

Table 3.5: Crops and average soil texture of 2 pixels 

    Average soil texture 

  Crops Sand Silt Clay Total Soil class 

Pixel A Soybean 28.43 22.77 48.80 100.00 clay 

Pixel B Soybean 12.89 27.84 59.27 100.00 clay 

 

The two horizontal polarized brightness temperatures simulated for heterogeneous and 

homogeneous conditions was calculated for each pixel. In model validation of the SHAW 

coupled LPRM simulations, RMSE and correlation were calculated between each simulated 

brightness temperature (from both the heterogeneous and uniform pixel scenarios) and compared 

to SMOS observations. The H-pol brightness temperature difference was calculated from 
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individual pixel brightness temperature (for heterogeneous and homogeneous) and the SMOS 

observations.  

 

3.3. Results 

3.3.1 Corroboration of SHAW Simulated Surface Soil Moisture with Observations 

During the SMAPVEX12 experiment, surface soil moisture at 5 cm depth was recorded in 31 

temporary network stations continuously from 6
th

 June to 15
th

 July, 2012. Average precipitation 

and surface soil moisture of the 31 fields and the variation in surface soil moisture during the 

campaign are shown in Figures 3.4a-c. The average CaPA precipitation for the region is 

presented Figure 3.4a. It indicated that a long drying period that followed a heavy rainfall on 

June 10 (56 mm) during the beginning of campaign and further scattered rainfall occurred toward 

the end of the campaign (Figure 3.4a). Therefore, observed surface soil moisture ranged from 

saturation to very dry conditions. The range of the daily surface soil moisture observed 

throughout the campaign is shown in Figure 3.4b. This plot shows the mean, minimum and 

maximum daily surface soil moisture observations of 31 fields and illustrates soil wetting and 

drying conditions. The average observed surface soil moisture of 31 fields showed comparatively 

higher (~ 0.30 m
3
 m

-3
) in the beginning of June and lower (~0.20 m

3
 m

-3
) in July which was due 

to the occurrence of precipitation. The trend of observed average soil moisture is found to be 

similar to that trend presented by McNarin et al. (2013) for 40,000 measurements taken over 55 

fields using hand held soil moisture monitoring probes over a 0-6 cm soil depth for the almost 

same duration. Figure 3.4c shows the variability in the soil moisture for individual field for the 

entire campaign where precipitation of individual CaPA pixels were considered for individual 

field during SHAW model execution. The variation of temporal surface soil moisture varied 
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widely, especially in heavy clay soils (e.g. fields 55, 113, 114). Sandy fields exhibited lower 

range of surface soil moisture (e.g. fields 13, 14, 62, 71, 72).  
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Figure 3.4: (a) average CaPA precipitation throughout SMAPVEX12 campaign; (b) surface soil 

moisture mean and range over the 31 agricultural fields; (c) mean and range of surface soil 

moisture conditions over each of the 31 sample fields during the experiment.  

(c) 

(a) 

(b) 
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Before coupling the SHAW simulations of soil moisture to the LPRM, the simulated soil 

moisture time series was compared to in-situ data for each of the 31 fields. The time series of the 

daily mean simulated and in situ dataset is shown in Figure 3.5a, the error bars represent 

simulated minimum and maximum surface soil moisture of the 31 agricultural fields and the 

observations during the time period is shown as the solid line. Generally, the time series is well 

represented, however, SHAW overpredicted soil moisture at 0.05 m soil depths during wet 

period (until middle of June). Li et al. (2012) also found that the SHAW over predicted soil 

moisture due to an under prediction of soil evaporation. Based on Figure 3.5a, some of the 

deviation between observed and simulated surface soil moisture could be related to the lower 

spatial variability of CaPA precipitation (a 10 km product) than would be observed at the scale of 

the fields; this is, particularly evident on July 3 and July 13-15, where large local storms were 

not well represented in the CaPA precipitation data.  

 

The comparison between SHAW simulated surface soil moisture and the in situ dataset is shown 

in Figure 3.5b. The simulated dataset is well distributed around the in situ soil moisture although 

higher errors are observed for the sandier soils. The average RMSE and r over all of the 

simulated fields was 0.0548 m
3
 m

-3
 and 0.6951** (i.e., significant at 0.01 probability level), 

respectively. This relationship is bit lower than those determined by Wang et al. (2010) who 

reported a correlation of 0.75** for 0-0.15 m soil profile using SHAW for clay loam soil. In 

general, fields with fine textured soils, i.e. clay and loamy soils (in middle and east side of 

SMAPVEX12 site) had much lower RMSE (<0.05 m
3
 m

-3
) and higher correlation (>0.7) between 

observed and estimated surface soil moisture than fields with sandier textures. Of note, much of 

the increased RMSE and reduced correlation are due to use of forecasted CaPA weather data for 
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all fields. For comparison, the in-situ precipitation data (from Fields 11, 22 and 85) used over 

these fields resulting in reduced RMSE (and increased r) was observed between observed and 

simulated surface soil moistures. However, for the purpose of this research, using of 

operationally available precipitation products (e.g. CaPA) will be of use for future applications 

particularly in regions where less precipitation data is available. Further simulations and 

evaluation of the SHAW model for 6 fields (varied from clay soil to loamy sand soils) to predict 

root-zone soil moisture at 0.05m, 0.20m, 0.50m and 1.00m soil depths is shown in Appendices 

A.5a-6c. 

 



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: (a) Time series of daily surface soil moisture (5-cm depth) estimates from 

SHAW (bars) and daily mean observed (in situ) soil moisture (line) of 31 agricultural 

fields for time period 6 June – 15 July 2012; (b) Comparison among daily simulated 

and observed surface soil moisture over the 31 fields for the same data period.  

(a) 

(b) 
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3.3.2 Validation of Pixel Brightness Temperature 

Time series of simulated horizontal polarized brightness temperatures from the SHAW coupled 

to the LPRM (S_LPRM) and SMOS observations over the 2 pixels (A and B) is shown in Figure 

3.6. The general trends of the heterogeneous and homogeneous brightness temperatures were 

well simulated by the coupled system, although a few discrepancies exist particularly toward the 

end of June (at medium soil moisture conditions). Generally, SMOS brightness temperatures (Tb) 

were higher than the simulated brightness temperature (Tb) which was also experienced by 

Schlenz et al. (2012) while using the coupled land surface model (Processes of Radiation, Mass 

and Energy Transfer, PROMET) and radiative transfer model (L-band Microwave Emission of 

the Biosphere, L-MEB) to compare with SMOS L1c processed Tb observations (version 5.0.4) 

during a SMOS Validation Campaign in April-October 2011 for the 40˚ look angle at Upper 

Danube Catchment of southern Germany.  

 

The RMSE and correlation between simulated brightness temperature and SMOS observations 

for the two pixels (A and B) are shown in Table 3.6. Over the SMAPVEX12 experiment, the 

RMSE was lower and the correlations were higher for heterogeneous simulations than those 

simulated using a homogeneous assumption. Pixel A shows lowest RMSE (4.6K) and higher 

correlation (0.74) for heterogeneous condition. This pixel contained clay soil with 68% clay, 9% 

sandy clay loam and 23% loamy sand. Considering both pixels, the heterogeneous simulations 

contained the lowest RMSE (4.72K) and highest correlation (0.72) compared to homogeneous 

pixels (RMSE = 7.12K, r = 0.71) when compared with SMOS observations. Panciera et al. 

(2011) also reported that soil moisture retrieval error was less for simulated heterogeneous pixel 
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(RMSE=2.5%v/v) compared to uniform pixel (RMSE=3.1%v/v) when 40 km spatial resolution 

was extracted from air borne observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: The time series of modeled brightness temperature (heterogeneous and 

homogeneous pixels) and SMOS brightness temperatures during 5 June – 14 July 2012 

for the 40 look angle. Note: Tbh_Ht=horizontal polarized brightness temperature of 

heterogeneous pixels; Tbh_Ho=horiozantal polarized brightness temperature of 

homogenous pixels.  
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 Table 3.6: RMSE and correlation among modeled and SMOS brightness temperature 

Pixel Tbh_Ht Tbh_Ho 

 

RMSE r N RMSE r N 

  (K)     (K)     

A 4.61 0.74 22 7.76 0.78 22 

B 4.82 0.69 23 6.47 0.64 23 

Average  4.72 0.72  7.12 0.71  
Note: Tbh_Ht=horizontal polarized brightness temperature of heterogeneous pixels;  

Tbh_Ho=horiozantal polarized brightness temperature of homogenous pixels  

 

3.3.3 Effect of Land Surface Heterogeneity on Difference Between Simulated and Observed 

Brightness Temperature  

The t-Test statistics between heterogeneous and homogenous brightness temperature for pixels A 

and B is shown in Table 3.7. Based on the results for each of the pixels, the brightness 

temperature differences between heterogeneous and homogenous assumptions are significantly 

different from each other at the 0.01 probability level. The homogeneous pixels have higher 

larger errors than the heterogeneous pixels. Panciera et al. (2011) also experienced same 

phenomenon using Polarimetric L-band Multibeam Radiometer (PLMR) observations integrated 

at SMOS pixel scale for different land surface factors. Low (2008) also reported that fractional 

land use affects the quality of surface soil moisture retrievals conducted for a synthetic study 

using L-band passive microwave brightness temperature at 40 km spatial resolution. In the 

following section, these errors are examined relative to the spatial variations of land surface 

heterogeneities or parameters observed in the catchment. 
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Table 3.7: t-Test statistics between heterogeneous and homogeneous  

brightness temperature differences  

  df t-Test t-critical 

Pixel A 21  -51.16** 2.83 

Pixel B 21  -17.35** 2.83 

** = significant at 0.01 probability level  

 

 

Table 3.8 presents correlations between the model errors (SMOS Tb observed minus Tb estimated 

using the homogeneous pixel approach) and the variability of physical characteristics within each 

of the SMOS pixels. Evaluated physical characteristics include the variations among in-situ 

surface soil moisture, in-situ surface soil temperature, soil roughness and vegetation water 

content based on observations taken during the SMAPVEX12 campaign. The correlation 

between the Tb errors and the variability of the observed soil moisture within the two pixels was 

0.66** (Pearson’s r, p<0.05) and is shown in Figure 3.7. Panciera et al. (2011) reported no 

significant correlation between retrieval error and pixel heterogeneity representing variation of 

soil moisture, however, a significant relationship is observed in this study.  

 

Table 3.8: Correlation (r) between variations of land surface characteristics  

and Tb difference (n = 44) 

 

Tbh_diff_Ho 

  (K) 

CV of Surface Soil Moisture, % 0.66** 

CV of Surface Soil Temperature, % 0.48** 

CV of Soil Roughness, % -0.27 

CV of Vegetation Water Content, % -0.03 
Note: Tbh_diff_Ho = difference between SMOS observation and horizontal polarized  

brightness temperature of homogenous pixels 
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As shown in Table 3.8, there is statistical correlation (r = 0.48**) between differences in 

simulated Tb to SMOS and variation of soil temperature in the pixel. Very low variation of soil 

temperature was observed (Figure 3.8) following large  precipitation events (55 mm) on the 11
th

 

June and the highest variation observed over dry soils (25
th

 June); errors in retrieval followed this 

pattern. Panciera et al. (2011) reported low spatial variability of soil temperature with negligible 

effect on soil moisture retrieval and in contrast to their results, variation of soil temperature has 

found to be significant effect on brightness temperature difference in this study.   

 

 

 

 

Figure 3.7: Relationship between horizontal polarized brightness temperature 

difference and homogeneity (coefficient of variation) of observed surface soil 

moisture for A and B pixels.  
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Insignificant correlations between retrieval error (differences between SMOS and model) were 

observed for measured variation of soil roughness and vegetation water content (Table 3.8). Due 

to insignificant correlation, the variation of soil roughness shows little or almost no effect on the 

brightness temperature retrieval in this study. In Figure 3.9, the higher variation of soil roughness 

observed in pixel B where higher amount of clay content (59%) was found (Table 3.5). The soil 

moisture of clay fields was also varied widely (Figure 3.3). Denvenport et al. (2008) similarly 

reported that heterogeneity in soil roughness using surface height variation at L-band wavelength 

has small effect on soil moisture retrieval.  

 

 

 

Figure 3.8: Relationship between horizontal polarized brightness temperature difference 

and homogeneity (coefficient of variation) of observed surface soil temperature for A and 

B pixels.  
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There is no significant relationship between the variation of vegetation water content and the 

difference in brightness temperature for various agricultural crops growing during SMAPVEX12 

campaign (Table 3.8; Figure 3.10). On the contrary, Panciera et al. (2011) reported significant 

soil moisture retrieval error (RMSE=7%v/v) for the variation of vegetation optical depth in pixel 

composed by 50% grassland and 50% forest fraction. However, given the focus on agricultural 

crops less variation is anticipated in this study.  

Figure 3.9: Relationship between horizontal polarized brightness temperature difference 

and homogeneity (coefficient of variation) of soil roughness for A and B pixels.  
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3.4 Conclusions 

In this study, a model for simulating L-band Tb was developed through coupling the SHAW 

hydrological process model with the LPRM (radiative transfer model). The sensitivity of this 

combined system to variability at the sub-SMOS pixel scale was assessed using ground data 

collected during the SMAPVEX12 field campaign. Two coupled simulations were developed for 

estimating Tb at the scale of the SMOS sensor. The first simulation used average parameters at 

the SMOS pixel scale over the agricultural sites and the second attempted to model for the 

observed sub-grid variability. For simulated brightness temperature, the SHAW model coupled 

with radiative transfer model under-predicted brightness temperature compared to SMOS 

observations for the region with average RMSE of 4.7K for heterogeneous land covers whereas 

Figure 3.10: Relationship between horizontal polarized brightness temperature difference 

and homogeneity (coefficient of variation) of vegetation water content for A and B pixels.  
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higher average RMSE (7.1 K) was found to be for homogeneous land covers. The trend of 

SMOS brightness temperatures, nonetheless, was well described by the SHAW coupled radiative 

transfer model with correlation over 0.72 (for the heterogeneous simulations). Relationships 

between model error and variability of parameters observed during SMAPVEX12 suggest that 

sub-grid estimates of soil moisture and soil temperature were of critical importance and 

explained errors between the homogeneous model and observations. During SMAPVEX12, these 

parameters were strongly influenced by soil texture (McNairn et al., 2012). Therefore, it is 

suggested that enhanced modelling of sub-grid variability using systems such as that described 

heterogeneity has some capacity to improve the prediction of brightness temperature over a 

SMOS pixel. This has importance for improving downscaling approaches or for data assimilation 

that attempt to optimize between observations and model estimates of brightness temperature.   
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Chapter 4 

 

 

Conclusions 
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4.1 Summary and Conclusions 

Changes in agricultural practices across North America, including the wide spread adoption of 

no-till practices, has an impact on the storage of soil moisture. The effects of agricultural 

practices and soil management practices are typically not included in many hydrological models, 

particularly in models used for large scale monitoring such as those used in assimilation systems 

for hydrometeorology or seasonal water prediction. In order to evaluate the impact of differences 

in agricultural practices on hydrological budgets it is necessary to understand how well these 

processes are currently simulated in available hydrological models. 

 

Chapter 2 documents some of the effects of tillage on the soil water budget under soybean where 

CT and NT experiments were carried out in silt loam soil at Elora, Ontario. The soil 

characteristics, weather data and plant growth data were available from field measurements as 

well as from literature. The SHAW model was used to predict soil moisture and soil temperature 

for 1-m soil profile, and validated with available continuous soil moisture and soil temperature 

data from installed electrical sensors in the fields. Results showed that NT had higher soil 

moisture in upper soil layers particularly later in the growing season than observed in CT 

treatment. However, SHAW simulations of soil moisture content followed the general trend of 

the observed data suggesting that SHAW can be used for reasonable simulation of soil water 

budgets for this region under different land management practices. Generally, the average 

differences in soil moisture between observed and simulated data were mostly less than 0.05 m
3
 

m
-3

 over both treatments. For simulation of soil temperature, SHAW over-predicted soil 

temperatures for the CT and NT by up to 2.5˚C on average over the entire experimental period.  
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Remote sensing systems, such as - the Soil Moisture and Ocean Salinity (SMOS) mission, are 

currently making near surface observations of the soil moisture state over much of the Earth’s 

land surface. Improvements to observation systems such as SMOS are being driven by process 

studies to understand the influences of land surface characteristics within a satellite pixel and 

how these parameters influence the retrieval of microwave brightness temperatures that are used 

for obtaining soil moisture. A model such as SHAW, as detailed in Chapter 2, was shown to 

produce accurate simulations of the agricultural water budgets, in Chapter 3 this model was used 

to evaluate the impact of agricultural practices on variability of soil moisture and other 

parameters at the sub-SMOS scale pixel level and to evaluate the sensitivity of this variability on 

the estimation of microwave brightness temperature. 

 

The impact of sub-SMOS scale (~15 km) grid variability on the simulation of microwave 

brightness temperature was evaluated through the following procedure. In step 1, the SHAW 

model was used to predict surface soil moisture (at 0.05 m soil depth) with available weather 

data, soil characteristics and plant growth data from over 31 agricultural fields under wide range 

of crops (soybean, wheat, corn, canola, corn and grass) and soil textures (sand, loam and clay 

soils) under the SMAMPVEX12 campaign in Manitoba. The simulated soil moisture was 

validated with available observed soil moisture data from installed electrical sensors in 

individual fields. The outputs from the SHAW model indicated that the RMSE was less than 

0.05 m
3
 m

-3
 for surface soil moisture for the study region. In step 2, the estimates (surface soil 

moisture and surface soil temperature) from the SHAW model were used in the LPRM along 

with soil roughness (RMS height and correlation length) and vegetation water content available 

from SMAPVEX12 campaign, to obtain simulated brightness temperature of individual fields. 
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For the heterogeneous assumption, simulated brightness temperature was the summation of the 

products of the weighted area fraction of individual crop area within sub-SMOS scale (~15 km) 

grid and calculated simulated brightness temperature of individual crop fields. Similarly, for the 

homogeneous assumption, simulated brightness temperature at the same spatial scale (~ 15 km) 

was calculated based on average soil texture and average crop of the pixel. The simulated 

brightness temperature of two individual pixels within the agricultural land management area 

was then validated with the available SMOS observations. The outputs from SHAW coupled 

LPRM model indicated that simulated brightness temperature was under-predicted compared to 

SMOS observations for the region with an average RMSE of 4.3K for heterogeneous land covers. 

The trend of SMOS brightness temperatures, nonetheless, was well described by the SHAW 

coupled radiative transfer model with correlation over 0.72 for the heterogeneous simulations. 

Relationships between model error and variability of parameters observed during SMAPVEX12 

suggest that sub-grid estimates of soil moisture and soil temperature were of critical importance 

and explained errors between the homogeneous model and observations. 

 

It is suggested that enhanced modelling of sub-grid variability using systems such as that 

described above has some capacity to improve the prediction of brightness temperature over a 

SMOS pixel. The further development and application of models like SHAW that can be used to 

accurately simulate the spatial and temporal variations of soil moisture within a satellite pixel 

will have importance for improving downscaling approaches or for data assimilation systems that 

attempt to optimize between observations and model estimates of brightness temperature.   
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4.2 Research Contributions 

The study has developed new approach with integration of hydrological model (SHAW) and 

LPRM to improve accuracy of soil moisture prediction for different agricultural management 

(conventional and no tillage) practices including heterogeneity of in-situ soil moisture, soil 

temperature, soil texture, soil roughness and vegetation water content. The proposed integrated 

model could reduce the error in estimation of soil moisture, with improved parameterization. 

Improved estimation of soil moisture will help farmers to understand the availability of soil 

moisture or soil nutrients for plant growth, as well as to understand how this affects crop yield. 

This research is expected to enhance our understanding of the impact of land management 

practices for improved hydrological process, and how modelling this land surface heterogeneity 

can improve simulation of microwave brightness temperatures for data assimilation systems.  
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A.1 SHAW input files for CT 

 
File: Trial.inp 

1 0 0 
TRIAL.SIT 

TRIAL.WEA 

TRIAL.MOI 
TRIAL.TMP 

 24  0 24 24  0 24 24  0  0  6  0  0  1 

OUT.OUT 
PROFIL.OUT 

TEMP.OUT 

MOIST.OUT 
MATRIC.OUT 

ENERGY.OUT 

WATER.OUT 
WFLOW.OUT 

ROOTXT.OUT 

 

File: Trial.sit 

SITE WITH SOYBEAN DURING 2010-2011   ** (CONVENTIONAL TILLAGE, ELORA) LINE A 

 91  00  110  34  111                 ****** SIMULATION PERIOD       LINE B 
 43 38   0.15  225.0  12.0  340.         ****** LOCATION              LINE C 

 2  0  0  22  0  00.010  1  0   0   0   1   0   0    ***** NODES       LINE D 

 0.4  2.0  0.00                     ****** WEATHER CHARACTERISTICS    LINE E 
 1   -53.72  1.32   0.2             ***** PLANT GROWTH / CANOPY       LINE F 

 1   1   0.23  7.0  100.  5.0  -100.   2.0E05   3.0E05  **** SOYBEAN  LINE F1-1 
 1   1   0.25  7.0  100.  5.0  -300.   6.7E05   1.7E06  **** WBARLEY  LINE F1-2 

 soyb.110 

 wbar.110 
 1.0  .15                                        ****** SNOW          LINE G 

 1  1  0.15 0.0                                  ****** SOIL          LINE J 

 0.00  3.34  -0.11 0.40 1550. 0.45  32. 51. 17. 2.0                   LINE J-1 
 0.05  3.34  -0.11 0.40 1550. 0.45  32. 51. 17. 2.0                   LINE J-2 

 0.10  3.34  -0.11 0.40 1550. 0.45  32. 51. 17. 2.0                   LINE J-3 

 0.25  3.34  -0.11 0.40 1550. 0.45  32. 51. 17. 1.6                   LINE J-4 
 0.40  3.34  -0.11 0.40 1550. 0.45  32. 51. 17. 1.6                   LINE J-5 

 0.55  3.72  -0.1  0.41 1610. 0.41  42. 43. 15. 1.1                   LINE J-6 

 0.70  3.72  -0.1  0.41 1610. 0.41  42. 43. 15. 1.1                   LINE J-7 
 0.85  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-8 

 1.00  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-9 

 1.15  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-10 
 1.30  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-11 

 1.45  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-12 

 1.60  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-13 
 1.75  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-14 

 1.90  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-15 

 2.05  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-16 
 2.20  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-17 

 2.35  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-18 

 2.50  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-19 
 2.65  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-20 

 2.80  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-21 

 2.95  4.23  -0.1  0.45 1660. 0.40  44. 42. 14. 0.6                   LINE J-22 

 

File: Trial.moi 

91 0 110 0.195 0.195 0.274 0.274 0.249 0.249 0.264 0.264 0.264 0.264

 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 0.264 

35 0 111 0.026 0.026 0.194 0.194 0.228 0.228 0.228 0.228 0.228 0.228

 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 
 

File: Trial.tmp 

91 0 110 5.2 5.2 4.4 4.4 3 3 -0.9 -0.9 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 

35 0 111 -1.4 -1.4 -0.6 -0.6 1.3 1.3 2.1 2.1 2.1 2.1

 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 
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File: Trial.wea 

1 110 -0.7 -13 -6.8958 310.495032 0.059055118 46.272852 
2 110 -12.9 -15.9 -17.35 411.097032 0  80.90226 

3 110 -9.7 -15.6 -14.446 430.353  0  45.416376 

4 110 -8.3 -12.5 -13.313 308.632032 0  78.680052 
5 110 -6 -10.7 -9.9167 291.253968 0.023622047 61.45794 

…………………… 

…………………… 
 

 

File: soyb.110 

90      110      0        0        0        0        0        MAR 31 

138     110      0        0        0        0        0        MAY 18 

150     110      0.1      2        0.03     0.1      0.1      MAY 30      
234     110      0.75     10       1        2        1.6      AUG 22 

270     110      0.7      1        1        0.8      1.5      SEP 27 

271     110      0        0        0.2      0        1.4     SEP 28 
38      111      0        0        0        0        0       FEB 7 

 

File: wbar.110 

80 110 0 0 0 0 0 

150 110 0 0 0 0 0 

275 110 0 0 0 0 0 
303 110 0.05 0.5 0.05 0.5 0.1 

34 111 0.05 0.8 0.05 0.5 0.1 

143 111 0.6 1.5 0.3 2.5 1.25 
178 111 0.8 1.5 0.85 0.7 1.5 

200 111 0 0 0.05 0 0.9 
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A.3 SHAW input files and LPRM files for sample SMAPVEX12 Field 52  

 
File: Trial.inp 

0 0 0 

TRIAL.SIT 

TRIAL.WEA 

TRIAL.MOI 

TRIAL.TMP 

 24  0 24 24  0 24 24  0  0  6  0  0  1 

OUT.OUT 

PROFIL.OUT 

TEMP.OUT 

MOIST.OUT 

MATRIC.OUT 

ENERGY.OUT 

WATER.OUT 

WFLOW.OUT 

ROOTXT.OUT 

 

File: Trial.sit 

SITE WITH SOYBEAN DURING 2012      ****** (MANITOBA Field 52)       LINE A 

 123  00  112  273  112                ****** SIMULATION PERIOD       LINE B 

 49 39.84  0.15  225.0  12.5  268        ****** LOCATION              LINE C 

 1  0  0  15  0  0.01   1  0   0   0   1   0   0    ***** NODES       LINE D 

 0.4  2.0  0.00                     ****** WEATHER CHARACTERISTICS    LINE E 

 1   -53.72  1.32   0.2             ***** PLANT GROWTH / CANOPY       LINE F 

 1   1   0.23  7.0  100.  5.0  -100.   2.0E05   3.0E05  **** SOYBEAN  LINE F1-1 

 soyb.112 

 1.0  .15                                        ****** SNOW          LINE G 

 1  1  0.15 0.0                                  ****** SOIL          LINE J 

 0.00  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6  2.4             LINE J-1 

 0.05  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6  2.4             LINE J-2 

 0.10  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6  2.4             LINE J-3 

 0.20  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   2.5            LINE J-4 

 0.30  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   2.5            LINE J-5 

 0.40  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   2.5            LINE J-6  

 0.50  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-7 

 0.60  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-8 

 0.70  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-9 

 0.80  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-10 

 0.90  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-11 

 1.00  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-12 

 1.10  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-13 

 1.20  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-14 

 1.30  4.0  -0.2   0.43  1200.  0.398 52.3 18.1 29.6   0.17           LINE J-15 

 

File: Trial.moi 

123 00 112 0.49 0.49 0.498 0.498 0.398 0.365 0.365 0.365 0.365 0.379

 0.379 0.379 0.379 0.379 0.379 

273 24 112 0.28 0.28 0.329 0.329 0.329 0.178 0.178 0.178 0.178 0.366

 0.366 0.366 0.366 0.366 0.366 
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File: Trial.tmp 

123 00 112 12 11.5 11.5 15.22 15.22 13.14 13.14 13.14 13.14 11.10

 11.10 11.10 11.10 11.10 11.10 

273 24 112 18 20.84 20.84 20.25 20.25 19.3 19.3 19.3 19.3 17.25

 17.25 17.25 17.25 17.25 17.25 

 

File: soyb.112 

90 112 0 0 0 0 0 APR 01 

139 112 0 0 0 0 0 MAY 18 

165     112      0.14     2        0.02     0.1      0.10     JUN 13 

182     112      0.36     5        0.016   0.33     0.15     JUN 30      

191     112      0.62     6        0.15     0.77     0.4      JUL 09 

200     112      0.75   6        0.20    1.2      0.5      JUL 18 

272 112 0 0 0 0 0.3 SEP 28 

275 112 0 0 0 0 0.2 OCT 01 

 

File: Trial.wea 

122 0 112 12.2 8.0769 74 0 0 0 

122 1 112 10.6 6.8343 85 0 0 0 

122 2 112 10.2 6.8343 86 0 0 0 

122 3 112 10.2 4.3491 84 0 0 0 

122 4 112 10.1 8.0769 84 0 0 0 

122 5 112 10.4 11.8047 83 0 0 0 

………………… 

………………… 

 

File: LPRM_Tb_SMAPVEX12.m 
%Filename=LPRM_BrightnessTemp.m 
%Calculate daily brightness temperature for 2012 for SMAPVEX12 plots 
clear all; 
P=0;         % porosity of the soil 
WP=0;        % soil moisture content at wilting point 
f=1.4;       % frequency (SMOS) 
BD=1.2;      % bulk density in g/cu.cm 
mpdi=NaN;     % microwave polarization difference index 
S=0.523;       % sand in % 
C=0.296;       % clay in % 
Q=0;         % polarization mixing fraction 
w=0;      % vegetation single scattering albedo 
opt_atm=0.01;   % zenith atmospheric opacity f (water vapor) 
u=0.698131701;  % incidence angle in rad. or 40 deg 
b=0.087;    % vegetation parameter (corn) 
ps=1.65;     % average RMS height 
pl=55.5;      % average correlation length (cm) 
p=dlmread('C:\SMAPX12\Field_52_sm_st_vw.csv'); % file contains Julian day, 

soil moisture (SHAW simulated), soil temperature (SHAW simulated) and 

vegetation water content 
JD = p(:,1); 
sm = p(:,2); 
T = p(:,3)+273.15; 
wv=p(:,4); 
h= 0.5761*((p(:,2)).^(-0.3475))*(ps/pl).^(0.4230); 
[Tb,opt]=forward_sw(mpdi,T,sm,P,WP,S,C,BD,h,Q,w,opt_atm,f,u,wv,b); 
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File: forward_sw.m 
function [Tb,opt]=forward_sw(mpdi,T,sm,P,WP,S,C,BD,h,Q,w,opt_atm,f,u,wv,b) 
 

% Forward model to predict Tb and Optical Depth 
% INPUT: 
%   mpdi,                                                       [-] 
%   T, Soil Temperature at 1.25cm                               [K] 
%   sm, Water content of the soil                               [m3/m3] 
%   P, Porosity of the soil (if unknown, fill in 0, give BD)    [m3/m3]   
%   WP, Water content at wilting point (if unknown, fill in 0)  [m3/m3] 
%   S, C, Sand and Clay content (if Wilting Point unknown)      [m3/m3] 
%   BD, Bulk density (if Porosity unknown)                      [g/cm3] 
%   h, empirical roughness parameter (0-0.2)                    [-] 
%   Q, polarization mixing fraction (0-0.2)                     [-] 
%   w, vegetation single scattering albedo (<0.12)              [-] 
%   b, vegetation parameter at 1.4GHz or 21 cm (0.0-2.0)        [-] 
%   wv, vegetation water content                                [kg/m2] 
%   opt_atm, zenith atmospheric opacity f(water vapor)          [-] 
%   f, Frequency of Radiometer                                  [GHz] 
%   u, Incidence angle                                          [rad] 
% OUTPUT: 
%   opt, Optical Depth                                          [-] 
%   Tb, Brightness Temperature  (H)                             [K] 

  
% REFERENCE : M. Owe, R. de Jeu and T. Holmes, (2008). "Multisensor  
%  historical climatology of satellite-derived global land surface  
%  moisture", J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769. 
% AUTHOR : May 2006, T. Holmes, Vrije Universiteit Amsterdam 
% CHANGES : December 2006, T. Holmes 
%           in kcurven : if mpdi<1e-9, mpdi=1e-9; end 
% ------------------------------------------------------------------- 

  
    % Dielectric Constant of the soil [-] 
    e=wang(P,WP,T,f,sm,BD,S,C); % complex 
    k=abs(e); % absolute value     
    % Smooth Surface Reflectivity 
    [Rh,Rv]=fresnel(k,u); 
    % Rough Surface Emissivity 
    [eh,ev]=emissivity(Rh,Rv,h,Q); 
    % Vegetation Optical Depth at nadir 
    opt=swapan(b,wv); 
    % Vegetation Transmissivity 
    trans_v=exp(-opt./cos(u));    
    % Predicted Tb(H) 
    Tb=radtrans(T,eh,trans_v,w,opt_atm,u); 

  
%------- END OF MAIN FUNCTION ------------------     

     
function Tb=radtrans(Ts,e,trans_v,w,opt_atm,u) 
% Radiative transfer equation (Kirdiashev et al., 1979) (Mo et al., 1982) 
% Assumption: Tcanopy = Tsoil and single scattering 
    Tc=Ts;  
    % Emitted Brightness Temperature from soil/vegetation 
    Tb = Ts.*e.*trans_v ... 
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        + (1-w).*Tc.*(1-trans_v) + (1-e).*(1-w).*Tc.*(1-trans_v).*trans_v; 
    if opt_atm>0 
    % Atmospheric Contribution 
    [trans_atm,Textra,Tup,Tdn]=atmosphere(Ts,opt_atm,u); 
    % Measured Brightness Temperature by spaceborn radiometer 
    Tb= trans_atm*( Tb + (1-e).*(Tdn+Textra.*trans_atm).*trans_v.*trans_v ) + 

Tup; 
    end 

     
function  [trans_atm,Textra,Tup,Tdn]=atmosphere(Ts,opt_atm,u)     
% Atmospheric Contribution to Tb as measured by spaceborn radiometer 
    % Atmospheric Transmissivity 
    trans_atm=exp(-opt_atm./cos(u)); 
    % Weighted mean temperature of atmosphere [K] (Bevis et al., 1992) 
    Tm=70.2+0.72*Ts; 
    % Upwelling brightness temperature from atmosphere [K] 
    Tup=Tm*(1-trans_atm); 
    Tdn=Tup; 
    % Extraterrestrial Brightness Temperature [K] (Ulaby, 1981) 
    Textra=2.7; 

  
function opt=swapan(b,wv) 
%Jackson & O'Neill (1990) Model to predict Optical Depth  
% REFERENCE : Jackson, T.J. and T.J. Schmugge. 1991. "Vegetation effects on   
%  the microwave emission of soils", Remote Sens. Environ. 36: 203-212. 
    opt=b*wv; 

     
function [eh,ev]=emissivity(Rh,Rv,h,Q) 
% Rough Surface Emissivity (Choudhury et al., 1979), (Wang and Choudhury, 

1981) 
    eh=1-((1-Q)*Rh+Q*Rv).*exp(-h); 
    ev=1-((1-Q)*Rv+Q*Rh).*exp(-h); 

  
function [Rh,Rv]=fresnel(k,u) 
% Fresnel Law 
    Rh=((cos(u)-sqrt(k-sin(u)^2))./(cos(u)+sqrt(k-sin(u)^2))).^2; 
    Rv=((k.*cos(u)-sqrt(k-sin(u)^2))./(k.*cos(u)+sqrt(k-sin(u)^2))).^2; 

 

 

File: wang.m 
function e=wang(P,WP,T,f,Wc,BD,Sand,Clay) 

  
% e=wang(P,WP,T,f,Wc,BD,Sand,Clay) 
% Wang and Schmugge model (1980) 
% 
% INPUT 
%   P = porosity of the soil (if unknown, fill in 0, give BD)    [m3/m3]       
%   WP = soil moisture content at wilting point                  [m3/m3]  
%       (if unknown, fill in 0, give Sand,Clay)  
%   T = Temperature of soil water                                [Kelvin] 
%   f = Frequency                                                [GHz] 
%   Wc = Water content of the soil                               [m3/m3] 
%   BD = Bulk density (if Porosity unknown)                      [g/cm3] 
%   Sand,Clay = Sand and Clay content (if Wilting Point unknown) [m3/m3] 
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% OUTPUT 
%   e = complex Dielectric Constant of the soil (real+imag)      [-] 
% AUTHOR : 2005, T. Holmes, Vrije Universiteit 

  
% frequency conversion [GHz] to [Hz] 
f=f.*1e9;  

  
% calculate porosity if unknown 
if (P==0 & length(P)==1), P=1-(BD/2.65);  
else 
i=find(P==0);  
if (isempty(i)==0 && length(BD)==length(P)); P(i)=1-(BD(i)/2.65); end 
end 
% calculate wilting point if unknown (Wang and Schmugge,1980) 
if (WP==0 & length(WP)==1), WP=0.06774-0.064.*Sand+0.478.*Clay; 
else 
i=find(WP==0);  
if (isempty(i)==0 && length(Sand)==length(WP) && length(Sand)==length(WP)) 
    WP(i)=0.06774-0.064.*Sand(i)+0.478.*Clay(i); end 
end 

  
% definitions: 
ei=3.2+0.1i;    %dielectric constant of ice (Wang and Schmugge, 1980) 
ea=1+0i;        %dielectric constant of air (Wang and Schmugge, 1980) 
er=5.5+0.2i;    %dielectric constant of rock (Wang and Schmugge, 1980) 

  
% dielectric constant of water (Ulaby, Vol III p2020) 
[ew]=debye(T,f); 

  
% The final Wang Schmugge model 
% ---------------------- 
% fit parameter (Wang and Schmugge,1980) 
y=-0.57.*WP+0.481; 
% transition moisture (Wang and Schmugge,1980) 
Wt=0.49.*WP+0.165; 
% dielectric constant of the initially absorbed water (Wc <= Wt) 
ex=ei+(ew-ei).*(Wc./Wt).*y;  
% dielectric constant of the soil (Wc <= Wt) 
e1=Wc.*ex+(P-Wc).*ea+(1-P).*er; %(Wc <= Wt) 
% dielectric constant of the initially absorbed water (Wc > Wt) 
ex=ei+(ew-ei).*y; 
% dielectric constant of the soil (Wc > Wt) 
e=Wt.*ex+(Wc-Wt).*ew+(P-Wc).*ea+(1-P).*er; %(Wc > Wt) 
% combine (Wc <= Wt) & (Wc > Wt) 
if (length(Wc)>1 || length(Wt)>1 ) 
    z=find(Wc <= Wt); 
    e(z)=e1(z); 
elseif Wc<Wt 
    e=e1; 
end 
% ---------------------- 

     
function [ew]=debye(T,f) 
%Calculation of dielectric constant of water (Ulaby, Vol III p2020) 
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% Debye Equation 

  
% convert Temperature from Kelvin to Celcius 
T=T-273.15; 
% high frequency limit of the dielectric constant of pure water 
ewinf=4.9; 
%relaxation time of pure water  (Stogryn, 1970) 
relt=(1.1109e-10)-(3.824e-12).*T+(6.938e-14).*(T.^2)-(5.096e-16).*(T.^3); 
%Static dielectric constant of pure water 
ewo=88.045-0.4147.*T+(6.295e-4).*(T.^2)+(1.075e-5).*(T.^3); 
%real part of the dielectric constant of pure water 
ewr=ewinf+((ewo-ewinf)./(1+(relt.*f).^2)); 
%imaginary part of the dielectric constant of pure water 
ewc=(relt.*f.*(ewo-ewinf)./(1+(relt.*f).^2)); 
%dielectric constant of water 
ew=ewr+ewc*i; 
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A.4 Observed and simulated surface soil moisture at 0.05 m soil depth, and simulated 

brightness temperature of individual temporary network sites  
 

Field 13 (Pasture) – Loamy Sand (using CaPA precipitation, pixel 9_4) [RMSE=0.0325; R
2
=0.7344] [note: h = 

average of daily roughness parameter (hs)] 
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Field 14 (Soybean) – Sandy Soil (using CaPA precipitation, pixel 10_5) [RMSE=0.0768; R
2
=0.8138] 
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Field 21 (Pasture) – Sandy Clay Loam (using CaPA precipitation, pixel 9_4) [RMSE=0.0651; R
2
=0.8207] 
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Field 31 (Wheat) – Sandy Clay (using CaPA precipitation, pixel 11_4) [RMSE=0.0422; R
2
=0.8203] 
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Field 34 (Soybean) – Heavy clay soil (using CaPA precipitation, pixel 11_5) [RMSE=0.0540; R
2
=0.5849] 
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Field 41 (Winter Wheat) – Heavy Clay (using CaPA precipitation, pixel 11_5) [RMSE=0.0694; R
2
=0.822] 
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Field 45 (Wheat) – Heavy Clay (using CaPA precipitation, pixel 11_5) [RMSE=0.0742; R
2
=0.7199] 
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Field 52 (Soybean) – Sandy Clay Loam (using CaPA precipitation, pixel 11_5) [RMSE=0.0551; R
2
=0.7646] 
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Field 53 (Corn) – Sandy Clay Loam (using CaPA precipitation, pixel 11_5) [RMSE=0.0419; R
2
=0.7125] 
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Field 54 (Corn) – Sandy Loam (using CaPA precipitation, pixel 11_5) [RMSE=0.0365; R
2
=0.8109] 
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Field 55 (Wheat) – Heavy Clay (using CaPA precipitation, pixel 12_5) [RMSE=0.0541; R
2
=0.6813] 
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Field 61 (Canola) – Loamy Sand (using CaPA precipitation, pixel 11_5) [RMSE=0.0589; R
2
=0.7147] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 

 

Field 62 (Corn) – Sand (using CaPA precipitation, pixel 11_5) [RMSE=0.0740; R
2
=0.386] 
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Field 63 (Soybean) – Loamy sand (using CaPA precipitation, pixel 11_5) [RMSE=0.0359; R
2
=0.8021] 
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Field 64 (Soybean) –sandy clay loam (using CaPA precipitation, pixel 11_5) [RMSE=0.0242; R
2
=0.7885] 
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Field 71 (Corn) – Sandy (using CaPA precipitation, pixel 11_6) [RMSE=0.0480; R
2
=0.4379] 
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Field 72 (Corn) – Sandy (using CaPA precipitation, pixel 11_6) [RMSE=0.0434; R
2
=0.6122] 
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Field 74 (Wheat) – Loamy Sand (using CaPA precipitation, pixel 10_6) [RMSE=0.0686; R
2
=0.6097] 
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Field 81 (Wheat) – Loamy Sand (using CaPA precipitation, pixel 11_6) [RMSE=0.0603; R
2
=0.6918] 
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Field 82 (Soybean) – Sandy Loam (using CaPA precipitation, pixel 10_6) [RMSE=0.0403; R
2
=0.6926] 
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Field 84 (Canola) – Sandy Loam (using CaPA precipitation, pixel 11_6) [RMSE=0.0365; R
2
=0.5863] 
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Field 85 (Wheat) – Clay (using CaPA precipitation, pixel 11_6) [RMSE=0.0362; R
2
=0.7322] 
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 Field 91 (Wheat) – Loamy Sand (using CaPA precipitation, pixel 11_6) [RMSE=0.0627; R
2
=0.6274] 
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Field 94 (Corn) – Sandy Loam (using CaPA precipitation, pixel 11_6) [RMSE=0.0677; R
2
=0.5254] 
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Field 104 (Wheat) – Heavy Clay (using CaPA precipitation, pixel 12_5) [RMSE=0.0695; R
2
=0.8271] 
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Field 112 (Soybean) – Heavy clay soil (using CaPA precipitation, pixel 12_6) [RMSE=0.0325; R
2
=0.5456] 
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Field 113 (Soybean) – Heavy clay soil (using CaPA precipitation, pixel 12_6) [RMSE=0.0775; R
2
=0.6703] 
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Field 114 (Soybean) –Clay soil (using CaPA precipitation, pixel 11_5) [RMSE=0.0603; R
2
=0.8642] 
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Field 123 (Soybean) – Heavy Clay soil (using CaPA precipitation, pixel 12_7) [RMSE=0.0510; R2=0.6842] 
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Field 124 (Canola) – Clay Loam (using CaPA precipitation, pixel 12_6) [RMSE=0.0638; R
2
=0.7821] 
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Field 125 (Canola) – Clay Loam (using CaPA precipitation, pixel 12_6) [RMSE=0.0632; R
2
=0.6821] 
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A.5a Locations of 6 SAGES sites with field ID number (solid square = in-situ permanent 

network station; dotted rectangle = CaPA forecasted precipitation pixels, 7 km x 11 km; 

contours = areas of different soil type). 
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A.5b Locations of probes placement at different soil depths in permanent network station 

(SAGES site 4) (Walker, 2012) 
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A.5c Soil characteristics and crops of permanent network field sites 

Table 3.2: Soil characteristics and crops of permanent network field sites 

SAGES Field X Y Soil Soil Soil Texture Bulk Crop 

Field # 

   

Depth 

 

Sand Clay Density 

 
    (m) (m) (m)   % % (kg m

-3
)   

SAGES-1 73 570923.80 5490433.80 0.05 Loamy fine sand 78.0 11.0 1.28 Wheat 

    

0.20 Loamy fine sand 80.0 11.0 1.56 

 

    

0.50 Loamy fine sand 81.0 10.0 1.53 

         1.00 Loamy fine sand 81.0 12.0 1.57   

SAGES-2 92 577216.50 5482753.40 0.05 Sandy Clay loam 44.0 34.0 1.35 Soybean 

    

0.20 Loam 62.0 24.0 1.63 

 

    

0.50 Loam 66.0 21.0 1.63 

         1.00 Loamy fine sand 75.0 10.0 1.57   

SAGES-3 93 575527.00 5485733.70 0.05 Sandy clay loam 47.0 31.0 1.46 Corn 

    

0.20 Clay loam 45.0 33.0 1.51 

 

    

0.50 Clay 31.0 45.0 1.44 

         1.00 Sandy loam 70.0 12.0 1.41   

SAGES-4 24 575274.80 5497064.60 0.05 Sand 90.0 9.0 1.33 Corn 

    

0.20 Loamy sand 89.0 10.0 1.50 

 

    

0.50 Loamy sand 89.0 10.0 1.59 

         1.00 Loamy sand 86.0 9.0 1.58   

SAGES-5 65 573063.10 5498662.90 0.05 Clay loam 41.0 40.0 1.46 

Winter 

wheat 

    

0.20 Clay 22.0 57.0 1.41 

 

    

0.50 Clay 4.0 68.0 1.33 

         1.00 Clay 3.0 69.0 1.32   

SAGES-7 32 573303.90 5511613.90 0.05 Sandy loam 78.0 13.0 1.40 Winter 

wheat 

    

0.20 Loamy sand 82.0 12.0 1.59 

    

0.50 Sandy loam 78.0 13.0 1.57 

         1.00 Sandy loam 80.0 12.0 1.58   

Note: X and Y followed Universal Transverse Mercator coordinate system (UTM Zone 14); soil texture and bulk 

density recorded at probe’s location 
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A.5d Some SHAW input files for SAGES-1 site  

File: Trial.sit 

SITE WITH CORN DURING 2012          ****** (SAGES-1)                 LINE A 
 123  00  112  273  112                ****** SIMULATION PERIOD       LINE B 

 49 33.72  0.01  90.0  12.5  268        ****** LOCATION                LINE C 

 1  0  0  15  0  0.01   1  0   0   0   1   0   0    ***** NODES        LINE D 
 0.4  2.0  0.00                     ****** WEATHER CHARACTERISTICS    LINE E 

 1   -53.72  1.32   0.2             ***** PLANT GROWTH / CANOPY       LINE F 

 1   1   0.23  7.0  100.  5.0  -100.   2.0E05   3.0E05  **** WHEAT    LINE F1-1 
 wheat.112 

 1.0  .15                                        ****** SNOW            LINE G 

 1  1  0.15 0.0                                  ****** SOIL            LINE J 
 0.00  5.   -0.2    4.     1280.  0.437  78.0  11.  11.  3.            LINE J-1 

 0.05  5.   -0.2    4.     1280.  0.437  78.0  11.  11.  3.            LINE J-2 

 0.10  6.   -0.3    3.     1560.  0.437  80.0   9.  11.  3.            LINE J-3 
 0.20  6.   -0.3    3.     1560.  0.437  80.0   9.  11.  3.            LINE J-4 

 0.30  6.   -0.3    3.     1560.  0.437  80.0   9.  11.  3.            LINE J-5 

 0.40  8.   -0.4    2.     1530.  0.437  81.0   9.  10.  0.5           LINE J-6  

 0.50  8.   -0.4    2.     1530.  0.437  81.0   9.  10.  0.5           LINE J-7 

 0.60  8.   -0.4    2.     1530.  0.437  81.0   9.  10.  0.5           LINE J-8 

 0.70  8.   -0.4    2.     1530.  0.437  81.0   9.  10.  0.5           LINE J-9 
 0.80 11.   -0.6    1.     1570.  0.437  81.0   7.  12.  0.17          LINE J-10 

 0.90 11.   -0.6    1.     1570.  0.437  81.0   7.  12.  0.17          LINE J-11 

 1.00 11.   -0.6    1.     1570.  0.437  81.0   7.  12.  0.17          LINE J-12 
 1.10 11.   -0.6    1.     1570.  0.437  81.0   7.  12.  0.17          LINE J-13 

 1.20 11.   -0.6    1.     1570.  0.437  81.0   7.  12.  0.17          LINE J-14 
 1.30 11.   -0.6    1.     1570.  0.437  81.0   7.  12.  0.17          LINE J-15  

 

File: wheat.112 

90 112 0 0 0 0 0 APR 01 

139 112 0 0 0 0 0 MAY 18 

165      112      0.38     1        0.12     1.75     0.2      JUN 13 
182      112      0.78     1.5      0.19   1.0      0.6      JUN 30      

191      112      0.85     1.8      0.20     1.63     0.8      JUL 09 

200      112      0.84    2.2      0.24    1.7      1.2      JUL 18 
272 112 0 0 0 0 0.4 SEP 28 

275 112 0 0 0 0 0.3 OCT 01 
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A.6a Observed and simulated root zone soil moisture of individual permanent network 

sites 
Field SAGES-1 [Field 73]  (Wheat) – (using CaPA precipitation, pixel 10_6)  

At 0.05 m soil depth (Loamy Fine Sand; sand=78%, clay=11%; BD=1.28 kg/cu.m) [RMSE=0.0332; R
2
=0.6232] 

 

 

 

 

 

 

 

 

 

 

At 0.20 m soil depth (Loamy Fine Sand; sand=80%, clay=11%; BD=1.56 kg/cu.m) [RMSE=0.0290; R
2
=-0.4720] 
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At 0.50 m soil (Loamy Fine Sand; sand=81%, clay=10%; BD=1.53 kg/cu.m) [RMSE=0.0202; R
2
=0.6898] 

 

 

 

 

 

 

 

 

 

 

 

 

At 1.00 m soil depth (Loamy Fine Sand; sand=81%, clay=12%; BD=1.57 kg/cu.m) [RMSE=0.0209; R
2
=0.7502] 
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Field SAGES-2 [Field 92]  (Soybean) –  (using CaPA precipitation, pixel 11_6)  

At 0.05 m soil depth (Sandy clay loam; sand=44%, clay=34%; BD=1.35 kg/cu.m) [RMSE=0.0277; R
2
=0.5613] 

 

 

 

 

 

 

 

 

 

 

 

At 0.20 m soil depth (Loam; sand=62%, clay=24%; BD=1.63 kg/cu.m) [RMSE=0.0708; R
2
= -0.7675] 
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At 0.50 m soil depth (Loam; sand=66%, clay=21%; BD=1.63 kg/cu.m) [RMSE=0.0308; R
2
=0.6308] 

 

 

 

 

 

 

 

 

 

 

 

 

At 1.00 m soil depth (Loamy Fine Sand; sand=75%, clay=10%; BD=1.57 kg/cu.m) [RMSE=0.0123; R
2
=0.3457] 
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Field SAGES-3 [Field 93] (Corn) – (using CaPA precipitation, pixel 11_6)  

At 0.05 m soil depth (Sandy clay loam; sand=47%, clay=31%; BD=1.46 kg/cu.m) [RMSE=0.0654; R
2
=0.5768] 

[missing data in observation soil moisture] 

 

 

 

 

 

 

 

 

 

 

 

At 0.20 m soil depth (Clay loam; sand=45%, clay=33%; BD=1.51 kg/cu.m) [RMSE=0.0641; R
2
=0.0744]  
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At 0.50 m soil depth (Clay; sand=31%, clay=45%; BD=1.44 kg/cu.m) [RMSE=0.0750; R
2
=0.3382] 

 

 

 

 

 

 

 

 

 

 

 

 

At 1.00 m soil depth (Sandy Loam; sand=70%, clay=12%; BD=1.41 kg/cu.m) [RMSE=0.0673; R
2
=0.2314] 
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Field SAGES-4 [Field 24] (Corn) – (using CaPA precipitation, pixel  11_5)  

At 0.05 m soil depth (Sand; sand=90%, clay=9%; BD=1.33 kg/cu.m) [RMSE=0.0549; R
2
=0.6737] 

 

 

 

 

 

 

 

 

 

 

 

At 0.20 m soil depth (Loamy Sand; sand=89%, clay=10%; BD=1.50 kg/cu.m) [RMSE=0.0554; R
2
=-0.5510] 
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At 0.50 m soil depth (Loamy Sand; sand=89%, clay=10%; BD=1.59 kg/cu.m) [RMSE=0.0438; R
2
=0.5997] 

 

 

 

 

 

 

 

 

 

 

 

 

At 1.00 m soil depth (Loamy Sand; sand=86%, clay=9%; BD=1.58 kg/cu.m) [RMSE=0.0515; R
2
=0.2201] 
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Field SAGES-5 [Field 65] (W. Wheat) – (using CaPA precipitation, pixel  11_5)  

At 0.05 m soil depth (Clay Loam; sand=41%, clay=40%; BD=1.46 kg/cu.m) [RMSE=0.0509; R
2
=0.3874] 

 

 

 

 

 

 

 

 

 

 

 

At 0.20 m soil depth (Clay; sand=22%, clay=57%; BD=1.41 kg/cu.m) [RMSE=0.0436; R
2
= -0.5382] 
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At 0.50 m soil depth (Clay; sand=4%, clay=68%; BD=1.33 kg/cu.m) [RMSE=0.0403; R
2
= -0.45727] 

 

 

 

 

 

 

 

 

 

 

 

 

At 1.00 m soil depth (Clay; sand=3%, clay=69%; BD=1.32 kg/cu.m) [RMSE=0.0213; R
2
= -0.3315] 
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Field SAGES-7 [Field 32] (W. Wheat) – (using CaPA precipitation, pixel 11_4)  

At 0.05 m soil depth (Sandy Loam; sand=78%, clay=13%; BD=1.40 kg/cu.m) [RMSE=0.0497; R
2
=0.6731] 

 

 

 

 

 

 

 

 

 

 

 

At 0.20 m soil depth (Loamy Sand; sand=82%, clay=12%; BD=1.59 kg/cu.m) [RMSE=0.0500; R
2
= 0.8189] 
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At 0.50 m soil depth (Sandy Loam; sand=78%, clay=13%; BD=1.57 kg/cu.m) [RMSE=0.0513; R
2
= 0.8591] 

 

 

 

 

 

 

 

 

 

 

 

 

At 1.00 m soil depth (Sandy Loam; sand=80%, clay=12%; BD=1.58 kg/cu.m) [RMSE=0.0735; R
2
= 0.0259] 
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A.6b Trends of observed and simulated soil moisture of 6 agricultural fields at different soil 

depths for data period of 6 June – 19 July 2012served 
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A.6c Relationship between measured and simulated soil moisture of 6 agricultural fields at 

different soil depths (for data period of 6 June – 19 July 2012 
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