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ABSTRACT 

 

DIGITAL ELEVATION MODEL GENERATION AND FUSION 

Colleen E. Fuss  Advisors: 

University of Guelph, 2013  Dr. Aaron Berg, 

Dr. John Lindsay 

Digital elevation models (DEMs) are a necessary dataset in modelling the Earthôs surface and 

the many physical processed that interact with it. There are several ways to acquire elevation 

data and generate DEMs, and while each method has advantages and disadvantages all DEMs 

contain error. DEM fusion techniques with the aim of reducing DEM error have been proposed 

and tested in published literature with several successful results. These techniques have not 

however, utilized a clustering algorithm on multiple DEMs to exploit consistency in the 

estimates as an indication of accuracy and precision. This research developed and tested a new 

DEM fusion algorithm on multiple, overlapping DEMs generated from RADARSAT-2 imagery 

using stereo-radargrammetric methods. The main steps of the algorithm include slope and 

elevation thresholding followed by k-means clustering of the elevation estimates, as well as 

filtering and smoothing of the fusion product. Corroboration of the input DEMs, as well as 

products of each main step of the fusion algorithm, with a higher accuracy reference DEM by 

landuse class within the study area enabled a detailed analysis of the effectiveness of the DEM 

generation and the fusion algorithm. The generated DEMs contained systematic errors, large 

blunders, and regional offsets that varied according to landuse type, as well as the differences in 

scene acquisition date and sensor parameters. The main findings of the research were: the k-

means clustering of the elevations improved the global accuracy of the estimates but reduced the 



 

 

precision; the number of final cluster members and the standard deviation of elevations before 

clustering both had a strong relationship to the error in the k-means estimates. It is therefore 

recommended that further research be conducted to investigate the relationship between 

elevation clustering error and the distribution of elevations before clustering, especially for 

specific landuse classes such as agricultural fields. 
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1 GENERAL INTRODUCTION  

1.1 Study Context and Objectives 

A digital elevation model (DEM) is a regularly spaced grid of surface elevations. DEMs are a 

necessary dataset used in many studies of the Earthôs surface and the physical processes that 

interact with it. For example, hydrological models require DEMs due to the need for the 

derivation of terrain features, the delineation of stream networks and sub-catchments, and the 

identification of variable source areas for runoff (Hopkinson et al., 2009; Quinn et al., 1991; 

Tarboton et al., 1991; Weschler, 2007; Xiao et al., 2010). Fine-resolution DEMs are also useful 

for catchment geomorphology characterization (Camargo et al., 2009; Martinez et al., 2010; 

Smith, 2002) and geomorphic interpretation (Chaplot et al., 2006; Smith and Pain, 2009; 

Wheaton et al., 2010). 

All DEMs contain a certain amount of error as a result of the collection and processing of the 

data used to generate the DEMs (Weschler, 2007). Advancements in the collection of remote 

sensing data and DEM generation have improved DEM accuracy and precision, however errors 

still remain. These errors are troublesome since they can be propagated throughout the data 

processing workflow that they are used in (Hopkinson et al., 2009). 

With an increase in the availability of elevation data, efforts have been made to utilize this 

data redundancy to reduce error. Several methods of DEM fusion have been proposed and 

examined in the literature. Many of these involve simple techniques such as data gap filling 

(Karkee et al., 2008), and the weighted averaging of input elevations based on: global measures 

of error (Papasaika et al., 2009); height error maps from the DEM generation process (Reinartz 
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et al., 2005; Roth et al., 2002); terrain derivatives (Papasaika et al., 2009); or combinations 

thereof. 

More sophisticated techniques of DEM fusion involve the use of sparse representations 

(Papasaika et al., 2011), frequency domain filtering (Honikel, 1998; Crosetto and Aragues, 2000; 

Karkee et al., 2008), self-consistency in the generation process (Schultz et al., 1999, 2002; Stolle 

et al., 2005); or multi-scale stoichastic smoothing (Slatton et al., 2002). 

All of the DEM fusion techniques cited improve the elevation estimates for a given area, to 

varying degrees, and the success of these methods are not to be discounted. Most of the 

techniques do, however, require other elevation data (e.g. Crosetto and Aragues, 2000; 

Choussiafis et al., 2012), or height error estimates from pixel correlation (stereogrammetry) or 

coherence (interferometry) to control the fusion of the input DEMs. The issue with these 

methods is that ancillary elevation or height error data is not always available, or reliable, for 

areas under investigation. As well, most of the DEM fusion methods cited involve the fusion of 

only two or three DEMs, and often these DEMs are from different sources with a more accurate 

DEM supplementing a less accurate one. 

A new method of fusion for multiple, overlapping DEMs is presented here. The algorithm 

utilizes k-means clustering to detect elevations at each grid cell location that are in close 

agreement. The main assumption of this technique is that elevations in close agreement will be 

more accurate than those that are not. Based solely on the distribution of elevation and slope 

values at each cell location, elevations are filtered by slope and elevation thresholding and are 

then clustered. In this way, the proposed DEM fusion algorithm is mainly empirical with only a 
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few data distribution parameters controlled by the user. Most importantly, no a priori knowledge 

of the input DEM error is used in this fusion technique. 

While the techniques utilized in the main steps of the proposed DEM fusion algorithm (i.e. 

clustering and slope thresholding) have not been implemented before in a published DEM fusion 

method, it is important to recognize that some of the concepts underlying these new techniques 

are the same as the concepts underlying previously published DEM fusion techniques. The 

proposed DEM fusion algorithm builds on the concept of self-consistency in elevation methods 

that was introduced by Schultz et al. (1999). While Schultz et al. favoured elevation estimates at 

the same location that were consistent when target and reference images were reversed in roles 

of stereo-photogrammetric DEM generation, the proposed algorithm in this study favours 

estimates that are clustered at each location, as more accurate. As well, the proposed algorithm in 

this study utilizes consistency in terrain derivatives (i.e. slope) to estimate more accurate 

elevations. Recognition of the importance of considering consistency in terrain derivatives at 

each location from overlapping DEMs was a key component of the sparse representations 

method in the study by Papasaika et al. (2011). 

Several, overlapping RADARSAT-2, Synthetic Aperture Radar (SAR) images were available 

for the same area in Southern Ontario, Canada, and were suitable for use in same-side, stereo-

radargrammetric DEM generation. Stereo-radargrammetry is a technique that matches the 

amplitude information in pixels of overlapping RADAR images to estimate the image parallax 

(Fayard et al., 2007). The parallax is used in conjunction with the known geometries of the 

sensor and images to derive an elevation at each location (Toutin and Gray, 2000). 
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RADARSAT-2 imagery provides four bands of data, based on different polarizations, which 

are captured simultaneously for each image pixel. The polarization refers to the way the signal is 

transmitted and received by the sensor. For RADARSAT-2 the signal can be transmitted 

horizontally (H) or vertically (V) and also received horizontally or vertically, giving rise to the 

four possible combinations thereof: HH, VV, HV, VH (Fox et al., 2004). 

Toutin et al. (2010) have shown that the four polarimetric bands of RADARSAT-2 imagery 

can be combined within each scene to create a total power (i.e. SPAN) image that is then used 

for stereo-radargrammetric DEM extraction. Generating the DEM in this way was shown to 

increase the elevation accuracy compared to a DEM generated from only the HH channels of the 

images. The general methodology of Toutin et al. (2010) was used to generate DEMs for use in 

this study. 

With suitable imagery, methodology, and software available to generate multiple, 

overlapping DEMs for the purpose of fusion, the objectives of this research were to: 

a) generate multiple, overlapping DEMs of the same area using stereo-radargrammetric 

techniques and RADARSAT-2 imagery; 

b) develop a DEM fusion algorithm and fuse the generated DEMs; 

c) corroborate the input DEMs and fusion algorithm products with a higher accuracy 

reference DEM, to assess the effectiveness of the DEM fusion algorithm. 

1.2 Thesis Outline 

This thesis contains six chapters. Chapter 1 is an introduction to the thesis, providing an 

overview of the research context, aim, and objectives. Chapter 2 contains a literature review on 

DEM generation, error assessment, causes, and mitigation, globally available DEMs, and a 
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summary of previously published DEM fusion strategies and results. Chapter 3 contains a 

description of the methods used to generate and fuse the multiple, overlapping DEMs for the 

study. Chapter 4 provides the results of the DEM generation and fusion as well as the 

corroboration of the input and fusion DEM products with a higher accuracy DEM. Chapter 5 

contains a discussion of the results presented. The conclusions of the thesis study are in Chapter 

6. Additional tables and figures for the thesis are provided in Appendices A through E. 
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2 LITERATURE REVIEW  

2.1 Introductio n to DEMs 

A digital elevation model (DEM) is a regularly spaced grid which contains the elevation of a 

point on a surface that is coincident with the location of the grid cell. Often DEMs are also 

referred to as a DTM (digital terrain model), or a DSM (digital surface model) (Poon et al. 2005). 

The data used to create an elevation surface can be acquired using various technologies and at 

different scales. Traditionally elevation data was acquired through ground-based surveying 

methods (Gao, 2007). The development of remote sensing technologies has enabled elevation 

data to be derived more quickly and at a greater scale than before. Remote sensing techniques 

have also provided elevation data for areas that are difficult to access and survey (dôOzouville et 

al., 2008). 

Remote sensing instruments can be passive or active and work with many different 

wavelengths and polarizations of energy in the transmitted or received signal. The sensor 

platforms can include satellite, airborne, or ground-based types. Each platform and sensor type 

allows for a different scale of data collection at a different resolution, and can account for 

various conditions in terrain and land cover. The main methods used to derive elevation 

estimates from remote sensing data are stereoscopy, interferometry, and ranging (also known as 

altimetry). 

DEM errors can be propagated throughout the data processing workflow they are used in, for 

example in hydrological model simulations (Hopkinson et al., 2009; Weschler, 2007). It is 

therefore important to understand the causes of DEM error, how error is evaluated, and strategies 



7 

 

to reduce error. With an increase in DEM coverage globally several DEM fusion techniques have 

emerged with the purpose of reducing error in elevation estimates. 

2.2 Elevation Data Acquisition 

2.2.1 Stereoscopy 

By viewing two images that are acquired from different angles the disparity in the location of 

features can be seen as displacement and therefore a 3
rd

 dimension (i.e. elevation) can be 

observed. This method of extracting elevation is stereoscopy, and is built on principles that relate 

to the depth perception capabilities of a pair of human eyes (Toutin and Gray, 2000). 

2.2.1.1 Stereo-photogrammetry 

The use of images from film, digital cameras, or digital scanners to characterize features is 

called photogrammetry. Techniques of photogrammetry include clinomtery and stereoscopy; the 

latter being more commonly used for elevation extraction (Toutin and Gray, 2000). Initially 

stereoscopy involved viewing stereo pairs of aerial photographs through a stereoviewer. For this 

technique the accuracy of elevations derived depends on the altitude at which the photographs 

are taken and the characteristics of the features observed (Lillesand et al., 2008). 

Originally aerial photographs were taken with film, but the development of digital cameras 

allowed the process to be taken into a computer environment. Computer-based stereo 

workstations were developed, with which users could view the images and see the features in 3-

D. Eventually, this included satellite imagery when digital scanners were employed on satellites 

(Toutin and Gray, 2000). 
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The most common stereo-photogrammetry procedure currently used involves image 

matching computer programs which have replaced the stereo workstations. Images are matched 

and adjusted either in pairs or blocks of several images with the use of tie points ï this is referred 

to as bundle or block adjustment. By knowing the internal geometry of the camera (i.e. focal 

length, lens distortion) and the external geometry of the image acquisition (altitude of the 

platform, angle of nadir relative to the ground surface) the image parallax can be calculated for 

each matched pixel (Lillesand et al., 2008). Topography can be determined from the parallax in 

the two images since targets at different heights are displaced by an amount related to their 

elevation (Leberl, 1990, in Rosen, et al., 2000). 

Residual error within the elevation model can be estimated with independent check points 

(ICPs). If the estimated error is too high then the GCPs can be modified (Gao, 2007). 

Computation of the elevation model from the image parallax allows relative elevations to be 

calculated. To achieve absolute elevations a number of ground control points (GCPs) with 

known horizontal and vertical coordinates are required (Gao, 2007). 

Aerial photography can be used to produce DEMs with a vertical accuracy of less than a 

metre, whereas those derived from satellite imagery are in the range of 3 to10 m in the case of 

IKONOS (Poon et al., 2005) and QuickBird (Toutin, 2004). DEMs generated from automatic 

stereo image matching (e.g. optical or RADAR) often, however, contain large erroneous 

blunders due to incorrectly identified match pixel pairs (Milledge et al., 2009a). As well, DEMs 

derived from optical stereo images specifically can be inhomogeneous since they depend on 

image feature contrast, and are also compromised by cloud cover (a major issue in the tropics) 

and lack of sunlight in some cases (Rabus et al., 2003). 
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2.2.1.2 Stereo-radargrammetry  

Radargrammetry involves images acquired from active, RADAR (Radio Detection and 

Ranging) sensors, instead of cameras in the case of photogrammetry. There are several 

advantages to working with RADAR systems rather than optical, passive systems, such as digital 

cameras. Radar operates with the use of microwave energy allowing electrical and geometrical 

properties of surfaces to be represented. Operating at this wavelength also allows for all weather 

operation due to the ability of microwaves to penetrate clouds (Bamler and Hartl, 1998; Toutin 

and Gray, 2000). Because the RADAR system provides its own source of illumination (an active 

system) it can operate both day and night. (Rosen et al., 2000; Toutin and Gray, 2000). 

Stereo-radargrammetry is similar to stereo-photogrammetry, except that Synthetic Aperture 

RADAR (SAR) sensors are used instead of cameras. With traditional RADAR the antenna length 

is a limiting factor in the azimuthal resolution that can be achieved with increasing range. SAR is 

a technology which solves the issue of a limited antenna length by transmitting pulses ahead of 

the sensor and receiving the pulses further along in the course of the aircraft or satellite (Bamler 

and Hartl, 1998). A SAR image pixel can contain the amplitude (energy intensity) as well as the 

phase (time delay) of the signal (Smith, 2002). Only the amplitude portion of the signal is 

utilized in stereo-radargrammetry; the phase is utilized in InSAR methods (Bamler and Hartl, 

1998; Smith, 2002). SAR data is useful not only for deriving elevations, but also for other areas 

of research including that of polar ice, vegetation, biomass estimation, and soil moisture mapping 

(Elachi, 1988, in Rosen et al., 2000). SAR technology is implemented on both aerial and satellite 

platforms. 

Advances in stereo-radargrammetry have recently been achieved with higher resolution 

modes on satellites such as RASARSAT-2 (Ultra-fine mode is 3x3 m pixel imagery), as well as 
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improved 3-D radargrammetric models. These models incorporate precise satellite orbiting 

geometry, and reduce the need for GCPs (Toutin and Chénier, 2009). Toutin and Chénier (2009) 

tested a new version of Toutinôs 3-D radargrammetric model on RADARSAT-2 Ultrafine Mode 

imagery and were able to produce a DEM with an accuracy of 1 m horizontally and 2m vertically 

when compared to DEMs created from orthophotos. Though aerial SAR imagery is capable of 

producing higher resolution DEMs, the limitation of this method is the extent that can be 

acquired and the cost of the survey. The recent advances in satellite SAR stereo-radargrammetry 

can allow for a much greater extent of DEM creation than aerial surveys, with accuracies that are 

not much lower. 

Similar to stereo-photogrammetry, the main cause of large blunders (i.e. spikes or pits) in 

elevation estimates in stereo-radargrammetric DEMs is pixel matching error (Fayard et al., 

2007). Poor correlation between image-pair pixels can result from changes in the backscatter 

amplitude due to target change between image acquisitions (Toutin, 1998), from speckle that is 

inherent in most RADAR images (Ostrowski and Cheng, 2000), or is due to a lack of texture in 

the imagery (Paillou and Gelautz, 1999). 

2.2.2 Interferometry 

Interferometric SAR is usually called InSAR, and sometimes referred to as IFSAR or ISAR 

(Rosen et al., 2000). InSAR technology uses SAR phase information, rather amplitude data 

which is used in stereo-radargrammetry (Rosen et al., 2000; Smith, 2002; Toutin and Gray, 

2000). The InSAR viewing geometry for a certain point on the ground involves two SAR 

antenna positions separated by a baseline (i.e. short distance) and the ground location. Each SAR 
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antenna measures the phase, which is related to the number of wavelengths of the signal needed 

to cover the distance from the antenna to the ground and back to the sensor (Smith, 2002). 

There are three possible configurations for the two InSAR antennas: across-track, along-

track, and repeat-pass. In each technique the phase of one antenna is subtracted from the other 

for each pixel in the image pair resulting in an interferogram. The difference in phase is related 

to the baseline and surface relief (Smith, 2002). 

Across-track interferometry uses 2 antennas on the same platform (Madsen et al., 1993), 

whereas along-track involves two satellites following each other with a short separation distance. 

For these techniques the difference in phase is related to the parallax caused by the different 

acquisition angles (Smith, 2002). The sensitivity of this technique to terrain topography increases 

with the baseline distance to the point where there is an optimal baseline for DEM generation 

(Toutin and Gray, 2000). With the repeat-pass technique the sensor must pass over the same area 

with almost the exact same viewing geometry for two passes. When this condition is met the 

baseline is nearly zero and the difference in phase is related to a change in elevation at a 

particular point (Smith, 2002; Toutin and Gray, 2000). 

Since the difference in phase is measured in wavelengths, interferometry is highly accurate in 

acquiring elevation data in ideal conditions. Smith (2002) gives an example of SAR data from 

the European Remote Sensing (ERS) satellites being used to create a DEM that is accurate to 

2.33 cm in the line-of-site direction. This value is half of the signal wavelength for the sensors. 

The biggest challenges for InSAR technology are phase unwrapping and decorrelation of pixels 

(Rabus et al, 2003). The difference in phases of the two SAR images in only known to within 

one phase cycle, so the appropriate number of phases need to be added to get the true slant range 
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of the RADAR signal when it interacted with the target. This is called phase unwrapping, and 

several methods are reviewed by Bamler and Hartl (1998). Decorrelation is a measure of the 

reduction of coherence, which is the correlation coefficient of the two SAR images involved in 

InSAR (Zebker and Villasenor, 1992). Decorrelation most commonly occurs when the 

orientation of a target changes between RADAR image acquisitions as can occur, for example, in 

forests on windy days (Reinhartz et al., 2005). 

Both InSAR and stereo-radargrammetry are based on SAR technology. The advantage of 

using InSAR technology instead of stereo-radargrammetry though, is that the accuracy of the 

elevation values can be in the order of millimetres to centimetres (depending on the platform and 

sensor), whereas that obtained with stereo-radargrammetry is in the order of metres (Rosen et al., 

2000). Also, the InSAR method benefits from automated processing compared to stereoscopy 

(for RADAR and optical systems) which requires more user interaction in the processing 

(Madsen et al., 1993; Rosen et al., 2000; Toutin and Gray, 2000). Airborne InSAR can be 

horizontally accurate to less than a metre (Bamler and Hartl, 1998) which would be appropriate 

for creating DEMs for hydrological applications. The horizontal accuracy of many satellite 

InSAR sensors is in the order of 25 m
2
 (in the case of ERS; Bamler and Hartl, 1998) and is more 

suitable for other applications such as sea ice monitoring and tectonic activity (Gao, 2007). 

A ground-based InSAR unit has also been developed, for which the RADAR aperture is 

made synthetically longer by sliding the transmitting and receiving antennas along a 3 m long 

track (Nico etal., 2004). A DEM was created using this technique for a test site that was 

approximately 3 km by 1 km, and had an RMSE of 5 m compared to an existing DEM (Nico 

etal., 2005). This technology is potentially useful for more localized, large-scale modelling of 

terrain. 
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2.2.3 Ranging / Altimetry 

One way of acquiring a high-quality DEM is by employing Light Detection and Ranging 

(LiDAR) technology. LiDAR is a type of ranging technology that is sometimes referred to as 

laser altimetry. Similar to other active sensors such as RADAR, LiDAR involves the 

transmission of pulse of energy from a source, the pulse reflecting off a feature, travelling back 

toward the platform and being received by a sensor (Wehr and Lohr, 1999). The laser 

wavelength is in the near-infrared range of the electromagnetic spectrum giving LiDAR an 

advantage that the signal is quite reflective off of natural surfaces and it is more eye-safe than 

other visible wavelengths (Hopkinson, 2006). The way that the backscatter is recorded is either 

as a waveform (when the signal is sent as a continuous wave) or as discrete returns (when the 

signal is sent as a series of pulses) (Bortolota and Wynne, 2005; Hopkinson, 2006). First and last 

returns of discrete returns can be separated, or the full waveform of a continuous wave can be 

analysed, to help differentiate the ground location from that of off-terrain objects (Coveny and 

Fotheringham, 2011). 

Often the LiDAR system is mounted on an airborne platform, though ground-based units and 

satellite sensors are also utilized. A relative coordinate and range of each point is determined 

using the speed of light, the location and orientation of the source at the time of transmission, 

and the time between laser pulse transmission and reception (Wehr and Lohr, 1999). In the case 

of airborne LiDAR, relating the relative coordinates and ranges of the pulse returns to the aircraft 

trajectory enables the survey points to be translated to ground coordinates with elevations 

(Hopkinson and Demuth, 2006). This is achieved with an Inertial Motion Unit (IMU), coupled to 

a high-precision GPS unit, which has enabled the high-precision of LiDAR data acquisition 
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(Hopkinson, 2006). The exact precision depends on the survey conditions, but is generally in the 

range of tens of centimetres (Gao, 2007). 

Another advantage of airborne LiDAR is its ability to penetrate forest canopy and other 

heavily vegetated areas since the pulse (especially small-footprint LiDAR) can pass through 

relatively small gaps in the ground cover (Wulder et al., 2008). Since aerial LiDAR datasets can 

produce fine-resolution, high accuracy DEMs they are also useful for assessing the accuracy of 

other methods of elevation extraction (Toutin et al. 2010). The main disadvantage to aerial 

LiDAR though, is that it is a relatively expensive method of acquiring elevation data and surveys 

are often limited to small study areas (Gao, 2007). 

LiDAR technology is also available aboard some satellites, including GEOSAT, SEASAT, 

and ENVISAT, enabling elevation data to be collected at the global scale (Gao, 2007). One such 

example, the Shuttle Laser Altimeter (SLA) has a sampling interval of 0.75 m vertically and 0.7 

km horizontally, with vertical accuracies of 1 m in gentle terrain, and 11 ï 46 m in rugged terrain 

(Garvin et al., 1998). Another example is the Geoscience Laser Altimeter System (GLAS) sensor 

aboard the Ice, Cloud and land Elevation Satellite (ICESat) that collects LiDAR data with 70 m 

footprints, spaced 170 m apart. The accuracy of GLAS data is reported to be better than 0.3m 

(Reuter et al., 2009). 

Ground-based LiDAR units are sometimes referred to as Terrestrial Laser Scanners (TLS). 

They also utilize high accuracy GPS to relate the scan points to a real-world reference system, 

but do not incorporate an IMU unless they are employed on a moving vehicle (usually TLS 

systems are stationary). The angle of acquisition is more oblique to the ground surface compared 

to that of airborne or satellite-based systems, and for this reason multiple scans of terrain from 
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different directions or azimuth angles are required to minimize the effect of occlusion (see 

Section 2.3.1). Ground-level vegetation can be a particularly challenging source of occlusion for 

TLS systems (Coveney and Fotheringham, 2011). TLS systems are more limited in the size of 

area that can be surveyed compared to the aerial and satellite-based systems, and so they are 

more suitable to support field-scale elevation data requirements. 

2.3 DEM Error  

All DEMs contain error that is a result of limited measurement precision, the presence of off-

terrain objects in the acquisition area, and interpolation (Burrough and McDonnell, 1998, in 

Lindsay, 2006), as well as error that occurs during data processing (Weschler, 2007). Also, errors 

in acquisition can be caused by the characteristics of the terrain or landcover, for example: the 

moisture content of soil or vegetation, the slope or aspect of topography, and the roughness of 

surfaces (Bater and Coops, 2009; Reuter et al., 2007; Toutin, 2002). Error can also be propagated 

if an unsuitable interpolation method is chosen to process the DEM. 

2.3.1 Error due to landcover and terrain characteristics 

Some forms of error in data acquisition and elevation extraction are unique to the sensor 

being employed, such as that caused by limited measurement precision, or during the processing 

of data. There are other errors in data acquisition which are more common amongst sensors 

though: signal scattering, occlusion, attenuation and multipath. These errors can be propagated 

into the DEM created from the acquired data (e.g. imagery). 

Slope and the orientation of slope (i.e. aspect) can affect how much of the instrument signal 

is reflected back to the sensor. Toutin (2002) conducted a study on how accuracy relates to the 
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slope and aspect of terrain in a DEM derived from RADARSAT image stereo-pairs. He found 

that stereo-radargrammetric DEM error was linearly related to slope, with steeper terrain causing 

more error. This error is due to radiometric disparity in the images (differences in signal 

amplitudes for the same pixel location in two images) causing image matching errors. Li et al. 

(2006) conducted a study using ERS data and also found that DEM error increased linearly with 

the slope of the terrain. As well, Toutin (2002) also found that topographic aspect (orientation of 

slope with respect to the position of the sensor) played a minor role in error, with fore-slopes 

being more accurate, and back-slopes being less accurate. 

Specular reflection can cause the transmitted signal to be entirely reflected away from the 

instrument resulting in none of the energy returning to the sensor. A good example of a surface 

that causes this is still water, since it can cover a large portion of the terrain at times and can be 

very smooth. Specular reflection can occur in passive optical systems when the sun is at a low 

angle to the terrain compared to the sensor (Lillesand et al., 2008), or in active systems such as 

LiDAR (Hopkinson, 2006) and SAR (Reuter et al., 2007), when the transmitted signal is 

reflected completely away from the sensor. Denker (2005) reported that water bodies were not 

well defined in the initial version of SRTM3 data since they cause a low amount of RADAR 

backscatter. Reflection away from the sensor results is a loss of data for the surface that was the 

cause of the reflection. In the case of surface water, this is not necessarily a major issue for DEM 

creation since the elevation of the water surface is usually the same throughout. 

Occlusion is another cause of missing elevation data, except in this case the data can be 

missing for non-uniform areas of elevation. Occlusion is caused when the signal is reflected off 

of a feature before it is able to reach an area of interest. In a sense, an object blocks the line-of-

sight for the instrument. It can occur in terrain of steep relief, in heavily vegetated areas, or urban 
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centres amongst other cases (Lillesand et al., 2008). The area in the óshadowô of the occluding 

object is simply missing from the acquired data. As an example, Coveney and Fotheringham 

(2011) discuss the issues of occlusion due to dense ground vegetation when using a TLS system. 

Also, Denker (2005) notes the absence of SRTM3 data in the Alps where the mountains are high 

and there are narrow gorges. 

Attenuation occurs when the medium that the signal is travelling through absorbs the energy 

of the signal. Moisture in soil or vegetation is a common cause of signal attenuation (depending 

on the signal wavelength). Attenuation can occur in LiDAR (Hopkinson, 2006), RADAR 

(Dobson and Ulaby, 1986; Reuter et al., 2007), and optical systems (Lillesand et al., 2008). It 

should be noted that high soil moisture, measured as bulk water differentiated from bound water, 

can increase the backscatter for RADAR, rather than attenuate the signal (Dobson and Ulaby, 

1986). For elevation derived from image pairs, attenuation can cause image matching errors if 

there is a change in conditions between images. In the case of LiDAR, severe attenuation will 

cause data drop-outs (Hopkinson, 2006). 

Multipath errors cause a much different effect than the aforementioned errors in data 

acquisition. Multipath occurs when the signal of an active instrument is reflected off of more 

than one surface before returning to the sensor (Hopkinson, 2006). The assumption of the 

instrument is that the signal will travel in a straight line to and from a target. When this does not 

happen, the increased time in transmission and reception of the signal translates into an increased 

range. The information recorded for that location then has either an erroneous elevation or 

intensity (Lillesand et al., 2008). Situations that cause multipath include corner reflection from 

angular, highly reflective features such as buildings (Stilla et al., 2003), and where trees or other 

heavy vegetation over-hang surface water (Townsend, 2002). 
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2.3.2 Interpolation 

After the acquisition of elevation data, interpolation or aggregation techniques are used to 

generate DEMs (Weschler, 2007). Interpolation algorithms estimate a variable of interest 

(elevation in the case of DEMs) at unmeasured locations - usually the centre or corner of a grid 

cell - using the locations and values of sample points (Chaplot et al., 2006). Often not much is 

known about the error which occurs as a result of the interpolation process (Desmet, 1997). For 

this reason, Chaplot et al. (2006) suggest that topographic modelers should be careful when 

selecting a method that will interpolate values between points of elevation. Many researchers 

have focused on the uncertainty associated with interpolation methods, but in general there is no 

single method that is the most accurate when used on terrain data (Fisher and Tate, 2006; 

Weschler, 2007). It is worth discussing some of the more commonly used techniques in DEM 

creation, and so an overview of inverse distance weighted (IDW), TIN-based (Triangulated 

Irregular Network), spline, and kriging methods is provided here. 

One of the most widely used interpolation techniques for modeling surfaces is IDW (Aguilar 

et al., 2005). In the IDW method the value of a point at a certain location is related to the known 

values of neighbouring points, weighted by the distance from the new point. The weight is 

inversely proportionate to the power function of the distance (Chaplot et al., 2006). In this way, 

known points do not have an effect on each otherôs weights. IDW seems to be preferred for 

interpolating DEMs because it creates a very smooth surface that is visually pleasing, especially 

for bare-earth DEMs, but this does not mean that it is the most accurate. One effect that this 

method can have on the resultant DEM is that a bulls-eye pattern can occur, where noise in the 

data is amplified, if the power function is set too high. Aguilar et al. (2005) found that from the 

various methods they tested, IDW was less appropriate for modelling elevation. Similarly, Bater 
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and Coops (2009) also found that of the seven interpolation methods they tested on airborne 

LiDAR data, IDW was the least accurate, and added that it resulted in a stepped pattern in the 

data which would have a significant impact on any terrain analysis. 

In the Bater and Coops (2009) study it was concluded that TIN-based interpolation produced 

the most realistic surface, compared to the seven other methods including IDW, spline, and 

linear interpolation, at three different resolutions. The TIN-based method that they chose was 

Natural Neighbour, which is based on Voronoi polygons derived from the sample points and the 

TIN surface. The known points (i.e. LiDAR points) are connected to their closest neighbours 

with lines, creating a Delaunay TIN surface. Polygons are then created with sides that are 

equidistant from two neighbouring points and perpendicular to the TIN line which would 

connect those points. This forms the original set of Voronoi polygons where one polygon 

surrounds each of the known points. When a point of unknown characteristics is inserted into the 

point network a new Voronoi polygon network is created. The proportion of overlap of the 

polygon of the unknown point and the original polygons determines the weighting of the values 

associated with the original polygons (Boissonnat and Cazels, 2000). 

IDW and Natural Neighbour are examples of deterministic interpolation methods which 

estimate the value of unknown points based on the influence of immediate neighbours of known 

points. Deterministic methods are more computationally efficient, but do not take into 

consideration the patterns, correlation of values, or errors across the entire area being 

interpolated. To solve this issue probabilistic geostatistical methods have been created. These 

methods incorporate not only distance but also direction in determining influential surrounding 

values, and many also consider spatial autocorrelation of value and errors in the surface (Maune 
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et al, 2001, in Bater and Coops, 2009). Spline and kriging types of interpolation are examples of 

probabilistic methods. 

Kriging is similar to IDW and Natural Neighbour since it estimates values based on the local 

average, but this concept is taken a step further by considering the spatial variation of the data 

and the configuration of the data to minimize the variance in interpolated values (Desmet, 1997). 

Deutsch and Journel (1992, in Grohmann and Steiner, 2008), state that kriging may be most 

useful for re-sampling elevation data since it honours points at their original locations while 

interpolating data for the areas between points. For this reason kriging is often chosen for sparse 

datasets to gain a best estimate of the values for the area between points. Oliver and Webster 

(1990, in Fisher and Tate, 2006), add that this method is the best linear unbiased estimator and 

that the error introduced in the estimation can be directly determined, making it a desirable 

method to use from a statistical stand point. Fisher and Tate (2006) warn that the variance of the 

kriged surface is directly related to the distance of the estimated value from the known value. 

Therefore there may be cases where the dataset is too sparse to allow for a realistic surface to be 

produced. Also, in the case of LiDAR data which is very dense, kriging will produce extra values 

between points unnecessarily. 

Splines are a general class of interpolation techniques that create a surface with minimal 

curvature while still passing through the sample points (Aguilar et al., 2005). The surface created 

can be conceptualized as a thin metal plate that has been forced to bend through or very close to 

the known sample points (Desmet, 1997). This interpolation method is suitable for terrain with 

smooth slope transitions that does not greatly vary in elevation, and is not suitable for cases 

where sharp changes occur in short distances (e.g. man-made features or cliffs) (Mitasova and 

Litas, 1993, in Aguilar et al., 2005). If used on a very large or dense dataset, spline methods 
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become computationally expensive and there can be an increase in the numerical instability of 

the solution found (Lazzaro and Montefusco, 2002, in Aguilar et al., 2005)  

Previous research, as mentioned in other studies (Bater and Coops, 2009; Chaplot et al., 

2006; Fisher and Tate, 2006) has found that there is no interpolation method that is universally 

superior for the creation of DEMs. Success of any one interpolation method is based on the 

nature of the terrain and the distribution of the source data (Fisher and Tate, 2006), as well as the 

cell resolution of the desired DEM and the assumptions of the mathematical design of the 

method (Bater and Coops, 2009). 

2.3.3 Error estimation 

DEM error is usually estimated using a more accurate reference dataset such as GPS points 

(Coveney and Fotheringham, 2011; Gao, 2007) or other DEMs (Fisher and Tate, 2006). The 

most widely used measure of DEM error is the Root Mean Squared Error (RMSE) (Aguilar et 

al., 2005; Desmet, 1997). RMSE is the square root of the average of squared differences taken 

between the DEM being assessed and reference points that are believed to be of higher accuracy 

(Weschler, 2007). The equation for RMSE is given below: 
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where Z
est

 is the estimated elevation and Z
ref

 is the reference elevation at location i, and n is 

the number of residuals calculated (modified from Aguilar et al., 2005). A number of studies 

have shown that the mean error is not equal to zero, and so the RMSE alone is not a good way to 

describe the statistical distribution of the error (Fisher and Tate, 2006). Fisher and Tate (2006), 
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and Desmet (1997) suggest that at least the Mean Error (ME) and the standard deviation of the 

error (S) should be reported along with the RMSE. 

Even though the RMSE is the most commonly used estimate of DEM accuracy Weschler 

(2007) as well as Fisher and Tate (2006) stated that it is not necessarily the most appropriate. The 

RMSE assumes that DEM errors are random, and that they are normally distributed in their 

values, which is not true of most DEMs. The RMSE also does not reflect how well each cell of 

the DEM reflects the true elevation (Weschler, 2007). Weschler further argues that error would 

be better represented in a probability map, and that the contribution of error sources should be 

quantified to allow for a better understanding of the nature of the error. 

Fisher and Tate (2006) argue that the RMSE, ME, and S all fail to represent the spatial 

pattern of error, which is an important consideration in DEMs since error tends to be spatially 

correlated. As a solution they recommend that either unconditioned or conditioned error models 

be used. Unconditioned error simulation models use stochastic simulations of random function 

realizations that can be applied to the DEM, often through the use of a Monte Carlo simulation 

method. They are based on properties of the error distribution but actual estimates of error are 

not honoured. The assumption of unconditioned error simulation models is that the error pattern 

is uniform over the entire DEM, which is often not the case. Conditional error simulation models 

differ in that they honour the estimates of error at particular locations and therefore do not 

assume that the error pattern is uniform (Fisher and Tate, 2006). 

It is important to note that estimates of error that are based on reference data sets are not 

actually estimating absolute error from the true ground surface, but rather are discrepancies from 

the reference data values, since even the most accurate ground truth data contains a certain level 
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of error as well (Gao, 2007). Papasaika et al. (2009) suggest that in the absence of a higher 

quality reference data set, alternative techniques such as the evaluation of slope, aspect, and 

roughness, can be used to assess the accuracy of a DEM. Reuter et al. (2009) suggest that even 

with a reference dataset terrain parameters such as slope and curvature should be evaluated to 

assess the accuracy of a DEM. 

2.4 Global DEMs 

The first attempts to create a DEM of the globe involved merging elevation from multiple 

sources into a single product with the greatest coverage possible. More recent advances in space-

borne remote sensing instruments have allowed for near global coverage from single sensors. 

Examples of both types of global DEMs are briefly reviewed in this section. 

2.4.1 Multi -source global DEMs 

Initial efforts to create a DEM with global coverage involved the merging of elevation data 

from multiple sources. Two of the main products that resulted from these efforts were GTOPO30 

and GLOBE. 

GTOPO30 is a global DEM with a grid spacing of 30 arc seconds (approximately 1 km). It 

was compiled from eight different elevation data sources and was developed for regional and 

continental scale topographic data use (Harding et al., 1999). The main data sets and the 

percentage contributing to GTOPO30 for land areas were: Digital Terrain Elevation Data 

(DTED, 50%), a 1 degree elevation model for the USA (6.7%), and Digital Chart of the World 

vector data (DCW, 29.9%) (Miliaresis and Argialas, 2002). The DCW vector data used were 
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contours, spot heights, stream lines, lake shorelines and ocean coastlines; all of which were 

converted to a raster with drainage enforcement (Harding et al., 1999). 

Because several raster and vector sources of topographic information were used the accuracy 

of GTOPO30 varies by location according to the source data (Denker, 2005). For example, 

Harding et al. (1999) note that the New Zealand DEM RMSE is 9 m whilst the Peru map RMSE 

is 304 m. Miliaresis and Argialas (2002) also compare the plus or minus 30 m accuracy of DTED 

to the plus or minus 160 m accuracy of DCW data in the GTOPO30 DEM. Despite the large 

variation in elevation accuracy, GTOPO30 data was a major contributor to GLOBE (Hastings 

and Dunbar, 1998) which was the next global DEM initiative. 

The Global Land One-kilometer Base Elevation (GLOBE) DEM was initially an empty 2-

dimensional, 30 arc-second array that was opened and the best available data used to fill it. It 

was developed before the scheduled launch of SRTM (Shuttle RADAR Topography Mission; 

described in the next section of this literature review) in 1999. The U.S. Defense Mapping 

Agency contributed DTED Level 0 data, and national elevation datasets were also contributed 

from Australia, Japan, and New Zealand. As well, GLOBE contained data from the GTOPO30 

DEM (Hastings and Dunbar, 1998). 

Similar to GTOPO30, GLOBE can be locally quite unreliable since the merged datasets were 

acquired with a variety of sensors and many different techniques were employed during the 

elevation generation process (Rabus et al., 2003). Hastings and Dunbar (1998) state that perhaps 

half of GLOBE exceeds 20m RMSE and that the area of Antarctica could be off as much as 

300m vertically. They also note that some errors may be from differences in projection and 

datum since many datasets do not come with proper documentation. 
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2.4.2 Single-source global DEMs 

Advances in space-borne remote sensing instruments haveallowed for more DEM coverage 

globally from single sensors. Examples of these DEMs produced from single sensors are SRTM, 

GDEM, and the soon to be released WorldDEM. 

The Shuttle RADAR Topography Mission (SRTM) acquired RADAR data in C and X bands, 

over an 11 day period in February 2000, for the entire landmass of the Earth between 60° North 

and 57° South latitude (Rabus et al., 2003). The objective of the data collection was to obtain the 

most complete, high-resolution topographic database of the Earth at that time (Sun et al., 2003). 

The SRTM system was the first single-pass interferometer in space, and was an across-track 

system on the same sensor so that image pairs were acquired under virtually the same 

atmospheric and ground conditions which reduced decorrelation (Rabus et al., 2003). 

Sun et al. (2003) stated that the absolute vertical accuracy of the SRTM DEM was 16 m 

(90% LE ï linear error). Denker (2005) reported that the first public release of SRTM elevation 

data was to the research community, to be tested in 2004, and was a 3 arc second (approximately 

90 m) resolution DEM called SRTM3. They also reported the SRTM3 product had numerous 

voids and spurious points, and that most of the water bodies were not well-defined because they 

likely produced low backscatter. Some of these errors in the SRTM DEM were used as the 

research context for developing some DEM fusion techniques (which are discussed in the next 

section of this literature review). 

The next attempt to produce a global DEM from a single sensor was the Global DEM 

(GDEM) produced from optical imagery collected by the Advanced Space borne Thermal 

Emission and Reflection Radiometer (ASTER) system on the Terrasat satellite (Reuter et al., 
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2009). The observation period was from 2000 to 2007 resulting in data coverage between 83° 

South and 83° North latitude, with many areas imaged several times and the results merged (Hirt 

et al., 2010). GDEM was released on June 29
th
 2009 as a 1 arc second (approximately 30 m) 

resolution product with a vertical accuracy of 20 m (at a 95% confidence interval) (Reuter et al., 

2009). This DEM was of a finer resolution and greater coverage than the SRTM DEM. Reuter et 

al. (2009) also reported that the GDEM was 100 times more detailed than the GTOPO30 and 

GLOBE DEMs. The GDEM dataset is not without errors though; Hirt et al. (2010) found 

systematic errors from a strip effect over much of Australia, as well as some un-removed cloud 

elevations in the DEM. 

The next global DEM from a single sensor is anticipated to be WorldDEM generated from 

the Tandem-X (i.e. X-band RADAR) InSAR system. The 12 m resolution DEM with global 

coverage from pole to pole is scheduled to be released in 2014. The main source of information 

available about the WorldDEM and its reported vertical accuracy of 2 m (relative) and 10 m 

(absolute) is the providersô website (Astrium, 2013). 

2.5 DEM Fusion 

There are several DEM fusion techniques that have been proposed and tested in the literature 

over the past three decades. Many of these involve simple techniques such as data gap filling, 

and the weighted averaging of input elevations based on: global measures of error; height error 

maps from the DEM generation process; terrain derivatives; or combinations thereof. More 

sophisticated techniques of DEM fusion involve the use of sparse representations, frequency 

domain filtering, self-consistency in the generation process, or multi-scale stochastic smoothing. 
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2.5.1 Fusion with weights 

The simplest form of DEM fusion is taking the average of all available overlapping DEMs at 

each cell location. This type of fusion is not satisfactory though, since large errors can skew the 

average; the magnitude of the error will be reduced but the resultant DEM will still have 

blunders (Schultz et al., 2002). A more intelligent approach is to apply weights to the elevation 

estimates based on error probability to control their influence on the fused elevation estimates. 

Roth et al. (2002) used weighted averaging to fuse the overlapping portions of DEMs derived 

from MOMS-2P, SRTM-X, and ERS-Tandem imagery. The weights were derived from the 

image geometry (an estimated overall accuracy), and height error maps from the DEM 

generation process (an estimated accuracy at each cell location). Also, a statistical outlier test 

was performed to identify and correct errors in the fused DEM. The results of the fusion were 

provided as DEMs and maps of estimated height error for a subset of the study area. Roth et al. 

(2002) reported that the overall quality of the fused DEM was better than the input DEMs. 

Combinations of SRTM-C, SRTM-X (both InSAR) and optical along-track stereo SPOT-5 

DEMs were fused in a study by Reinartz et al. (2005). Height error maps created during the 

InSAR DEM generation process, derived from the coherence and density of residuals, were 

applied as weights to the SRTM DEM elevations. Weights for the SPOT-5 DEM estimates were 

derived from the mean standard deviation and the density of matched points in the stereo-

photogrammetric DEM generation process. The input DEMs and the resulting fusion DEMs (all 

of which were DSMs) were corroborated with a higher accuracy DTM. The mean, standard 

deviation, minimum and maximum of offsets were provided for landuse areas defined as fields, 

suburbs, or forests. For the fields and forests landuse classes the means of the fusion DEMs were 

not lower than the mean offsets for the input DEMs. The standard deviations of the fusion DEMs 
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for these classes were however lower than that of the input DEMs except for the SRTM- and 

SRTM-C DEM fusion. As well, maps of the probability of height error also showed the most 

improvement when all input DEMs were fused. 

A more sophisticated technique for fusing DEMs using weights was presented by Papasaika 

et al. (2009). Weights were calculated from both a priori  information about the DEM error (i.e. 

generation technology and one global estimate of error) and from terrain derivatives of the input 

DEMs (i.e. slope, aspect, roughness). Land use classes derived from classification of the 

IKONOS imagery, including trees, buildings, streets, shadows, fields, bare ground, and water, 

were also used as weights in the fusion process. Two DEMs, generated from LiDAR data and 

stereo IKONOS imagery, were fused using an active surface model that attracted the less 

accurate surface to the more accurate one. The shape of the resultant DEM was driven by 

nominal accuracy and the generation technique of the input DEMs, as well as the land cover; all 

of which were categorized as internal forces. The fusion was also driven by external forces to 

coincide with the geomorphological features of the more accurate DEM. Unfortunately this study 

only presented preliminary results of the fusion in the form of visual assessments for two subset 

areas that show an improvement in hedge and building representation in the fused DEM. 

2.5.2 Sparse representations 

Building on previous research by the authors, Papasaika et al. (2011) proposed and tested the 

use of sparse representation theory in DEM fusion. The use of sparse representations would 

allow DEM fusion to be represented as a mathematical optimization problem that could be 

solved to global optimality. In this technique the area of interest is segmented into overlying 

patches of grid cells. Dictionaries of patches (i.e. unique combinations of terrain shape) are 
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created from higher accuracy DEMs in training areas. Error weights calculated from the slope 

and roughness of the input DEMs are also used in the fusion. The model is optimized to globally 

minimize the difference in expected elevations and the input DEMs. This approach was tested on 

pairs of DEMs, though the authors claimed that it could be extended to more than two DEMs. 

The three input DEMs were generated from ALOS/PALSAR-2, ERS C-band, and SPOT 

imagery. A LiDAR DEM was used to corroborate the input and fusion DEMs, and mean offsets 

as well as RMSE values were provided as results. The ALOS-SPOT DEM fusion had a lower 

mean and RMSE compared to the input DEMs, whereas the other fusion pairings had either a 

lower mean, or a lower RMSE than the input DEMs. 

2.5.3 Frequency domain filtering 

Frequency domain filtering as a method of DEM fusion was first introduced by Honikel in 

1998, and has since been tested and published by a few others (Crosetto and Aragues, 2000; 

Karkee et al., 2008). The basis of this technique is that the lower frequency portion of one DEM 

(i.e. coarser terrain features) can be isolated and merged with the higher frequency portion of 

another DEM (i.e. finer terrain features) of the same area. This has been applied to DEMs 

generated with InSAR and stereo-photogrammetry techniques since the InSAR DEMs tend to be 

more accurate in the high frequency, and the stereo-photogrammetric DEMs tend to be more 

accurate in the low frequencies. Frequency domain filtering involves four main steps: converting 

the DEMs into the frequency domain; applying a low or high pass filter to the appropriate DEM; 

adding the two desired DEM portions; converting the resultant data back to the spatial domain. 

Honikel (1998) tested this method on and InSAR DEM generated from ERS imagery, and on a 

stereo-photogrammetric DEM generated from SPOT imagery. Different cut-off frequencies were 
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applied and in all cases the mean offset was the same as the higher accuracy SPOT DEM, but the 

RMSE was lower than that of both input DEMs. 

In another study by Crosetto and Aragues (2000) a stereo-radargrammetric DEM generated 

from RADARSAT-1 imagery and an InSAR DEM generated from ERS-1 imagery were fused 

using frequency domain filtering. Unfortunately, the DEM fusion was not the focus of the article 

and so the results of the fusion were not well reported however, the authors did state that the 

fusion removed systematic errors that were present in the InSAR DEM, and that the DEM 

precision was also improved. 

A more recent study, by Karkee et al. (2008), included a DEM gap filling step before the 

frequency domain filtering step in the fusion of a stereo-photogrammetric DEM generated from 

ASTER imagery and an SRTM-C (InSAR) data. The gap filling was necessary since the SRTM 

DEM contained many holes due to shadow in the RADAR imagery and areas of poor coherence 

between images. An erosion technique using the slope and aspect of the SRTM cells surrounding 

the gap was used to fill the gaps. After the gap filling and frequency domain filtering, the input 

DEM and fusion DEM were corroborated with a 1:25000 scale contour map of the study area. 

Karkee et al. (2008) reported that the fused DEM had an RMSE that was 42% lower than that of 

the ASTER DEM, and 10% lower than that of the SRTM DEM. The mean offsets for all DEMs 

were the same value, due to the co-registration of the input DEMs before fusion. 

2.5.4 Self-consistency 

Another method of DEM fusion, specific to DEMs generated from stereo-photogrammetry 

techniques, employs the theory of self-consistency (Schultz et al. 1999, 2002). In this method 

two DEMs are generated from the same pair of images by switching the reference and target 
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roles for elevation extraction. If the elevation estimates at the same cell location differ by greater 

than a threshold distance the estimates are not accepted. The threshold is determined by fitting all 

disparities between the elevations of the DEM pairs to a Gaussian distribution, and threshold is a 

user specified number of standard deviations from the mean of the distribution. 

Schultz et al. (1999) generated 12 DEMs from six pairs of aerial photography images of a 

barren desert area and applied the self-consistency constraint to filter for reliable estimates. The 

reliable estimates at each cell location in the study area were simply averaged to create the final 

fused DEM. The average of each DEM pair (created from the reversal of roles of the imagery) 

was also created for comparison with the fused DEM. Schultz et al. (1999) reported that the 

fused DEM was slightly less accurate (measured by the standard deviation of offsets with the 

ground truth) than the average DEMs generated from three out of five DEM pairs. It was not 

explained why the results of the sixth DEM pair were not provided. The study by Schultz et al. in 

2002 only provided results for five of the original DEM pairs, and not for the fusion product. The 

fusion strategy was however, applied to DEMs derived from IKONOS imagery over an air force 

base as an example an urban area, which provided new results. Only visual assessments of the air 

force base area however were provided for one of the DEM pairs and the fused DEM. 

The article by Stolle et al. (2005) was authored by many of the same people that authored the 

Schultz et al. 2002 paper. In that more recent study (2005) the same methodology for self-

consistency fusion was applied to a different area of desert, and to 18 DEMs of a different urban 

setting that contained high-rise buildings. Only visual assessments and graphed distributions of 

elevations were provided as results for one of the input DEMs and the fused DEM. 
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2.5.5 Multi -scale stochastic smoothing 

A multi-scale Kalman smoothing filter was used by Slatton et al. (2002) to fuse InSAR 

DEMs of different resolutions. The multi-scale Kalman filter was employed because it considers 

the stochastic variability in parameters and is optimal with respect to the minimal mean squared 

error involved in the DEM fusion model. In the Slatton et al. (2002) study, one low resolution 

InSAR DEM derived from ERS1/2 imagery was fused with three higher resolution InSAR 

DEMs generated from TOPSAR imagery. The resultant fused DEM of the ERS DEM fusion 

with the first TOPSAR DEM was then fused with a second TOPSAR DEM, and that resultant 

DEM was fused with a third TOPSAR DEM. The results showed that the mean height 

uncertainty decreased with each additional DEM that was added to the fusion process. 

2.6 Research Gaps and Opportunities 

There are several methods of acquiring data with remote sensing for the purpose of creating a 

DEM. Each method has benefits and limitations of use and accuracy depending on the 

characteristics of the terrain and land cover, processing requirements, cost of acquisition and 

desired area of coverage. Some data types are useful strictly for elevation acquisition, or are have 

multiple other uses potentially making them a more desirable data set. Satellite RADAR 

(specifically SAR) technology has emerged as one of the leading forms of elevation acquisition, 

in the form of stereo-radargrammetry and interferometry methods, for the coverage of large 

areas. 

A major consideration in the creation of a DEM is the potential sources of error and how the 

error is reported. Aside from the accuracy of measurement of the instrument employed, 

interactions of the transmitted energy with features before reception by the sensor are important 
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to understand and account for when assessing the acquired data. Each elevation dataset requires 

interpolation to create a gridded DEM, and interpolation can also add to the error of the data. 

There is not a single method of interpolation which is universally the best, but rather some 

methods perform better than others depending on terrain and land cover attributes, acquisition 

technique, and desired outcome of DEM characteristics. 

Advancements in DEM generation globally have increased the accuracy and coverage of 

DEMs. Depending on the method of data acquisition, the characteristics of the land cover and 

DEM generation, these DEMs still contain inherent errors. This redundancy of DEM data and the 

need to further reduce errors has provided the opportunity and rationale for the development of 

DEM fusion techniques. 

Many of the DEM fusion techniques published to date are indeed successful in increasing the 

accuracy or the precision of elevation estimates for a region of interest. Most of these fusion 

methods however, fuse only two or three DEMs at a time and rely on more accurate estimates of 

elevation or error to improve a less accurate DEM. Only one of the methods reviewed in this 

chapter (self-consistency) was entirely data-driven by the elevation estimates themselves, but 

even in this technique the multiple resultant estimates of elevation at each cell location were 

simply averaged as the final fusion step. 

The question then arises: can a data-driven DEM fusion technique be developed to fuse 

multiple overlapping DEMs of the same area in an intelligent way that goes beyond simply 

averaging the estimates at each cell location? To date, such a technique has not been presented in 

published literature. This presents an exciting opportunity for research in the field of DEM 

fusion. While keeping the aspects of DEM generation, as well as possible error sources and 
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estimation, in mind it may be possible to increase the accuracy and precision of a DEM product 

using multiple, overlapping DEMs, with a newly developed DEM fusion algorithm that exploits 

the redundancy of data. 
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3 METHODS 

3.1 DEM Fusion Algorithm Overview 

The DEM fusion algorithm developed in this study involves the fusion of multiple, 

overlapping DEMs of the same geographic study area. The goal was to fuse the DEMs without 

any a priori knowledge of the error in the DEMs. This fusion method is therefore based on the 

distribution of elevations at each cell location, and the user input is limited to data distribution 

parameters. 

At each cell location the elevations available from the multiple DEMs are first removed or 

retained by slope and elevation thresholding. The threshold values are defined by the user as a 

multiple of the standard deviation of the slope values or elevations at each location. Retained 

elevations are then clustered using a k-means clustering algorithm. The cluster merging distance 

is also defined by the user, and is a percentage of the total range of retained elevations at each 

cell location. Figure F-1 in Appendix F contains a flowchart of the steps involved in the k-means 

clustering portion of the fusion algorithm, and Appendix G contains the programming code for 

the k-means clustering. The results of the clustering step are then filtered with an adaptive mean 

filter, and smoothed with a Gaussian filter. 

The data requirements for the algorithm are multiple, overlapping DEMs generated at same 

resolution. The assumptions of this algorithm are that the DEMs are referenced to the same 

horizontal projection and datum as well as the same vertical datum. Figure 3-1 contains a 

flowchart that outlines the main steps of the fusion algorithm. 



36 

 

 

Figure 3-1  Flowchart of the main steps in preparing and processing the DEMs in the fusion 

algorithm. 

3.2 Study Area 

The DEM fusion algorithm was tested on an area of overlap for 12 DEMs that was buffered 

inward by 200 m to avoid edge effects of the DEMs. The 316 km
2
 study area is in Southern 

Ontario, Canada, Northwest of the city of Guelph (see Figure 3-2). The study area has a post-

glacial landscape that is mainly gently sloping with some hummocky topography present. The 

elevation in the area ranges from 310 to 443 m above mean sea level (referenced to the 2008 
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Earth Gravitational Model ï EGM 2008). The Grand River flows in the general direction of 

southwest through the study area from the town of Fergus to the city of Kitchener-Waterloo. The 

main river has cut a narrow gorge (up to 22 m deep) into the limestone bedrock in the Northern 

half of the study area. The gorge and a few limestone and aggregate quarries are the only 

occurrence of steep terrain in the study area. 

The land-cover type in the study area is mostly cultivated agricultural fields (51%), with 

crops consisting mainly of corn, soybeans, wheat, or forages. Pastures or areas with small shrubs 

are considered rough land in this study and cover 17% of the total study area. Forests are a mix 

of temperate deciduous and coniferous tree species, and cover 13% of the study area. The urban 

areas cover only 6% of the study area, and consist mainly of small houses and yards with some 

larger buildings such as two and three story factories or warehouses. There are no large city 

centres or high-rise buildings in the study area. 

The extent of all RADARSAT-2 scenes used in this study occurs over a 1350 km
2
 area that 

defines the extent of the data collection and processing for this project (i.e. RADARSAT-2 

imagery, GPS data, etc.). The data collection area is shown in Figure 3-2, and also in a map of 

the RADARSAT-2 scene extents provided Figure 3-3. 
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Figure 3-2  Location of the study area and larger data collection area within Southern Ontario, 

Canada. 

3.3 RADARSAT-2 Imagery, GCP coordinates, and DEM Extraction 

The general methods of Toutin et al. (2010) were followed to extract DEMs using stereo-

radargrammetric methods and RADARSAT-2 (SAR) imagery. This section provides the general 

steps involved in: processing the RADARSAT-2 imagery; ground control point (GCP) and tie 

point (TP) collection; DEM generation. 

3.3.1 RADARSAT-2 scene selection and processing 

Several scenes of RADARSAT-2 Fine-Quad mode, SLC (single look complex) imagery, at 

various incidence angles (22-49°) were acquired over the study area during the spring and 

autumn of 2010. The scenes were provided by Agriculture and Agri-Food Canada. The imagery 

had a resolution of approximately 4.5 by 7.5 m in the slant range, and they were projected in 
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WGS 1984 UTM Zone 17N. Of this dataset, 16 scenes were used for DEM extraction (see Figure 

3-3 for a map of RADARSAT-2 scene extents). Selection and pairing of the scenes for same-side 

stereo-radargrammetric DEM extraction was based on the date of acquisition, the orbit pass 

direction, incidence angle, and amount of overlap between scenes (see Table 3-1). 

 

Figure 3-3  Map of RADARSAT-2 scene extents for the imagery used to generate the DEMs. 
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Table 3-1  RADARSAT-2 scenes used for DEM extraction with attributes used for scene 

selection and pairing. Scene pairs are numbered according to the ID of the DEM they were used 

to generate. General pass directions are labeled: A ï ascending; D ï descending. 
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Scene Pairs 
(number corresponds to the DEM created) 

           P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

S01 11/04 FQ2 22 77° 347° (A) 1                       

S02 14/04 FQ16 37 79° 349° (A) 1 2 
          S03 05/05 FQ2 22 77° 347° (A) 

 
2 3 

         S04 08/05 FQ16 37 79° 349° (A) 
  

3 
         S05 22/09 FQ21 42 80° 350° (A) 

   
4 

        S06 02/10 FQ31 49 81° 351° (A) 
   

4 
        S07 26/10 FQ31 49 81° 351° (A) 

    
5 

       S08 09/11 FQ21 42 80° 350° (A) 
    

5 6 
      S09 19/11 FQ31 49 81° 351° (A) 

     
6 7 

     S10 03/12 FQ21 42 80° 350° (A) 
      

7 
     S11 15/04 FQ20 41 280° 190° (D) 

       
8 

    S12 18/04 FQ5 25 282° 192° (D) 
       

8 9 
   S13 09/05 FQ20 41 280° 190° (D) 

        
9 10 

  S14 12/05 FQ5 25 282° 192° (D) 
         

10 11 
 S15 02/06 FQ20 41 280° 190° (D) 

          
11 12 

S16 05/06 FQ5 25 282° 192° (D)                       12 

 

The polarimetric channels (HH, HV, VH, and VV) of each RADARSAT-2 scene were 

initially in the form of un-calibrated GeoTIFF files with an associated metadata file. Each image 

was imported into PCI Geomatica using no radiometric calibration type and also using a sigma 

nought calibration type. The DEMs needed to be made from images without calibration, while 

sigma nought calibration allowed features such as roads to be better distinguished and therefore 

GCPs and tie points to be more easily placed. 

Since Toutin et al. (2010) found that DEMs generated from the total power of the imagery 

(i.e. the SPAN method, as described by Lee and Pottier, 2009) were more accurate than those 
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generated from the HH channel alone, the SPAN channels were created and used for DEM 

extraction in this study. The SPAN corresponds to the sum of the intensities for all four 

polarimetric channels at each cell location (Toutin et al., 2010). The Total Power tool in 

Geomatica was used on the un-calibrated polarimetric channels to create the SPAN channel for 

each scene. 

3.3.2 GCP locations and elevations 

Road intersection centres were used for GCPs since they could consistently be identified in 

the RADARSAT-2 images. The GCP locations (x, y) were derived from 2010 SWOOP ortho-

images that had a resolution of 20 cm and a horizontal accuracy of 50 cm (Ontario Ministry of 

Natural Resources, 2010). The elevation of each GCP was interpolated from nearby GPS points 

collected in a real time kinematic (RTK) survey of the road surface with points collected at least 

every 50 m. 

If the intersection centre was within 10 metres of a GPS point, the nearest GPS point 

elevation was used directly for the GCP elevation. The distance limit for nearest point 

interpolation was chosen because the road intersections in the study area are relatively flat and 

the elevation is therefore not expected to greatly change within 10 metres from the centre of the 

intersection. All GCP points met this condition, except for two ï these had GPS points along a 

straight section of road to either side, so the elevation was interpolated from the nearest two GPS 

points using linear interpolation. 

Horizontal and vertical coordinates for a total of 49 GCPs were calculated within the data 

collection area (see Figure 3-3 for a map of GCP locations.). The distribution of GCP locations 

was moderately patchy due to the location of paved intersections that were consistently visible in 
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the RADARSAT-2 imagery. The highest density of GCPs in the study area was in the Central to 

Southeast region. 

3.3.3 DEM extraction 

DEM extraction was performed with PCI OrthoEngine (v. 10.3) software. The general 

processing steps involved in using this software to generate DEMs is well described by 

Ostrowski and Cheng (2000). 

Toutinôs 3-D Radargrammetric Model (Toutin and Chénier, 2009) was used for DEM 

generation, based on an EGM08 geoid file. GCPs were placed manually on displayed HV, HH, 

VV colour composites of the RADARSAT-2 scenes, with residuals of less than 1 m. Tie points 

with residuals of less than 2 m were collected between image pairs, at road intersections that 

were not used for GCPs. 

Epipolar images were created from the SPAN channels of the image pair. Epipolar images 

are created by resampling the imagery to a common grid so that the images are aligned, and the 

Y-parallax is reduced to a value close to the error of the GCPs and tie points. The epipolar 

images were used as the inputs for the Automatic DEM Extraction tool. The software of the 

DEM extraction tool segments the images into horizontal strips and then calculates the 

correlation between pixels of the images within each strip, and an optimal solution is determined 

within a variably sized moving window. The sensor geometry calculated from the 

radargrammetric model is used along with the pixel correlation to compute elevations from the 

parallax for each grid cell location. The ófill holes and filterô option was chosen, which computes 

the parallax of failed pixels based on a suitable number of successful neighbouring parallax 
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values, and filters the DEM for noise. The extracted epipolar DEM was then smoothed by the 

software and geocoded to a 10 m resolution, regularly spaced grid. 

3.4 DEM Fusion Algorithm  Rationale and Implementation 

The DEM fusion algorithm was implemented on the 12 generated, overlapping DEMs. An 

overview of the algorithm is provided in Section 3.1 and a flowchart outlining the major steps in 

the DEM fusion algorithm is provided in Figure 3-1. This section of the methods chapter 

provides the rationale for each algorithm step and the details of how the algorithm steps were 

implemented for the study data. 

3.4.1 Data preparation 

The first step in the DEM fusion algorithm is to resample all input DEMs to the same grid 

spacing and cell locations so that the data is aligned. This is referred to as a DEM stack, and it 

simplifies data processing. As a result, all subsequent DEMs and rasters that are created 

throughout the processing workflow have the same grid cell resolution and alignment which also 

facilitates their analysis and comparison at individual cell locations. 

All DEMs in this study were generated in reference to the same horizontal datum and 

projection, and the same vertical datum, but were not initially aligned by grid cell location. The 

DEMs were therefore resampled to the cell alignment of the reference DEM (described in 

Section 3.5.1) to allow for easier processing of the DEM fusion steps and also easier 

corroboration of the DEMs and fusion algorithm products with the reference DEM. 
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3.4.2 Slope and elevation thresholding 

The next steps in the DEM fusion algorithm are to filter the data at each cell location for a 

certain level of consistency with each other. Slope and elevation thresholding are used to achieve 

this by retaining associated elevations that are within the set thresholds. The threshold values for 

slope and elevation are pre-determined by the user as a multiple of the standard deviation from 

the mean slope or elevation value. In this way the threshold value changes with the distribution 

of slope values or elevations at each location. 

To implement slope thresholding, slope rasters are created for each DEM in the stack 

resulting in a raster stack of slope values. At each cell location the mean and standard deviation 

of the slope values are calculated, and any slope values that are outside the threshold number of 

standard deviations from the mean are flagged. The elevations in the DEM stack that correspond 

to the flagged values in the slope raster stack are then removed. 

In this study, a slope raster for each DEM was created using Hornôs (1981) third-order finite 

difference method, and the grid cell location numbering scheme suggested by Gallant and 

Wilson (Gallant and Wilson, 1996). Compared to other methods, the third-order finite difference 

method has the advantage that local errors in elevation contribute less to errors in slope 

estimation (Horn, 1981). 

Slope thresholding was applied at each cell location on the stack of slope rasters and the 

corresponding DEMs they were derived from. Slope values were compared at each cell location 

and any values outside two standard deviations of the mean were flagged. The thresholding value 

of two standard deviations was chosen after a sensitivity test to ensure that the slope thresholding 

was not too aggressive (i.e. too many initial elevation estimates were removed). The DEM values 
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at each cell location associated with flagged slope rasters were then removed. As a result, some 

DEMs had óNoDataô values for some cell locations. 

After slope thresholding, the next step in the DEM fusion algorithm is to threshold the 

elevations at each cell location. When elevation thresholding is performed the mean and standard 

deviation of the elevations retained after slope thresholding are calculated at each cell location in 

the DEM stack. The elevations outside a threshold number of standard deviations of the mean are 

removed from the DEM stack. 

In this study, elevation thresholding was applied to the DEM stack resultant from the slope 

thresholding step. At each cell location, any elevations that were outside of two standard 

deviations of the mean were removed. After testing multiple values this threshold value was 

chosen since it achieved a level of filtering that was not too aggressive (i.e. it did not remove too 

many of the elevation estimates). The elevations that were retained were used in the k-means 

clustering step. 

3.4.3 k-means clustering 

In the DEM fusion algorithm a modified k-means clustering (similar to that described by 

Mather and Koch, 2011) is performed on the values at each cell location in the DEM stack 

remaining after the thresholding steps. The clustering step is included in the algorithm to isolate 

groups or clusters of elevation that are similar to each other. Given the large number of DEMs in 

the stack, the assumption is made that the more clustered the elevations are, the more accurate 

they are. 

The general k-means clustering algorithm is described well by MacQueen (1967). Though 

many modifications can be made, the basis of this form of clustering is that initially there are k 
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groups with known cluster centres. Points in the data set are added to these groups based on 

proximity to group centres. In this way, groups become clusters with points as members. Cluster 

centres are re-calculated as the average value of the members, and members are then re-assigned 

to clusters based on their proximity to the new centres (Jain, et al. 1999). The clustering is 

performed until a there is no change in the location of the cluster centres (Mather and Koch, 

2011). The ISODATA method was introduced to allow clusters to be merged based on proximity 

of the centres, or for a cluster to split if the variance of a cluster was above a threshold. Also, 

clusters with few or no members can be removed. This allows the number of clusters to change 

with the pattern in the data and made the clustering results less dependent on the initial number 

of clusters. 

The modified k-means algorithm proposed by Mather initializes clustering with a relatively 

large number of cluster centres compared to the anticipated number of clusters and only allows 

for cluster merging and removal in the case of low membership, but does not allow cluster 

splitting. This further reduces the dependency of the clustering results on the initial number of 

cluster centres as well as their placement. Also, removal of the cluster splitting from the 

algorithm allows the clustering solution to eventually reach a state of equilibrium (i.e. no change 

in cluster membership) (Mather and Koch, 2011). 

In the proposed DEM fusion algorithm, clustering only occurs if there are more than a user-

defined minimum number of elevations at each cell location after the thresholding steps, 

otherwise the average of the elevations is used instead of a clustering result. The cluster merging 

distance is set by the user as a percent of the range of elevations to be clustered. The stopping 

condition of the clustering is met when no change occurs in cluster membership, or the user-

defined maximum number of iterations has been performed. The final cluster is selected as the 
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cluster with the highest number of members; if there are two or more clusters that meet this 

criterion the cluster with the smallest range in elevation is chosen. The average of the final 

cluster at each cell location is output into a product DEM. 

In this study, k-means clustering was performed at each cell location, using the DEM stack 

resulting from the slope and elevation thresholding steps. Clustering was performed if there were 

more than three elevation estimates at a given cell location, otherwise the average of the 

elevations was calculated and used in the algorithm product. The initial number of clusters was 

calculated as five times the number of elevations at each location. The centres of these clusters 

were determined by placing them evenly within the range of elevations at the location. The 

relatively large number of clusters and their equal placement throughout the DEM range was 

chosen to provide a dense yet unbiased initial cluster set so that the first round of clustering 

would yield cluster centres similar to the distribution of the initial elevations. 

At each cell location, elevations were then assigned to the nearest cluster centre. Cluster 

centres were then re-calculated as the average value of the members within each cluster, while 

clusters with no members were removed. The distance between cluster centres was calculated 

and the centres nearest to each other identified. If these nearest centres were within the merge 

distance (calculated as 10 percent of the total range of elevations at that cell location) the clusters 

were merged and the new cluster centre was calculated as the average of the merged members. 

Several merge distances were tested and setting the distance equal to 10 percent of the elevation 

range at each cell location achieved the desired degree of clustering. 

The remaining cluster centres were then used in the next iteration and elevations were re-

assigned as members of the nearest cluster. The stopping condition for this loop in the algorithm 
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was a zero percent change in cluster membership or if 50 iterations had been performed. The 

maximum number of iterations for any cell location in the study area was 11, so the zero percent 

change condition was always reached. Once the k-means clustering was complete, the cluster 

with the largest number of members was identified. If more than one cluster met this criterion, 

the cluster with the narrowest range in elevations was chosen as the final cluster. The average of 

the elevations belonging to the final cluster was calculated and assigned as the elevation at that 

cell location in the resultant fusion product. 

3.4.4 Fi ltering and smoothing 

Previous steps in the proposed DEM fusion algorithm are performed on a cell-by-cell basis 

and, except for the slope thresholding step, the values of neighbouring cells at each cell location 

are not taken into consideration. The result is an increase in the spatial variance of the fusion 

product, compared to the input DEMs, after the k-means clustering step. To create a product with 

less short-scale variance adaptive mean and Gaussian filters were used to smooth the DEM. 

Adaptive mean filters employ a moving window approach that calculates the mean and 

standard deviation of neighbouring cell values and compares that to the center value. The user is 

able to specify the window size and the threshold value as a multiple of the standard deviation of 

values in the window. In this algorithm an adaptive mean filter is applied to the product DEM to 

remove local outliers (minima or maxima outside the user-specified standard deviation from the 

mean) in the data. These local spikes or pits in the data are best removed by an adaptive mean 

filter first so that they do not influence the results of the Gaussian filter. 

In this study, several combinations of window sizes and threshold values for the adaptive 

mean filter were applied to the data and the results were visually inspected. A nine-by-nine 
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window with an absolute difference threshold of one standard deviation was found to be the most 

effective for removing local spikes and pits in the data. 

The final step in the proposed algorithm is a Gaussian filter applied to the fusion product to 

smooth the DEM and reduce much of the short-scale variance that can result from the k-means 

clustering. A Gaussian filter is a standard technique used for reducing high-frequency noise in 

elevation data (Milledge, et al. 2009b; Walker and Willgoose 1999). A Gaussian filter can 

smooth a DEM by a moving window that weights elevations in the neighbourhood based on a 

Gaussian distribution, with values closer to the centre weighted more strongly. For this algorithm 

the user defines the standard deviation distance of the Gaussian function as a number of DEM 

cells. Increasing the standard deviation distance will increase the degree of smoothing in the final 

product. It should be noted that the Gaussian filter is best suited for gently sloping terrain, and is 

therefore not recommended for areas with steep cliffs. 

In this study, trial and visual inspection were also used to test the settings for the Gaussian 

filter, which was applied to the fusion product after the adaptive mean filter. A standard 

deviation distance of 8 grid cells was determined as an appropriate setting to reduce short-scale 

variance in the data, and yet not result in an overly-smoothed final fusion product. 

3.5 Corroboration  of DEMs and Fusion Algorithm Products 

The accuracy of the RADARSAT-2 DEMs and the fusion algorithm products (created at 

various stages in the fusion procedure) were assessed by comparing these data with a more 

accurate reference DEM. Statistics for comparisons with the reference DEM were computed for 

the whole DEM as well as areas classified by landuse. 
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3.5.1 Reference DEM and DEMs of difference 

To corroborate the RADARSAT-2 DEMs and fusion algorithm products another DEM 

interpolated from higher accuracy data was used as a reference DEM (rDEM). These data were 

mass points derived from SWOOP 2010 ortho-imagery. The mass points were created at a 

regularly spaced 10 m interval with an accuracy of 50 cm both horizontally and vertically. Points 

that were classified as trees or buildings were removed from the dataset and the resultant data 

gaps were filled with interpolated points (Ontario Ministry of Natural Resources, 2010). 

The mass points were interpolated into a DEM using a spline with tension algorithm. The 

interpolation was performed in overlapping tiles that were later mosaicked. The resultant rDEM 

possessed a 10 m resolution. Since the rDEM vertical datum was originally CGG2000 (Canadian 

Gravimetric Geoid Model of 2000) it was transformed to EGM 2008 using a series of grid shifts. 

The transformation was performed to compare the rDEM with the RADARSAT-2 DEMs and the 

fusion algorithm products. Figure 3-4 contains the rDEM, clipped to the study area. The rDEM is 

void of trees and buildings, though it should be noted that several aggregate and limestone 

quarries are the cause of prominent, rectangular depressions in the study area. 

Since all DEMs (and therefore algorithm products) were resampled to the rDEM, the values 

of the rDEM were simply subtracted from all DEMs and products of the fusion algorithm, at 

each cell location. The resultant rasters are referred to as DEMs of difference. Global statistics 

were then performed on each DEM of difference (i.e. the mean, minimum, maximum, and 

standard deviation as well as the 10th, 25th, 50th (median), 75th, and 90th percentiles) for the 

overall study area, and also by areas classified as certain types of landuse. The global mean and 

median offsets were used to assess DEM and fusion accuracy, whilst the standard deviation and 
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the spread of the percentile ranges were used to assess DEM and fusion precision. The DEMs of 

difference were also used for further statistical analyses of the fusion algorithm products. 

 

Figure 3-4  The reference DEM (rDEM) created from SWOOP 2010 ortho-imagery at 10 m grid 

spacing, and clipped to the study area extent. 
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3.5.2 Classification by landuse 

To gain a better sense of how accurate the extracted DEMs were and how well the fusion 

algorithm performed on different land cover types (i.e. trees, crops, buildings, etc.) the DEMs of 

difference were segmented by landuse class (i.e. forest, fields, urban, etc.) within the study area. 

The Ontario Agricultural Resource Inventory (AgRI) dataset is a polygon coverage representing 

landuse classes and was utilized in this study. The polygons were digitized from 2006 and 2010 

SWOOP imagery, with complete coverage of the study area. This data (version 15) was provided 

by Dr. Stewart J. Sweeney, of the Ontario Ministry of Agriculture and Food. 

For this study, the AgRI dataset was checked with SWOOP 2010 imagery, and polygon 

editing took place to account for any landuse changes between the time of original digitization 

(potentially on SWOOP 2006 imagery) and the time of the RADARSAT-2 imagery acquisition 

in 2010. The main changes made to the AgRI polygons were modifying field or forest polygons 

where new buildings had been constructed between 2006 and 2010. Another significant change 

was the removal of two golf courses and several single, isolated rural homes from the urban 

landuse class. These features were assigned to other landuse classes that were not used in this 

study. 

The edited AgRI polygon shapefile was processed to create raster masks of the landuse 

classes chosen for this study: Fields, Roads, Rough Land, Urban, Water, and Forest. Other 

classes available but not chosen were: Farmstead, Fencerow, Railway, Riparian and Quarry. The 

polygon coverage was clipped to the study area, and polygons were buffered inward by 20 m for 

all chosen landuse classes, except for water and roads. The water and road features were so 

narrow that buffering inward would result in almost no remaining area representing those 

features. Buffering was performed at a distance of 2 grid cells (20 m) to avoid mixed pixel 
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effects from the RADARSAT-2 imagery, and to avoid possible error in the AgRI polygon 

locations. A separate binary raster mask for each landuse class was created from the associated 

buffered polygons with a cell size of 10 m and aligned to the rDEM (see Figure 3-5). 

Each landuse mask was used as a binary grid to select only regions identified to be of that 

class from each DEM of difference. The grid cell count and percent of the study area that each 

landuse mask covered is provided in Table 3-2. Global statistics for the landuse specific DEMs 

of difference were then calculated ( i.e. the mean, minimum, maximum, and standard deviation, 

as well as the 10th, 25th, 50th (median), 75th, and 90th percentiles). The global mean and 

median offsets were used to assess DEM and fusion accuracy, whilst the standard deviation and 

the spread of the percentile ranges were used to assess DEM and fusion precision, for each 

landuse class. 
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Figure 3-5  Map of the landuse masks created for the study area.  
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Table 3-2  Total area for each landuse class in the study area by cell count, and as a percentage 

of the study area. Note: the landuse class percentages are less in this table than reported for the 

study area since many of the landuse polygons were buffered inward and there can also be a 

change of area when polygons are converted to rasters. As well, the total of the landuse classes 

do not sum to the overall area because of the inward buffering, and the fact that there were other 

landuse classes in the study area (i.e. the overall area) that were not analysed individually. 

Landuse Class Cell Count Percent of Study Area 

Fields 1310668 41.48 

Forest 277922 8.80 

Roads 29408 0.93 

Rough Land 113017 3.58 

Urban 119308 3.78 

Water 26367 0.83 

Overall 3159814 100.00 

 

 



56 

 

4 RESULTS 

4.1 DEM Extraction  

4.1.1 Visual assessment of generated DEMs 

The twelve RADARSAT-2 DEMs that were extracted using stereo-radargrammetric methods 

are shown in Appendix A (see Figures A-1 to A-12). A visual assessment of the DEMs was 

performed and several general observations were made. Mainly, there existed varying degrees of 

obvious errors, with some DEMs containing more systematic errors, large blunders, or regional 

offsets than others. 

The first noticeable difference between DEMs is their range in elevation. DEM 02 has the 

largest range of 248.7 m, and DEM 12 has the smallest range of 152.8 m. The second difference 

noticed is the repeating patterns of elevation, with a high degree of short-scale variation, often 

causing a diagonal striping (or diamond shape) effect approximately every 300 m to 1000 m in 

the DEMs. In DEMs 01-03 these patterns were the most obvious, with those of DEM 02 being 

the most pronounced. 

There were also large blunders in the DEMs in the form of erroneous hills and depressions 

(e.g. an elevation change of 50 or 100 m in a distance of 100 m). When all DEMs were 

compared, the DEMs with the largest number of blunders, and to the worst degree, were DEMs 

04 and 02. When the areas affected by these large blunders were examined in 2010 SWOOP 

imagery or the landuse polygons provided by the AgRI dataset, the blunders were found to occur 

mainly in agricultural fields and in some cases where fields bordered forest patches or roads. 
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Valley delineation for the Grand River and its subsidiaries also varied between DEMs. DEM 

10 appeared to have the most complete channel inclusion and continuity, whereas DEMs 04 and 

06 were the most incomplete. 

4.1.2 Correlation between DEMs 

Since the DEMs appeared to be quite different from each other, the Pearsonôs product-

moment correlation coefficient (r) was calculated for all possible pairs of DEMs, overall and by 

landuse class. The resultant correlation matrices are provided in Appendix B. For the overall r 

values (see Table B-1) the lowest correlation was between DEM 02 and all other DEMs, with r 

values between 0.49 and 0.78. Pairings involving DEMs 03 and 04 had r values between 0.85 

and 0.91, while all other pairings (except for those involving DEM 02) had r values above 0.91. 

The highest correlation was between DEMs 08 and 12, with an associated r value of 0.98. 

The landuse-specific correlation coefficients were calculated and are provided in the matrices 

of Tables B-2 to B-7. As well, the difference between each landuse-specific r value and the 

overall r value for each respective DEM pair were calculated and are also given in the matrices. 

A positive difference indicates that there was a higher correlation between the DEMs within the 

given landuse class compared to correlation of the overall study area. 

For the rough land and urban landuse classes the r values were higher than the overall r 

values for every DEM pairing; with differences of up to 0.12 for rough land, and 0.18 for urban. 

The greatest change for urban and rough land r values were for pairings with DEMs 02 and 04. 

Correlation coefficients between DEMs for the water and road landuse classes were slightly 

higher than the overall correlation coefficients, for most of the DEM pairings. The greatest 

difference between r values for these landuse classes and the overall r values was for pairings 
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with DEM 04 (ranging from 0.05 to 0.09 higher than the overall r values). The exceptions were 

for most pairings with DEMs 01, 02 and 03, where the r values for the water and road classes 

were slightly lower than the overall r value. 

For the field landuse class, all DEM pairings were less correlated than the overall pairings, 

except for a few pairings with DEM 03. The pairing between DEMs 02 and 04 had the most 

negative difference between the r value for fields and that of the overall study area, with a 

difference of -0.06. 

For the forest landuse class there were an approximately equal number of cases where the r 

value was higher or lower than the overall r value. The negative differences were however, of a 

greater magnitude than the positive differences. For example, the difference in forest and overall 

r values for pairings between DEM 02 and DEMs 05-12 ranged from -0.08 to -0.12. In contrast, 

the highest positive difference was 0.03 for the pairing of DEMs 03 and 04. 

4.2 Fusion Algorithm Steps and Products 

In this section the main steps of the fusion algorithm are assessed by a comparison of the 

DEM retention percentages (for thresholding and clustering steps) as well as a visual assessment 

of the algorithm products. The algorithm products were created to help understand the 

contribution of each step in the fusion algorithm to the final fused DEM. A brief description of 

each product is provided in Table 4-1, and a summary below. 
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Table 4-1  Summary of fusion algorithm product names and descriptions. 

Product Name Brief Description 

Product 01 Average of elevations at each DEM cell location before any fusion 

algorithm steps 

Product 02 Average of elevations at each DEM cell location after slope and elevation 

thresholding (the inputs for k-means clustering) 

Product 03 Average of elevations that are members of the final k-means cluster at 

each DEM cell location  

Product 04 Resultant DEM after adaptive mean filtering is performed on Prod. 03 

Product 05 The final algorithm product. The resultant DEM after Gaussian 

smoothing is performed on Prod. 04 

 

Product 01 is the average at each cell location of all aligned DEMs before any other 

algorithm processing. It is used as the simplest form of fusion for a comparison to the 

contribution of other algorithm steps. Product 02 is the average of all elevations, at each cell 

location, after slope and elevation thresholding only. Product 03 is the average of the final cluster 

members, at each cell location, after k-means clustering is performed on the elevations that are 

retained after slope and elevation thresholding. Product 04 is the result of applying the adaptive 

mean filter to Product 03. Product 05 is the result of applying the Gaussian filter to Product 04. 

The fusion algorithm products are shown in Figures C-1 to C-5 in Appendix C. 

4.2.1 Slope and elevation thresholding assessment 

The purpose of the slope thresholding step in the fusion algorithm was to remove elevations 

that were associated with slopes in the DEM that were significantly different than other slopes at 

that location. As a result of slope thresholding, 77% of cell locations had an elevation from one 

DEM removed, and 2% of cell locations had elevations from two DEMs removed. At the 
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remaining locations no elevations were removed. The number of elevations removed at each cell 

location did not have a particular pattern across the study area. 

Table 4-2 contains the percentage of cell locations for each DEM where elevations were 

retained after slope thresholding, for the overall study area and for the field landuse class. The 

overall and field DEM retention percentages were similar except for DEM 02 (76% overall and 

80% in fields) and DEM 04 (69% overall and 64% in fields). All other DEMs retained values at 

93% or more of the overall and field cell locations. DEM 12 had the highest retention, at 99.3%, 

followed by DEMs 08 (98.7%) and 09 (98.4%). 

Table 4-2  DEM retention after slope thresholding, elevation thresholding, and k-means 

clustering, as a percentage of the total available cell locations, for the overall study area and for 

the field landuse class. 

 

Percent retention of DEMs after fusion 
algorithm steps: slope thresholding, elevation 
thresholding, k-means clustering. 

  Overall Fields 

DEM 01 98.72 ,97.82, 35.77 98.99 ,98.13, 35.54 

DEM 02 76.26 ,38.54, 7.75 80.18 ,42.40, 8.41 

DEM 03 95.01 ,91.26, 21.34 95.83 ,92.27, 23.04 

DEM 04 69.24 ,57.99, 12.98 64.34 ,52.65, 12.45 

DEM 05 96.49 ,90.74, 28.82 96.28 ,91.92, 29.73 

DEM 06 93.86 ,92.52, 32.32 92.99 ,91.40, 31.35 

DEM 07 97.45 ,96.01, 34.94 96.97 ,95.20, 33.21 

DEM 08 98.37 ,97.67, 36.25 98.28 ,97.36, 35.91 

DEM 09 98.69 ,98.47, 39.97 98.76 ,98.54, 40.16 

DEM 10 98.24 ,96.09, 31.56 98.37 ,95.75, 31.55 

DEM 11 98.05 ,97.01, 34.38 98.06 ,96.87, 34.28 

DEM 12 99.30 ,98.99, 44.79 99.30 ,98.99, 44.79 

 

Elevation thresholding was used as the next step in the fusion algorithm to remove elevations 

that were outside two standard deviations of the mean elevation at each cell location. As a result 

of elevation thresholding, 64% of cell locations overall had an elevation from one DEM 
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removed, and 1% of cell locations had elevations from two DEMs removed. At the remaining 

locations no elevations were removed by the elevation thresholding. 

Overall retention percentages for each DEM after elevation thresholding (see Table 4-2) were 

slightly less than the percentages after the previous algorithm step (slope thresholding), except 

for DEMs 02 and 04. The overall percentage for DEM 02 changed from 76 to 39%, and for DEM 

04 from 69 to 58%. All other DEMs had at least 91% retention overall after elevation 

thresholding. The DEMs with the highest retention were again DEMs 12, 08, and 09. The 

retention percentages for the field landuse class were also similar to those for the overall study 

area, except for DEM 02 (42% for fields) and DEM 04 (53% for fields). 

The combined effects of the two thresholding steps could be seen in a visual assessment and 

comparison of Products 01 and 02 (Figures C-1 and C-2, respectively). Both Product 01 and 

Product 02 did not possess the systematic errors or large blunders that were present in the input 

DEMs. Visually, valley inclusion and continuity was also much improved in Products 01 and 02. 

Similar to the input DEMs, there were erroneous hills and depressions in Products 01 and 02, 

however, these were on a much smaller scale and were less extreme than several of the input 

DEMs. In Product 02 the erroneous hills and depressions are less pronounced than in Product 01, 

though there is more short-scale variance present in some areas of Product 02. 

The effects of the thresholding steps could also be seen in a profile of a subset of the study 

area (see Figure 4-1). The slopes or elevations that were significantly different from the other 

values at each position in the profile were removed. The averages of the values before 

thresholding (Product 01), and after (Product 02), are shown along with the elevation of the 
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rDEM for comparison. For each position in the profile the elevation of Product 02 was closer 

than that of Product 01 to the rDEM. 

 

Figure 4-1  Profile of input DEM elevations before and after slope and elevation thresholding. 

The average elevation at each position before thresholding (Product 01) and after (Product 02) 

are shown along with the elevation of the reference DEM (rDEM). 

4.2.2 k-means clustering assessment 

k-means clustering was performed on the elevations remaining after slope and elevation 

thresholding. Clustering occurred at each cell location within multiple iterations until either there 

was a zero percent change in cluster membership, or until 50 iterations were performed. The 

minimum number of iterations was 3 and the maximum was 11 (only occurring at five cell 

locations), so the zero percent change stopping condition was always met. The average number 

of iterations was 5, which occurred at 38% of the cell locations in the overall study area. 
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The clustering algorithm then selected the cluster with the most members to be the final 

cluster. If more than one cluster met this criterion, the cluster with the smallest range was 

chosen. The percentage of cell locations where there was only one possible final cluster was 

72%, while 21% of the cell locations had two possible final clusters. Once the final cluster was 

chosen the average of the members was calculated for each cell location, resulting in Product 03 

(see Figure C-3). 

The mean number of members in the final clusters was 3, which occurred at 46% of cell 

locations, while final clusters with 4 members occurred at 34% of the cell locations overall. The 

three DEMs that were most often in final clusters were DEMs 08, 09, and 12, both for the overall 

study area and in fields. The DEM retention percentages after k-means clustering, for the overall 

study area and for fields, are provided in Table 4-2. The overall final cluster membership 

percentage was highest for DEM 12 (46%) and DEM 09 (41%), and lowest for DEM 04 (13%) 

and DEM 02 (8%). The final cluster membership percentages for fields were within one percent 

of the associated overall values, for all DEMs. As well, it is interesting to note that of the 

available values after the thresholding steps in fields, DEMs 02 and 04 had only 20% and 24% of 

the elevations (respectively) that were in a k-means final cluster; the same figure for DEM 12 

was 45%. 

Some of the effects of the k-means clustering could be seen when a visual assessment of 

Product 03 was performed. Compared to Product 02, there was much more short-scale noise 

present in Product 03. The noise was most prevalent in the Southwest region of the study area. 

Though there were not as many erroneous hills or depressions in Product 03 (which may be an 

improvement over Product 02), the valleys in Product 03 were not as continuous as they were in 

Product 02. 
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The effects of the k-means clustering step could also be seen the same profile area shown 

previously, except with elevation data from before and after k-means clustering (see Figure 4-2). 

Especially when compared to the available elevations shown in Figure 4-1, it was apparent that 

at each location the elevations most clustered were flagged as final cluster members. The 

averages of the elevations before thresholding (Product 01), after thresholding (Product 02), and 

after clustering (Product 03) are shown in the profile along with the elevation of the rDEM for 

comparison. For each position in the profile the elevation of Product 03 was closer than that of 

Products 02 and 01 to the rDEM. 
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Figure 4-2  Profile of input DEM elevations before k-means clustering and the members of the 

final cluster after the k-means clustering. The average elevation at each position before 

thresholding (Product 01), after thresholding (Product 02), and after clustering (Product 03) are 

shown along with the elevation of the reference DEM (rDEM). The profile is the same position 

as the one shown in Figure 4-1. 

4.2.3 Adaptive mean, and Gaussian filtering assessment 

Adaptive mean filtering was applied to remove local outliers in the data (spikes and pits) 

after the k-means clustering step. The effect of this step on the fusion algorithm product (Product 

04) was not easily apparent when viewed at the study area scale (see Figure C-4 in Appendix C), 

but when viewed at a larger scale removal of the spikes and pits were more obvious. When 

looking at Product 04 at the study area scale, however, some erroneous high areas and low 

depressions in the data were noticeably enlarged, in comparison to Product 03. This effect was 

especially apparent in the Southwest of the study area. 
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Gaussian filtering was applied as a final step to smooth the fusion algorithm product by 

reducing short-scale variance in the data (Product 05). The effect of the smoothing was apparent 

when viewing Product 05 at the study area scale (see Figure 4-3), as well as at a larger scale. 

Because the short-scale variation was decreased the patterns in elevations were more continuous 

and smooth than in Products 03 and 04. Product 05 also appeared to be smoother than Product 

01, and though it contained several erroneous hills and depressions they are at a much smaller 

and finer scale than Product 01. It was also noted that in Product 05 the river valleys were not as 

continuous or well included as in Products 01 and 02. 
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Figure 4-3  The final product of the DEM fusion algorithm (Product 05), clipped to the study 

area. 

4.3 Corroboration of Input DEMs and Fusion Algorithm Products 

To measure how accurate and precise the input DEMs and fusion algorithm products were 

with reference to the higher accuracy DEM (rDEM), DEMs of difference from the rDEM were 

created (see Figures D-1 to D-17 in Appendix D). The global mean and median offsets were used 
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to assess DEM and fusion accuracy, whilst the standard deviation and the spread of the percentile 

ranges were used to assess DEM and fusion precision. In each DEM of difference, positive 

values correspond to locations where the DEM has a higher elevation than the rDEM, and 

negative values correspond to locations where the DEM has a lower elevation than the rDEM. In 

this section results of the visual assessments and the global measures of accuracy and precision 

of the DEMs of difference are presented. 

4.3.1 Visual assessments of the DEMs of difference 

A visual inspection of the DEMs of difference for the 12 original DEMs (Figures D-1 to D-

12) revealed that the assumed to be erroneous elevation features in the DEMs (systematic noise, 

hill and depression blunders, and a lack of channel inclusion) were indeed errors when compared 

the rDEM. Most notably, in all DEMs of difference for the original DEMs the river valleys were 

over estimated to varying degrees, except for DEMs 02 and 04 where they were generally 

underestimated. The exception was for the Elora Gorge where all DEMs over-estimated the 

gorge, though this was least pronounced in DEMs 02 and 04. As for the river banks, most were 

underestimated in the DEMs, especially in DEMs 08 to 12. 

When the DEMs of difference for the original DEMs were compared, some regions of poor 

elevation estimation varied between DEMs. The Northwest region of the study area was most 

prevalently underestimated in DEMs 01, 02 and 03, while the Southwest region was most 

prevalently underestimated in DEM 04 and DEMs 08 to 12. 

The same general areas of underestimation were manifested differently in the algorithm 

products. When the DEMs of difference of the algorithm products were visually assessed 

(Figures D-13 to D-17; Product 05 DEM of difference is also shown in Figure 4-4), the 
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Northwest region of the study area was generally over estimated in Product 01 (except for the 

edge of a large channel) and underestimated in Product 05. There was also a noticeable transition 

for the Southwest region of the study area: it was generally well estimated in Product 01, but 

gradually became underestimated, for a greater area and to a greater degree, with each step of the 

algorithm. 

 

Figure 4-4  DEM of difference for Product 05, clipped to the study area. 
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Another dissimilarity noticed between the DEMs of difference for the products was in the 

regional elevation estimation of the Central and Southeastern region of the study area. In this 

area the elevation was generally over estimated in Product 01, but was less so for Product 02, 

and even less for Product 03. In Product 05 this area had localized portions that were over or 

underestimated, but they were not as extreme as Product 01 or even Product 02. 

The other apparent difference between the DEMs of difference for the algorithm products 

was the estimation of the river valleys and banks. The Elora Gorge was over estimated in every 

product, but least so in Product 03. The banks of the main Grand River valley were generally 

more underestimated in Product 01 than Product 05. The river valleys themselves, however, were 

more prominently overestimated in Product 05 compared to Product 01. 

4.3.2 Accuracy and precision of input DEMs and fusion algorithm products 

Vertical offsets comprising the DEMs of difference for the input DEMs and fusion algorithm 

products were summarized by percentiles, minimum and maximum (extremes), mean and 

standard deviation values. Box plots of the percentiles, extremes, and mean values are provided 

in Figures E-1 to E-4 in Appendix E. The following section presents results from the DEMs of 

difference as the mean of offsets (i.e. global accuracy) and standard deviation of offsets (i.e. 

global precision) with respect to the rDEM (see Table 4-3). 

For the overall study area, DEMs 01 to 06, and DEM 08 had the highest mean and standard 

deviation combinations of all original DEMs. The largest standard deviation was for DEM 02, 

and secondly for DEM 04. DEMs 10 and 11 had larger standard deviations than many other 

DEMs, however their mean offsets were quite low in contrast to the other DEMs. It is interesting 

to note that all of the DEMs had a positive mean offset, except for DEM 10. 
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Table 4-3  Global means (µ) and standard deviations (ů) of DEMs or fusion algorithm products 

(Prod.) offsets from the reference DEM value: for the whole study area (overall), and by landuse 

class. Positive mean values indicate overestimation, and negative mean values indicate 

underestimation, compared to the reference DEM. 

 µ (ů)  
(m) Overall Fields Forest Roads 

Rough 
Land Urban Water 

DEM 01 7.6 (8.8) 7.0 (8.9) 12.0 (8.4) 6.7 (8.7) 6.6 (7.4) 3.0 (6.6) 13.0 (9.7) 

DEM 02 16.2 (32.0) 18.5 (31) 23.5 (36.8) 12.4 (31.9) 8.5 (33.3) -0.9 (22.7) -3.9 (27.6) 

DEM 03 6.2 (13.4) 6.5 (13.0) 11.5 (15.0) 4.8 (13.0) 3.6 (13.3) -1.6 (10.3) 2.1 (13.5) 

DEM 04 3.6 (20.0) 4.1 (21.6) 11.2 (18.1) 1.9 (18.8) -1.2 (16.9) -5.1 (8.9) -10.0 (10.8) 

DEM 05 10.1 (9.0) 9.0 (9.4) 12.7 (8.7) 9.9 (8.4) 11.1 (8.1) 13.4 (6.2) 14.3 (9.0) 

DEM 06 7.8 (9.0) 6.9 (10.0) 11.3 (7.7) 7.3 (8.1) 9.1 (7.5) 7.2 (5.1) 11.0 (6.7) 

DEM 07 1.5 (7.2) 0.6 (7.7) 5.2 (6.1) 0.3 (6.4) 2.9 (7.2) -1.2 (4.7) 7.5 (6.4) 

DEM 08 7.6 (8.1) 7.3 (8.4) 11.2 (8.0) 6.6 (7.5) 7.5 (6.7) 5.0 (5.3) 6.8 (8.3) 

DEM 09 2.6 (8.8) 2.4 (9.0) 4.5 (8.6) 2.4 (8.6) 3.1 (7.3) -0.1 (6.6) 0.1 (10.9) 

DEM 10 -2.3 (10.1) -2.9 (10.5) 0.5 (9.2) -3.7 (9.9) -1.0 (8.3) -0.9 (7.4) -5.5 (11.3) 

DEM 11 0.5 (9.8) 0.1 (10.3) 2.1 (8.8) -0.9 (9.5) 2.4 (8.0) 2.4 (6.3) -0.8 (9.8) 

DEM 12 5.2 (6.9) 4.8 (6.8) 9.9 (5.9) 4.7 (6.2) 5.1 (6.4) -2.0 (5.0) 7.7 (6.9) 

Prod. 01 5.5 (6.0) 5.4 (5.9) 9.6 (6.0) 4.4 (5.7) 4.8 (5.7) 1.6 (3.5) 3.5 (4.7) 

Prod. 02 4.6 (4.9) 4.2 (4.8) 8.3 (4.4) 3.7 (4.5) 4.4 (4.5) 1.6 (3.1) 4.6 (5.2) 

Prod. 03 4.3 (7.0) 3.8 (7.2) 8.1 (6.5) 3.6 (6.9) 5.0 (6.1) 1.2 (5.1) 6.4 (8.0) 

Prod. 04 4.4 (6.4) 3.8 (6.5) 8.1 (5.8) 3.6 (6.2) 5.0 (5.5) 1.1 (4.7) 6.7 (7.3) 

Prod. 05 4.4 (5.2) 3.8 (5.2) 8.0 (4.5) 3.6 (4.9) 5.2 (4.6) 1.1 (3.7) 7.3 (5.9) 

 

The overall study area contains many landuse types, so it is informative to look at the results 

of several different landuse types in isolation from others. All  of the DEMs had less of a mean 

offset for the field landuse class when compared to the overall values, except for DEMs 02, 03, 

04, and 10. The standard deviation of offsets was greater for fields than the overall study area, 

for all DEMs except for DEMs 02, 03, and 12. All of the mean values for DEMs in the forest 

class were higher than the respective values in the field class, and most of the forest class 

standard deviations were less than those of the field class. In the urban class the mean offsets 

were lower (more negative) than the respective values in the fields class, except for DEMs 05, 

06, and 11. The standard deviation values for all DEMs were the lowest in the urban class. 

Rough land areas had a higher mean than the respective value for fields, except for DEMs 01 
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through 04. The standard deviation values for the rough land class were lower than the forest 

except for DEMs 06 and 12, and lower than fields except for DEM 02. The roads and water 

classes did not have a particular pattern of comparison with the other classes with respect to the 

mean and standard deviations of the offsets for the original DEMs. 

The pattern of change in the mean and standard deviation of offsets when the fusion 

algorithm products were compared was more apparent. When compared to Product 01, the mean 

and standard deviation of the offsets for Product 02 were less overall and for all landuse classes, 

except for urban (the mean was the same and the standard deviation was lower) and water (both 

the mean and standard deviation were higher). 

Application of the k-means clustering step (Product 03), when compared to Product 02, 

decreased the mean offset from the rDEM, but increased the standard deviation of the offsets for 

all classes except for rough land and for water where the means were increased. Filtering for 

extreme values (Product 04) and smoothing the data (Product 05), when compared to Product 03, 

resulted in the mean decreasing for all classes except rough land and water (increased slightly), 

and fields (remained the same). The standard deviation for this same comparison decreased for 

all classes. 

The final fusion algorithm product (Product 05) had a lower standard deviation of offsets 

than any of the original DEMs, overall and for each landuse class. The Product 05 standard 

deviations were higher than those of Product 02, overall and for each landuse class. The mean 

offset of Product 05 was, however, less than those of Product 01 and 02, overall and for all 

landuse classes, except rough land and water. 
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4.4 Further analyses of fusion algorithm products 

Further analyses were performed to explore possible reasons for the differences in the 

accuracy and precision results of the fusion algorithm products. Data from the field landuse class 

was isolated and analysed since fields are areas without prominent off-terrain objects such as 

trees or buildings. In the case of fields, therefore, the offsets of the fusion products (that are 

DSMs) with respect to the rDEM (a DTM) are taken to be a better measure of accuracy than in 

other areas. Fields are also open spaces not as likely to be influenced by adjacent landuse classes, 

which is more likely an issue with the narrow corridor features such as roads and surface water 

features. 

In this section the results from two analyses of the fusion algorithm productsô accuracy are 

presented. Firstly, the frequency distributions for the fusion productôs accuracy with respect to 

the rDEM, and the absolute accuracy of the products, compared to each other at each cell 

location, are examined. Secondly, the fusion algorithm product accuracy is classified and 

presented based on: the number of members in each final cluster and the standard deviation of 

elevations before the clustering step. 

4.4.1 Frequency distributions 

The frequency distributions (number of cell locations) of offsets from the rDEM, for all of 

the fusion algorithm products in the field landuse class, are provided in Figure 4-5. The data used 

to create the plots were binned at an interval of 1 m. All distributions were negatively skewed, 

with that of Product 01 the most negatively skewed. Product 01 also had the most positive mode 

at 6 m, while the modes of Product 03 and 04 (both at 4 m) were the least positive. Products 02 

and 05 had the same mode at 5 m, though Product 05 had a higher frequency at that offset value 
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compared to Product 02. Products 02 and 05 also had a similar amount of spread in their 

distributions, which was much less than the other products. 

 

Figure 4-5  Frequency distribution of the relative accuracies for fusion algorithm products. The 

full extent of the positive and negative tails are not shown. 

The data was also analysed to see how the absolute accuracy of each product compared to 

other products, at each cell location. Of particular interest was how much the fusion algorithm 

steps (Products 02 to 05) made an improvement in the elevation estimate compared to simply 

taking the average of all DEMs (Product 01). To achieve this, absolute accuracies for each 

product were calculated at each cell location for the field landuse class. The values for Product 

01 were then subtracted from the values of the other products, creating difference rasters. A 

negative cell value in the difference raster indicates a location where the given product (i.e. 

Product 01 to 04) was more accurate than Product 01, and a positive value indicates the given 

product was less accurate than Product 01. Since the stated accuracy of the rDEM was +/- 0.5 m, 
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values in the difference raster between -0.5 m and 0.5 m indicated the products compared had the 

same accuracy. 

Instead of just summarizing the aforementioned differences, they are presented in more detail 

in the frequency distributions of Figure 4-6. Most notable of these results was that the primary 

mode of all distributions was at 0 m, indicating the same accuracy as Product 01. The secondary 

mode of Product 02 was more negative than the modes of other products, and the distribution 

had a narrower spread. As well, all of the products had a negatively skewed distribution in this 

graph. 

 

Figure 4-6  Frequency distribution of the difference in absolute accuracy, at each field cell 

location, between Product 01 and the other fusion algorithm products. Positive values indicate 

that Product 01 is more accurate, and negative values indicate it is less accurate, than the 

respective other products. 
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4.4.2 Number of final cluster members and standard deviation before clustering 

To gain a better understanding of the factors influencing the accuracy of the k-means 

clustering other variables were analysed in relation to the accuracy of Product 03. Data for the 

field landuse class was again used since there were no off-terrain objects expected to be present 

in both the rDEM and the 12 input DEMs. The variables analysed were the number of members 

in the final k-means cluster, and the standard deviation of elevations at each cell location before 

k-means clustering. The results of the analysis for these variables are presented in this section. 

The k-means final cluster accuracy (the offset of Product 03 from the rDEM) was classified 

by the number of members in the final cluster at each cell location. The absolute accuracy of 

Product 03 was then plotted as a cumulative frequency distribution (CFD) for each class (see 

Figure 4-7). The progression of curves in the CFD showed that with an increase in the number of 

final cluster members the standard deviation and the mean of the absolute offsets for Product 03 

decreased. The curves for the 7 and 8-9 cluster member classes were not as smooth as the others 

since there were fewer observations (cell locations) in those classes. 
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Figure 4-7  Cumulative frequency distribution of the absolute accuracy of k-means final clusters 

(Product 03), classified by the number of final cluster members. 

To see if there was a spatial pattern in the number of members in the final cluster, the number 

of final cluster members was mapped for each cell location in the field landuse class (see Figure 

4-8). There was a slight increase in the occurrence of high cluster membership in the Southeast 

region of the study area, but generally the spatial patterns of this variable occurred at the field 

scale. 
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Figure 4-8  Map of the number of final cluster members at each cell location in the field landuse 

class. 

The k-means final cluster accuracy was also classified by the standard deviation of elevations 

before clustering. The absolute accuracy of Product 03 was then plotted as a cumulative 

frequency distribution (CFD) for each class (see Figure 4-9). The progression of curves in the 

CFD showed that with an increase in the standard deviation of elevations before clustering the 


















































































































































