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ABSTRACT

DIGITAL ELEVATION MODEL GENERATION AND FUSION

Colleen E. Fuss Advisors:
University of Guelph, 2013 Dr. Aaron Berg,
Dr. John Lindsay

Digital elevation models (DEMs) are a necessary datasetiemddi ng t he Eart hos
the many physical processed that interact with it. There are several ways to acquire elevation
data and generate DEMs, and while each method has advantages and disadvantages all DEMs
contain error. DEM fusion techniques witie aim of reducing DEM error have been proposed
and tested in published literature with several successful results. These techniques have not
however, utilized a clustering algorithm omnultiple DEMs to exploit consistency in the
estimates as an irgition of accuracy and precision. This research developed and tested a new
DEM fusion algorithm on multiple, overlapping DEMs generated from RADAR2AMagery
using steregadargrammetric methods. The main steps of the algorithm include slope and
elevation thresholding followed byk-means clustering of the elevation estimates, as well as
filtering and smoothing of the fusion product. Corroboration of the input DEMs, as well as
products of each main step of the fusion algorithm, with a higher accuracgnefedDEM by
landuse class within the study area enabled a detailed analysis of the effectiveness of the DEM
generation and the fusion algorithifihe generated DEMs contained systematic errors, large
blunders, and regionalfsets that varied according tanduse type, as well as the differences in
scene acquisition date and sensor parameters. The main $mditige research &re: the k-

means clustering of the elevations improved the global accuracy of timatestibut reduced the



precision; he number ofinal cluster members and the standard deviation of elevations before
clustering both had a strong relationship to the error inktheeans estimates. It is therefore
recommended that further research be conducted to investigate the relationship between
elevation clustering error and the distribution of elevations before clustering, especially for

specific landuse classes such as agricultural fields.
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1 GENERAL INTRODUCTION

1.1 Study Context and Objectives

A digital elevation nadel (DEM) is a regularly spaced gl surfaceelevatiors. DEMs are a
necessary dataset used in many studies of t
interact with it. For example, hydrological models require DEMs due to the need for the
derivation of terrain features, the delineation of stream networks andagthments, and the
identification of variable source areas for runoff (Hopkinson et al., 2Q@#n et al., 1991,
Tarboton et al., 1991; Weschler, 2007; Xiao et al., 2010)-f@selution DEMs are also useful
for catchment geomorphology characterization (Camargo et al., 2009; Martinez et al., 2010;
Smith, 2002) and geomorphic interpretation (Cbhapt al., 2006; Smith and Pain, 2009;

Wheaton et al., 2010).

All DEMs contain a certain amount of error as a result of the collection and processing of the
data used to generate the DEMs (Weschler, 208dyancements in the collection of remote
sensing dta and DEM generation have improved DEM accuracy and precision, however errors
still remain. These errors are troublesome since they can be propagated throughout the data

processingvorkflow thatthey are used in (Hopkinson et @009).

With an increasén the availability ofelevation data, efforts have been made to utilize this
data redundancy to reduce error. Several methods of DEM fusion haweptoposed and
examined in the literature. Many of these involve simple techniques such as data gap fillin
(Karkee et al., 2008), and the weighted averaging of input elevations based on: global measures

of error (Papasaikat al, 2009); height error maps from the DEM generation process (Reinartz
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et al, 2005; Roth et al., 2002); terrain derivatives (Pajasat al, 2009); or combinations

thereof.

More sophisticated techniques of DEM fusion involve the use of sparse representations
(Papasaika&t al, 2011), frequency domain filtering (Honikel, 1998; Crosetto and Aragues, 2000;
Karkee et al., 2008), setfonsistency in the generation process (Schultz et al., 1999, 2002; Stolle

et al., 2005); or mulscale stoichastic smoothing (Slatton et al., 2002).

All of the DEM fusion techniques cited improve the elevation estimates for a given area, to
varying degreg, and the success of these methods are not to be discounted. Most of the
techniques do, however, require other elevation data (e.g. Crosetto and Aragues, 2000;
Choussiafis et al., 2012), or height error estimates from pixel correlation (stereogrammetry) o
coherence (interferometry) to control the fusion of the input DEMs. The issue with these
methods is that ancillary elevation or height error data is not always available, or reliable, for
areas under investigation. As well, most of the DEM fusion metbibeld involve the fusion of
only two or threeDEMSs, and often these DEMSs are from different sources with a more accurate

DEM supplementing a less accurate one.

A new method of fusion for multiple, overlapping DENspresented here. The algorithm
utilizes k-means clustering to detect elevations at each grid cell location that are in close
agreement. The main assumption of this technique is that elevations in close agreement will be
more accurate than those that are not. Based solely on the distribugtevation and slope
values at each cell location, elevations are filtered by slope and elevation thresholding and are

then clustered. In this way, the proposed DEM fusion algorithm is mampjricalwith only a



few data distribution parameters conteadllby the user. Most importantly, agriori knowledge

of the input DEM error is used in this fusion technique.

While thetechniques utilized in the main steps of greposed DEM fusiomlgorithm (i.e.
clustering and slope thresholdirftpve not been imMpmented before in a published DEM fusion
method it is important to recognethat some of the concepts underlyitigese new techniques
are the same as the concepts underlyirgyviously publishedDEM fusion techniquesThe
proposed DEM fusion algorithmubdds on the concept of $etonsistency in elevation methods
thatwas introduced bgchultzet al. 999). While Schultz et afavoured elevatioestimatest
the same locatiothat were consistenthentargetand reference imagesgere reversed inoles
of stereephotogrammetric DEM generation, the proposed algorithm in this study favours
estimates that are clusteratdeach locatioras more accuratés well, the proposed algorithrin
this study utilizes consistency in terrain derivatives (i.dope) to estimate more accurate
elevations Recognition of the importance of considericmnsistency irterrain derivativesat
each location from overlapping DEMsas a key component of the sparse representations

methodin the study byrapasaika et al. (2Q).

Several, overlapping RADARSAZ, Synthetic Aperture Radar (SAR) images were available
for the same area in Southern Ontario, Canada, and were suitable for use-sidgarsgereo
radargrammetric DEM generation. Steradargrammetry is a techniqueathmatches the
amplitude information in pixels of overlapping RADAR images to estimate the image parallax
(Fayard et al., 2007). The parallax is used in conjunction with the known geometries of the

sensor and images to derive an elevation at each lo¢@batin and Gray, 2000).



RADARSAT-2 imagery provides four bands of data, based on different polarizations, which
are captured simultaneously for each image pixel. The polarization refers to the way the signal is
transmitted and received by the sensor. RMDARSAT-2 the signal can be transmitted
horizontally (H) or vertically (V) and also received horizontally or vertically, giving rise to the

four possible combinations thereof: HH, VV, HV, VH (Fox et al., 2004).

Toutin et al. (2010) have shown that therfpolarimetric bands of RADARSATP imagery
can be combined within each scene to create a total goaeeSPAN)image that is then used
for stereeradargrammetric DEM extraction. Generating the DEM in this way was shown to
increase the elevation accuramympared to a DEM generated from only the HH channels of the
images. The general methodology of Toutin et al. (2010) was used to generate DEMs for use in

this study.

With suitable imagery, methodology, and software available to generate multiple,

overlappng DEMs for the purpose of fusion, the objectives of this research were to:

a) generate multiple, overlapping DEMs of the same area using-sael@grammetric
techniques and RADARSAZ imagery;

b) develop a DEM fusion algorithm and fuse the generated 9EM

c) corroborate the input DEMs and fusion algorithm products with a higher accuracy
reference DEM, to assess the effectiveness of the DEM fusion algorithm.

1.2 Thesis Outline

This thesis containsix chapters. Chapter 1 is an introduction to the thgsisuvding an
overview of the research context, aim, and objecti@mpter 2 contains a literature review on

DEM generation,error asessment, causes, and mitigatigigbally available DEMs, and a



summary of previously published DEM fusion strategies andlteesChapter 3 containa
description of the methods used to generate and fuse the multiple, overlapping DEMs for the
study Chapter 4provides the results of the DEM generation and fusion as well as the
corroboration of the input and fusion DEM produeigh a higher accuracy DEM. Chapter 5
contains a discussion of the results presented. The conclusions of the thesis study are in Chapter

6. Additional tables antigures for thehesisare providedn Appendices A through.E



2 LITERATURE REVIEW

2.1 Introductio n to DEMs

A digital elevation nadel (DEM) is a regularly spaced grid which contains the elevation of a
point on a surface that is coincidewith the location of the grid cell. Often DEMs are also
referred to as a DTM (digital terrain model), or a DSM ifdigsuface model) (Poon et al. 2005).
The data used to create an elevation surface can be acquired using various technologies and at
different scales. Traditionally elevation data was acquired through gimaseti surveying
methods(Gao, 2007) The devedpment of remote sensing technologies has enabled elevation
data to be derived more quickly andaagreater scalthan before. Remote sensing techniques
havealsopr ovi ded el evation data for areas etthat ar

al., 2008).

Remote sensing instrumentan be passive or active and work witany different
wavelengths and polarizations of energy in the transmitted or received signal. The sensor
platforms can include satellite, airborne, or grotmaded types. Each platm and sensor type
allows for a different scale of data collection at a different resolution, and can account for
various conditions in terrain and land cover. The main methods used to derive elevation
estimates from remote sensing data are stereostuesferometry, and ranging (also known as

altimetry).

DEM errors can be propagated throughout the data procesgsikfiow they are used in, for
example in hydrological model simulations (Hopkinson et al., 2009; Weschler, 2007). It is

therefore importantio understand the causes of DEM error, how error is evaluated, and strategies



to reduce error. With an increase in DEM coverage globally several DEM fusion techniques have

emerged with the purpose of reducing error in elevation estimates.

2.2 Elevation Data Aqquisition

2.2.1 Stereoscopy

By viewing two images that are acquired from different angles the disparity in the location of
features can be seen as displacement and therefof® dim@nsion (i.e. elevation) can be
observed. This method of extracting elevatiosteseoscopy, and is built on principles that relate

to the depth perception capabilities of a painamnan eyes (Toutin and Gray, 2000).

2.2.1.1 Stereophotogrammetry

The use of images from film, digital cameras, or digital scanners to characterize features is
called photogrammetry. Techniques of photogrammetry include clinomtery and stereoscopy; the
latter being more commonly used for elevation extraction (Toutin and Gray, 2000). Initially
stereoscopy involved viewing stereo pairs of aerial photographs themigheoviewer. For this
techniquethe accuracy of elevations derivddpends on the altitude at which the photographs

are taken and the characteristics of the features observed (Lillesand et al., 2008).

Originally aerial photographs were taken with filnut bhe development of digital cameras
allowed the process tde taken into a computer environmer@omputetbased stereo
workstations were developed, with which users could view the images and see the features in 3
D. Eventually, this included satellite agery when digital scanners were employed on satellites

(Toutin and Gray, 2000).



The most common stergihotogrammetry procedure currently used involves image
matching computer programs which have replaced the stereo workstations. Images are matched
and agusted either in pairs or blocks of several images with the use of tie pdmssis referred
to as bundle or block adjustment. By knowing the internal geometry of the camera (i.e. focal
length, lens distortion) and the external geometry of the imageisiton (altitude of the
platform, angle of nadir relative to the ground surface) the image parallax can be calculated for
each matched pixel (Lillesand et al., 2008). Topography can be determined from the parallax in
the two images since targets at eifint heights are displaced by an amount related to their

elevation(Leberl, 1990, in Rosen, et al., 2000).

Residual error within the elevation model can be estimated with independent check points
(ICPs). If the estimated error is too high then the GCRs lwa modified (Gao, 2007).
Computation of the elevation model from the image parallax allows relative elevations to be
calculated. To achieve absolute elevationsauaber of ground control points (GCPs) with

known horizontal and vertical coordinates amguieed (Gao, 2007).

Aerial photography can be used to produce DEMs with a vertical accuracy of less than a
metre, whereas those derived fraatellite imagery are in the range of 3 to10 m in the case of
IKONOS (Poon et al., ZIb) and QuickBird (Toutin, 20f). DEMs generated from automatic
stereo image matching (e.g. optical or RADAR) often, however, contain large erroneous
blunders due to incorrectly identified match pixel pairs (Milledge et al.,8088 well, DEMs
derived from optical stereo imagepedfically can beinhomogeneous since they depend on
image feature contrast, and are also compromised by cloud cover (a major issue in the tropics)

and lack of sunlight in some cases (Rabtual., 2003).



2.2.1.2 Sterecradargrammetry

Radargrammetry involves imagexquired from active, RADAR (Radio Detection and
Ranging) sensors, instead of cameras in the case of photogrammetry. There are several
advantages to working with RADAR systems rather than optical, passive systems, such as digital
cameras. Radar operategwihe use of microwave energy allowing electrical and geometrical
properties of surfaces to be represented. Operating at this wavelength also allows for all weather
operation due to the ability of microwaves to penetrate clouds (Bamler and Hartl, 1988; To
and Gray, 2000). Because the RADAR system provides its own source of illumination (an active

system) it can operate both day and night. (Rosen et al., 2000; Toutin and Gray, 2000).

Stereeradargrammetry is similar to sterpbotogrammetry, except th&ynthetic Aperture
RADAR (SAR) sensors are used instead of cameras. With traditional RADAR the antenna length
is a limiting factor in the azimuthal resolution that can be achieved with increasing range. SAR is
a technology which solves the issue of at@diantenna length by transmitting pulses ahead of
the sensor and receiving the pulses further along in the course of the aircraft or satellite (Bamler
and Hartl, 1998). A SAR image pixel can contain the amplitude (energy intensity) as well as the
phase (me delay) of the signal (Smith, 2002). Only the amplitude portion of the signal is
utilized in stereearadargrammetry; the phase is utilized in INSAR methods (Bamler and Hartl,
1998; Smith, 2002). SAR data is useful not only for deriving elevations, $nf@l other areas
of research including that of polar ice, vegetation, biomass estimation, and soil nmoeyniag
(Elachi, 1988, in Roseet al, 2000) SAR technology is implemented on both aerial and satellite

platforms.

Advances in steremadargramratry have recently been achieved with higher resolution

modes on satellites such as RASARSAUItrafine mode is 3x3 m pixel imagery), as well as

9



improved 3D radargrammetric models. These models incorporate precise satellite orbiting
geometry, and redecthe need for GCP3 @utin andChénier 2009. Toutin andChénier(2009
tested a new v-®radargmmmetri€ modeb an RADARSAX LBtrafine Mode
imagery and were able to produce a DEM with an accuracy of 1 m horizontally and 2m vertically
when compared to DEMs created from orthophotos. Though aerial SAR imagery is capable of
producing higher resolution DEMs, the limitation of this method is the extent that can be
acquired and the cost of the survey. The recent advances in satellite S&Ralargrammetry

can allow for a much greater extent of DEM creation than aerial surveys, with accuracies that are

not much lower.

Similar to steregophotogrammetry, the main cause of large blunders (i.e. spikes or pits) in
elevation estimates in steremlargrammetricDEMs is pixel matching error (Fayard et al.,
2007). Poor correlation between imagair pixels can result from changes in the backscatter
amplitude due to target change between image acquis{flangin, 1998) from speckle that is
inherentin most RADAR images@strowskiand Cheng, 20Q0or is due to a lack of texture in

the imageryRaillou and Gelautz, 19%9

2.2.2 Interferometry

Interferometric SAR is usually called INSAR, and sometimes referred to as IFSAR or ISAR
(Rosen et al., 2000). InSARchnology uses SAR phase information, rather amplitude data
which is used in stere@mdargrammetry (Rosen et al., 2000; Smith, 2002; Toutin and Gray,
2000). The InSAR viewing geometry for a certain point on the ground involves two SAR

antenna positions parated by a baseline (i.e. short distance) and the ground location. Each SAR

10



antenna measures the phase, which is related to the number of wavelengths of the signal needed

to cover the distance from the antenna to the ground and back to the sensor2(@3)th,

There are three possible configurations tlee two INSAR antennas: acrogsack, along
track, and repegiass. In each technique the phase of one antenna is subtracted from the other
for each pixel in the image pair resulting in an interferogréine difference in phase is related

to the baseline and surface relief (Smith, 2002).

Acrosstrack interferometry uses 2 antennas on the splatform (Madsen et al., 1993),
whereas alongrack involves two satellites following each other with a short sejpardistance.
For these techniques the difference in phase is related to the parallax caused by the different
acquisition angles (Smit2002). The sensitivity of this technique to terrain topography increases
with the baseline distance to the point vehénere is an optimal baseline for DEM generation
(Toutin and Gray, 2000). With the repgxtss technigue the sensor must pass over the same area
with almost the exact same viewing geometry for two passes. When this condition is met the
baseline is nearlgero and the difference in phase is related to a change in elevation at a

particular point (Smith, 2002; Toutin and Gray, 2000).

Since the difference in phase is measured in wavelengths, interferometry is highly accurate in
acquiring elevation data in ideeonditions. Smith (2002) gives an example of SAR data from
the European Remote Sensing (ERS) satellites being used to create a DEM that is accurate to
2.33 cm in the linef-site direction. This value is half of the signal wavelength for the sensors.
The biggest challenges for INSAR technology are phase unwrapping and decorrelation of pixels
(Rabus et al, 2003). The difference in phases of the two SAR images in only known to within

one phase cycle, so the appropriate number of phases need to be adde¢letdrge slant range
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of the RADAR signal when it interacted withe target. This is called phase unwrapping, and
several methods are reviewed by Bamler and Hartl (1998). Decorrelation is a measure of the
reduction of coherence, which is the correlamoefficient of the two SAR images involved in
INSAR (Zebker and Villasenor, 1992). Decorrelatiomst commonly occurs when the
orientation of a target changes between RADAR image acquisitions as can occur, for example, in

forests on windy days (Reinhasgtal., 2005).

Both INSAR and steremadargrammetry are based on SAR technology. The advantage of
using INSAR technology instead of steraolargrammetry though, is that the accuracy of the
elevation values can be in the order of millimetres to centim@tegsending on the platform and
sensor), whereas that obtained with stesstargrammetry is in the order of metres (Rosen et al.,
2000). Also, the INSAR method benefits from automated processing compared to stereoscopy
(for RADAR and optical systems) wlhicrequires more user interaction in the processing
(Madsen et al., 1993; Rosen et al., 2000; Toutin and G@§0). Airborne INSAR can be
horizontally accurate to less than a metre (Bamler and Hartl, 1998) which would be appropriate
for creating DEMs forhydrological applications. The horizontal accuracy of many satellite
INSAR sensors is in the order of 25 (im the case of ERS; Bamler and Hartl, 1998) and is more

suitable for other applications such as sea ice monitoring and tectonic activity (Ggo, 2007

A groundbased InSAR unit has also been developed, for which the RADAR aperture is
made synthetically longer by sliding the transmitting and receiving antennas along a 3 m long
track (Nico etal.,, 2004). A DEM was created using this technique for asitesthat was
approximately 3 km by 1 km, and had an RMSE of 5 m compared to an existing DEM (Nico
etal., 2005). This technology is potentially useful for more localized, -rgkee modelling of

terrain.
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2.2.3 Ranging / Altimetry

One way of acquiring a highudity DEM is by employing Light Detectiomnd Ranging
(LIDAR) technology. LIDAR is a type of ranging technology that is sometimes referred to as
laser altimetry. Similar to other active sensors such as RADAR, LIDAR involves the
transmission of pulse of emgr from a source, the pulse reflecting off a feature, travelling back
toward the platform and being received by a sensor (Wehr and Lohr, 1999)lasér
wavelength is in the neamfrared range of the electromagnetic spectrum giving LIDAR an
advantage thathe signal is quite reflective off of natural surfaces and it is moresafgethan
other visible wavelengths (Hopkinson, 2006). The way that the backscatter is recorded is either
as a waveform (when the signal is sent as a continuous wave) or asedistugts (when the
signal is sent as a series of pulses) (Bortolota and Wynne, 2005; Hopkinson, 2006). First and last
returns of discrete returns can be separated, or the full waveform of a continuous wave can be
analysed, to help differentiate the groundation from that of ofterrain objects (Coveny and

Fotheringham, 2011).

Often the LIDAR system is mounted on an airborne platform, though gioaset units and
satellite sensors are also utilized. A relative coordinate and range of each pointrsngeter
using the speed of light, the location and orientation of the source at the time of transmission,
and the time between laser pulse transmission and reception (Wehr and Lohr, 1999). In the case
of airborne LIDAR, relating the relative coordinates aawiges of the pulse returns to the aircraft
trajectory enables the survey points to be translated to ground coordinates with elevations
(Hopkinson and Demuth, 2006). This haeved with an Inertial Motion Unit (IMU), coupled to

a highprecision GPS unitwhich has enabled the higitecision of LIDAR data acquisition
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(Hopkinson, 2006). The exact precision depends on the survey conditions, but is generally in the

range of tens of centimetres (Gao, 2007).

Another advantage of airborne LIDAR is its ability penetrate forest canopy and other
heavily vegetated areas since the pulse (especially-fmoghirint LIDAR) can pass through
relatively small gaps in the ground cover (Wulder et al., 208i8ce aerial LIDAR datasets can
produce fineresolution, high amuracy DEMs they aralsouseful for assessing the accuracy of
other methods of elevation extraction (Toutin et al. 2010). The main disadvantage to aerial
LiDAR though, is that it is relatively expensive method of acquiring elevation data and surveys

areoften limited to small study areas (Gao, 2007).

LiDAR technology is also available aboard some satellites, imu@EOSAT, SEASAT,
and ENVISAT,enabling elevation data to be collected at the global scale (Gao, 2007). One such
example, the Shuttle LasAitimeter (SLA) has aampling interval of 0.75 m vertically and 0.7
km horizontally, with vertical accuracies of 1 m in gentle terrain, arid48.m in rugged terrain
(Garvin et al., 1998 Another example is th@eoscience Laser Altimeter Syste@LAS) sensor
aboard the Ice, Cloud and land Elevation Satellite (ICESat) that collects LIDAR dataOwith
footprints, spaced 170 m apart. The accuracy of GLAS data is reported to be better than 0.3m

(Reuter et al., 2009).

Groundbased LIDAR units are sometimesferred to as Terrestrial Laser Scanners (TLS).
They also utilize high accuracy GPS to relate the scan points to-agddlreference system,
but do not incorporate an IMU unless they are employed on a moving vehicle (usually TLS
systems are stationgryl'he angle of acquisition is more oblique to the ground surface compared

to that of airborne or satelldeased systems, and for this reason multiple scans of terrain from
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different directions or azimuth angles are required to minimize the effect afsamcl(see
Section 2.3.1). Grounkbvel vegetation can be a particularly challenging source of occlusion for
TLS systems (Coveney and Fotheringham, 2011). TLS systems are more limited in the size of
area that can be surveyed compared to the aerial arbtesdt@sed systems, and so they are

more suitable to support fiektale elevation data requirements.

2.3 DEM Error

All DEMs containerror that is a result of limited measurement precision, the presence of off
terrain objects in the acquisiticarea, and interpolatiorBgrrough and McDonnell1998, in
Lindsay, 2006)as well as error that occurs during data processing (Weschler, 208,)errors
in acquisitioncan be caused by the characteristics ofténeain orlandcover, for example: the
moisture content of soil or vegetation, the slope or aspect of topography, awdighaess of
surfaces (Bater and Coops, 2009; Reuter et al., 2007; Toutin, 2002). Error can also be propagated

if an unsuitable interpolation method is chosen to proced3E:

2.3.1 Error due tolandcover anderrain characteristics

Some forms of error in data acquisition and elevation extraction are unique to the sensor
being employed, such as that caused by limited measurement precision, or during the processing
of data. Tlere are other errors in data acquisition which are more common amongst sensors
though: signal scattering, occlusion, attenuation and multipath. These errors can be propagated

into the DEM created from the acquired data (e.g. imagery).

Slope and the oriertian of slope (i.e. aspect) can affect how much of the instrument signal

is reflected back to the sensor. Toutin (2002) conducted a study on how accuracy relates to the
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slope and aspect of terrain in a DEM derived from RADARSAT image spaies. He found

that steredadargrammetric DEM error was linearly related to slope, with steeper terrain causing
more error. This error is due to radiometric disparity in the images (differences in signal
amplitudes for the same pixel location in two images) causingamaatching errors. Li et al.
(2006) conducted a study using ERS data and also found that DEM error increased linearly with
the slope of the terrain. As well, Toutin (2002) also found that topographic aspect (orientation of
slope with respect to the positi of the sensor) played a minor role in error, with -&lopes

being more accurate, and beaglkpes being less accurate.

Specular reflection can cause the transmitted signal to be entirely reflected away from the
instrument resulting in none of the engmgturning to the sensor. A good example of a surface
that causes this is still water, since it can cover a large portion of the terrain at times and can be
very smooth. Specular reflection can occur in passive optical systems when the sun is at a low
ande to the terrain compared to the sensor (Lillesand et al., 2008), or in active systems such as
LiDAR (Hopkinson, 2006) and SAR (Reuter et al., 2007), when the transmitted signal is
reflected completely away from the sensor. Denker (2005) reported thet veaties were not
well defined in the initial version of SRTM3 data since they cause a low amount of RADAR
backscatter. Reflection away from the sensor results is a loss of data for the surface that was the
cause of the reflection. In the case of surfaaéer, this is not necessarily a major issue for DEM

creation since the elevation of the water surface is usually the same throughout.

Occlusion is another cause of missing elevation data, except in this case the data can be
missing for noruniform areas foelevation. Occlusion is caused when the signal is reflected off
of a feature before it is able to reach an area of interest. In a sense, an object blocksthe line

sight for the instrument. It can occur in terrain of steep relief, in heavily vegerai@s, or urban
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centres amongst other cases (Lillesand et al
object is simply missing from the acquired data. As an example, Coveney and Fotheringham
(2011) discuss the issues of occlusion due to densmd@neegetation when using a TLS system.

Also, Denker (2005) notes the absence of SRTM3 data in the Alps where the mountains are high

and there are narrow gorges.

Attenuation occurs when the medium that the signal is travelling through absorbs the energy
of the signal Moisture in soil or vegetation is a common cause of signal attenuation (depending
on the signal wavelength). Attenuatia@an occur in LIDAR (Hopkinson, 2006), RADAR
(Dobson and Ulaby, 1986; Reuter et al., 2007), and optical systems (Lillesahd 2008). It
should be noted that high soil moisture, measured as bulk water differentiated from bound water,
can increase the backscatter for RADAR, rather than attenuate the signal (Dobson and Ulaby,
1986. For elevation derived from image pairgeatation can cause image matching errors if
there is a change in conditions betwémages. In the case of LIDAR, severe attenuation will

cause datdrop-outs (Hopkinson, 2006).

Multipath errors cause a much different effect than the aforementioned errasta
acquisition. Multipath occurs when the signal of an active instrument is reflected off of more
than one surface before returning to the senblmpkinson, 2006 The assumption of the
instrument is that the signal will travel in a straight lin@amnal from a target. When this does not
happen, the increased time in transmission and reception of the signal translates into an increased
range. The information recorded for that location then has either an erroneous elevation or
intensity (Lillesand et &, 2008). Situations that cause multipath include corner reflection from
angular, highly reflective features such as buildings (Stilla et al., 2003), and where trees or other

heavy vegetation ovdrang surface water (Townsend, 2002).
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2.3.2 Interpolation

After the acquisition of elevation data, interpolation or aggregation techniques are used to
generate DEMs (Weschler, 2007). Interpolation algorithms estimate a variable of interest
(elevation in the case of DEMs) at unmeasured locatiassially thecentreor corner of a grid
cell - using the locations and values of sample points (Chaplot et al., 2006). Often not much is
known about the error which occurs as a result of the interpolation process (Desmet, 1997). For
this reason, Chaplot et al. (2006) suggest tbpbgraphic modelers should be careful when
selecting a method that will interpolate values between points of elevation. Many researchers
have focused on the uncertainty associated with interpolation methods, but in general there is no
single method thais the most accurate when used on terrain data (Fisher and Tate, 2006;
Weschler, 2007). It is worth discussing some of the more commonly used techniques in DEM
creation, and so an overview ofverse distance weightedDW), TIN-bagd (Triangulated

Irregular Network), spline, and kriging methodsprovidedhere.

One of the most widely used interpolation techniques for modeling surfaces is IDW (Aguilar
et al., 2005)In the IDW method the value of a point at a certain location is related to the known
valuesof neighbouring points, weighted by the distance from the new point. The weight is
inversely proportionate to the power function of the distance (Chaplot et al., 2006). In this way,
known points do not have an effect each othdd s w e IDW lseerns. tabe preferred for
interpolating DEMs because it creates a very smooth surface that is visually pleasing, especially
for bareearth DEMs, but this does not mean that it is the most acc@ate effect that this
method can have on the resultant DEM is thaulds-eye pattern can occur, where noise in the
data is amplified, if the power function is set too higguilar et al. (2005) found that from the

various methods they tested, IDW was less appropriate for modelling elevation. Similarly, Bater
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and Coops 4009) also found that of the seven interpolation methods they tested on airborne
LIDAR data, IDW was the least accurate, and added that it resulted in a stepped pattern in the

data which would have a significant impact on any terrain analysis.

In the Baterand Coops (2009) study it was concluded that-béded interpolation produced
the most realistic surface&eompared to the seven other methods including IDW, spline, and
linear interpolation, at three different resolutiofite TIN-based method that theyhase was
Natural Neighbour, which is based on Voronoi polygons derived from the sample points and the
TIN surface.The known points (i.e. LIDAR points) are connected to their closest neighbours
with lines, creating a Delaunay TINurface Polygons are thewreated with isles that are
equidistant from twoneighbouring points and perpendicular to the TIN line which would
connect those points. This forms the original set of Voronoi polygons where one polygon
surrounds each of the known points. When a poinin&hown characteristics is inserted into the
point network a new Voronoi polygon network is created. The proportion of overlap of the
polygon of the unknown point and the original polygons determines the weighting of the values

associated with the originpblygons (Boissonnat and Cazels, 2000).

IDW and NaturalNeighbourare examples of deterministic interpolation methods which
estimate the value of unknovpointsbased on the influence of immediateighboursf known
points. Deterministic methods are mooemputationally efficient, but do not take into
consideration the patterns, correlation of values, or errors across the entire area being
interpolated. To solve this issue probabilistic geostatistical methods have been created. These
methods incorporateon only distance but also direction in determining influential surrounding

values, and many also consider spatial autocorrelation of value and errors in the surface (Maune
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et al, 2001, in Bater and Coops, 2009). Spline and kriging types of interpolaieranples of

probabilistic methods.

Kriging is similar to IDW and Naturdleighboursince it estimates values based on the local
average, but this concept is taken a step further by considering the spatial variation of the data
and the configuration of éhdata to minimize the variance in interpolated values (Desmet, 1997).
Deutsch and Journel (1992, in Grohmann and Steiner, 2008), state that kriging may be most
useful for resampling elevation data sincehibnourspoints at their original locations while
interpolating data for the areas between polbs.this reason kriging is often chosen for sparse
datasets to gain a best estimate of the values for the area between points. Oliver and Webster
(1990, in Fisher and Tate, 2006), add that this methoceiddlt linear unbiased estimator and
that the error introduced in the estimation can be directly determined, making it a desirable
method to use from a statistical stand point. Fisher and Tate (2006) warn that the variance of the
kriged surface is directlyelated to the distance of the estimated value from the known value.
Therefore there may be cases where the dataset is too sparse to allow for a realistic surface to be
produced. Also, in the case of LIDAR data which is very dense, kriging will prodticevetues

between points unnecessarily.

Splines area general class of interpolation techniques that create a surface with minimal
curvature while still passing through the sample points (Aguilar et al., 2005). The surface created
can be conceptualized aghin metal plate that has been forced to bend through or very close to
the known sample points (Desmet, 1997). This interpolation method is suitable for terrain with
smooth slope transitions that does not greatly vary in elevation, and is not swiab&sds
where sharp changes occur in short distances (e.gnmada features or cliffs) (Mitasova and

Litas, 1993, in Aguilar et al., 2005). If used on a very large or dense dataset, spline methods
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become computationally expensive and there can be asasein the numerical instability of

the solution found (Lazzaro and Montefusco, 2002, in Aguilar et al., 2005)

Previous research, as mentioned in other studies (Bater and Coops, 2009; Chaplot et al.,
2006; Fisher and Tate, 2006) has found that there isterpolation method that is universally
superior for the creation of DEMs. Success of any one interpolation method is based on the
nature of the terrain and the distribution of the source data (Fisher and Tate, 2006), as well as the
cell resolution of he desired DEM and the assumptions of the mathematical design of the

method (Bater and Coops, 2009).

2.3.3 Error estimation

DEM error is usually estimated using a more accurate reference dataset such as GPS points
(Coveney and Fotheringham, 201&ao, 200Y or other DEMs (Fisher and Tate, 2008he
most widely used measure of DEM error is the Root Mean Squared Error (RMSE) (Aguilar et
al., 2005; Desmet, 1997). RMSE is the square root of the average of squared differences taken
between the DEM being assessed afdrence points that are believed to be of higher accuracy

(Weschler, 2007). The equation for RMSE is given below:

B o )

YO "YO

where Z%'is the estimated elevation antf'Zs the reference elevation at location i, and n is
the number of residuals calculated (modified from Aguilar et al., 2005). A number of studies
have shown that the mean error is not equal to zero, and so the RMSE alone is not a good way to

describe the statistical distribution of the error (Fisher and Tate, 2006). Fisher and Tate (2006),
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and Desmet (1997) suggest that at least the Mean Error §htE}he standard deviation of the

error (S) should be reported along with the RMSE.

Even though the RMSE is the most commonly used estimate of DEM accuracy Weschler
(2007) as well as Fisher and Tate (2006) stated that it is not necessarily the mostaappidye
RMSE assumes that DEM errors are random, and that they are normally distributed in their
values, which is not true of most DEMs. The RMSE also does not reflect how well each cell of
the DEM reflects the true elevation (Weschler, 2007). Weschidrer argues that error would
be better represented in a probability map, and that the contribution of error sources should be

quantified to allow for a better understanding of the nature of the error.

Fisher and Tate (2006) argue that the RMSE, ME, aradl &il to represent the spatial
pattern of error, which is an important consideration in DEMs since error tends to be spatially
correlated. As a solution they recommend that either unconditioned or conditioned error models
be used. Unconditioned erransulation models use stochastic simulations of random function
realizations that can be applied to the DEM, often through the use of a Monte Carlo simulation
method. They are based on properties of the error distribution but actual estimates of error are
not honoured. The assumption of unconditioned error simulation models is that the error pattern
is uniform over the entire DEM, which is often not the case. Conditional error simulation models
differ in that they honour the estimates of error at particldeations and therefore do not

assume that the error pattern is uniform (Fisher and Tate, 2006).

It is important to note that estimates of error that are based on reference data sets are not
actually estimating absolute error from the true ground surfateather are discrepancies from

the reference data values, since even the most accurate ground truth data contains a certain level
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of error as well (Gao, 2007). Papasaika et al. (2009) suggest that in the absence of a higher
guality reference data setliteanative techniques such as the evaluation of slope, aspect, and
roughness, can be usedassess the accuracy of a DEM. Reuter et al. (2009) suggest that even
with a reference dataset terrain parameters such as slope and curvature slevalddiedo

assess the accuracy of a DEM.

2.4 Global DEMs

The first attempts to create a DEM of the globe involved mergiegationfrom multiple
sources into a single product with the greatest coverage possible. More recent advarass in
borne remote sensing instnents have allowed for near global coverage from single sensors.

Examples of both types of global DEMs are briefly reviewed in this section.

2.4.1 Multi-sourceglobal DEMs
Initial efforts to create a DEM with global coverage involved the merging of elevadian d
from multiple sources. Two of the main products that resulted from these efforts were GTOPO30

and GLOBE.

GTOPO30 is a global DEM with grid spacing 080 arc secorgl(approximately 1 km). It
was compiled from eight different elevation data sourcesveasl developed for regional and
continental scale topographic data use (Harding et al., 1999). The main datndcetse
percentage contributing t&TOPO30for land areaswere: Digital Terrain Elevation Data
(DTED, 50%), a 1 degree elevation model for th8A (6.7%), and Digital Chart of the World

vector data PCW, 29.9%) (Miliaresis and Argialas, 2002). The DCW vector data used were
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contours, spot heights, stream lines, lake shorelines and ocean coastlines; all of which were

converted to a raster thidranage enforcemerfHarding et al., 1999)

Because several raster and vector sources of topographic information were used the accuracy
of GTOPO30 varies by location according to the source data (Denker, 2005). For example,
Harding et al. (1999) note thatetiNew Zealand DEM RMSE is 9 m whilst the Peru map RMSE
is 304 m. Miliaresis and Argialas (2002) also compare the plus or minus 30 m accuracy of DTED
to the plus or minus 160 m accuracy of DCW data in the GTOPO30 DEM. Despite the large
variation in elevatio accuracy, GTOPO30 data was a major contributor to GLOBE (Hastings

and Dunbar, 1998) which was the next global DEM initiative.

The Global Land On&ilometer Base Elevation (GLOBHE)EM was initially an empty 2
dimensional, 30 arsecond array that was omehand the best available data used to fill it. It
was developed before the scheduled launch of SRTM (Shuttle RADAR Topography Mission
described in the next section of this literature reyigw 1999. The U.S. Defense Mapping
Agency contributed DTED Levd) data, and national elevation datasets were also contributed
from Australia, Japan, and New ZealaAd. well, GLOBE containedlata from the GTOPO30

DEM (Hastings and Dunbar, 1998).

Similar to GTOPO30, GLOBE can be locally quite unreliable since the ohel@fasets were
acquired with a variety of sensors and many different techniques were employed during the
elevation generation process (Rabus et al., 2003). Hastings and Dunbar (1998) state that perhaps
half of GLOBE exceeds 20m RMSE and that the areardfuktica could be off as much as
300m vertically. They also note that some errors may be from differences in projection and

datum since many datasets do not come with proper documentation.
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2.4.2 Single-sourceglobal DEMs
Advances in spaeborne remote sensingstrumentshaveallowed formore DEM coverage
globally from single sensor&xamples of these DEMs produced from single sensors are SRTM,

GDEM, and the soon to be released WorldDEM.

The Shuttle RADAR Topography Mission (SRTM) acquired RADAR data am@€ X bands,
over an 11 day perioih February 2000, for the entire landmass of the Earth betweéeNd@th
and 57 South latitudeg(Rabus et aJ 2003). The objective of the data collection was to obtain the
most complete, highesolution topographic datake of the Earth at that tim8un et al., 2003).
The SRTM system was the first singbass interferometer in space, and was an atrass
systemon the same sensor so that image paweye acquired under virtuallfhe same

atmospheric and ground conditis which reduced decorrelation (Rabus et al., 2003).

Sun et al. (2003) stated that the absolute vertical accuracy of the SRTM DEM was 16 m
(90% LET linear error). Denker (2005) reported that the first public release of SRTM elevation
data was to the reach community, to be tested in 2004, and was a 3 arc second (approximately
90 m) resolution DEM called SRTM3. They alsgportedthe SRTM3 product had numerous
voids and spurious points, and that mafsthe water bodies were not wellefined because they
likely produced low backscatter. Some of these errors in the SRTM DEM were used as the
research context for developing some DEM fusion techniques (which are discussed in the next

section of this literature review).

The next attempt to produce a global DEMmM a single sensor was the Global DEM
(GDEM) produced from optical imagery collected by the Advanced Space borne Thermal

Emission and Reflection Radiometer (ASTER) system on the Terrasat satellite (Reuter et al.,
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2009). The observation period was fro@08 to 2007 resulting in data coverage between 83°
South and 83° North latitude, with many areas imaged several times and the results merged (Hirt
et al., 2010). GDEM was released on Jun® 2009 as a 1 arc second (approximately 30 m)
resolution productvith a vertical accuracy of 20 m (at a 95% confidence interval) (Reuter et al.,
2009). This DEM was of a finer resolution and greater coverage than the SRTM DEM. Reuter et
al. (2009) also reported that the GDEM was 100 times more detailed than the GT@®RD30
GLOBE DEMs. The GDEM dataset is not without errors though; Hirt et al. (2010) found
systematic errors from a strip effect over much of Australia, as well as seneenored cloud

elevations in the DEM.

The next global DEM from a single sensor is apated to be WorldDEM generated from
the TandenX (i.e. X-band RADAR) InSAR system. The 12 m resolution DEM with global
coverage from pole to pole is scheduled to be released in 2014. The main source of information
available about the WorldDEM and its refgat vertical accuracy of 2 m (relative) and 10 m

(absolute) is the providerso6é website (Astrium

2.5 DEM Fusion

There are several DEM fusion techniques that have been proposed and tested in the literature
over the past three decades. Many of these ievsimple techniques such as data gap filling,
and the weighted averaging of input elevations based on: global measures of error; height error
maps from the DEM generation process; terrain derivatives; or combinations thereof. More
sophisticated techniquesf DEM fusion involve the use of sparse representations, frequency

domain filtering, seHconsistency in the generation process, or rsghile stochastic smoothing.
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2.5.1 Fusion with weights

The simplest form of DEM fusion is taking the average of all availedelapping DEMs at
each cell location. This type of fusion is not satisfactory though, since large errors can skew the
average; the magnitude of the error will be reduced but the resultant DEM will still have
blunders (Schultz et al., 2002). A more ihggnt approach is to apply weights to the elevation
estimates based on error probability to control their influence on the fused elevation estimates.
Roth et al. (2002) used weighted averaging to fuse the overlapping portions of DEMs derived
from MOMS-2P, SRTM-X, and ERSTandem imagery. The weights were derived from the
image geometry (an estimated overall accuracy), and height error maps from the DEM
generation process (an estimated accuracy at each cell location). Also, a statistical outlier test
was peformed to identify and correct errors in the fused DEM. The results of the fusion were
provided as DEMs and maps of estimated height error for a subset of the study area. Roth et al.

(2002) reported that the overall quality of the fused DEM was bettethbanput DEMs.

Combinations of SRTMC, SRTMX (both INSAR) and optical alorgack stereo SPG%

DEMs were fused in a study by Reinartz et al. (2005). Height error maps created during the
INSAR DEM generation process, derived from the coherence andiydehgiesiduals, were
applied as weights to the SRTM DEM elevations. Weights for the S’°’DEM estimates were
derived from the mean standard deviation and the density of matched points in the stereo
photogrammetric DEM generation process. The input DEMisthe resulting fusion DEMs (all

of which were DSMs) were corroborated with a higher accuracy DTM. The mean, standard
deviation, minimum and maximum of offsets were provided for landuse areas defined as fields,
suburbs, or forests. For the fields and $tedanduse classes the means of the fusion DEMs were

not lower than the mean offsets for the input DEMs. The standard deviations of the fusion DEMs
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for these classes were however lower than that of the input DEMs except for the 8RITM
SRTM-C DEM fusion As well, maps of the probability of height error also showed the most

improvement when all input DEMs were fused.

A more sophisticated technique for fusing DEMs using weights was presented by Papasaika
et al. (2009). Weights were calculated from batfriori information about the DEM error (i.e.
generation technology and one global estimate of error) and from terrain derivatives of the input
DEMs (i.e. slope, aspect, roughness). Land use classes derived from classification of the
IKONOS imagery, includig trees, buildings, streets, shadows, fields, bare ground, and water,
were also used as weights in the fusion process. Two DEMs, generated from LIDAR data and
stereo IKONOS imagery, were fused using an active surface model that attracted the less
accuratesurface to the more accurate one. The shape of the resultant DEM was driven by
nominal accuracy and the generation technique of the input DEMs, as well as the land cover; all
of which were categorized as internal forces. The fusion was also driven byaexfteces to
coincide with the geomorphological features of the more accurate DEM. Unfortunately this study
only presented preliminary results of the fusion in the form of visual assessments for two subset

areas that show an improvement in hedge andihgil@presentation in the fused DEM.

2.5.2 Sparse representations

Building on previous research by the authors, Papasaika et al. (2011) proposed and tested the
use of sparse representation theory in DEM fusion. The use of sparse representations would
allow DEM fusion to be represented as a mathematical optimization problem that could be
solved to global optimality. In this technique the area of interest is segmented into overlying

patches of grid cells. Dictionaries of patches (i.e. unique combinations of tehape) are
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created from higher accuracy DEMs in training areas. Error weights calculated from the slope
and roughness of the input DEMs are also used in the fusion. The model is optimized to globally
minimize the difference in expected elevations andrthet DEMs. This approach was tested on
pairs of DEMs, though the authors claimed that it could be extended to more than two DEMSs.
The three input DEMs were generated frafhOS/PALSAR-2, ERS CGband, and SPOT
imagery. A LIDAR DEM was used to corroborate thput and fusion DEMs, and mean offsets

as well as RMSE values were provided as results. The ARRPST DEM fusion had a lower

mean and RMSE compared to the input DEMs, whereas the other fusion pairings had either a

lower mean, or a lower RMSE than theubhpEMSs.

2.5.3 Frequency domain filtering

Frequency domain filtering as a method of DEM fusion was first introduced by Honikel in
1998, and has since been tested and published by a few others (Crosetto and Aragues, 2000;
Karkee et al., 2008). The basis of theshnique is that the lower frequency portion of one DEM
(i.e. coarser terrain features) can be isolated and merged with the higher frequency portion of
another DEM (i.e. finer terrain features) of the same area. This has been applied to DEMs
generated withnSAR and sterephotogrammetry techniques since the INSAR DEMs tend to be
more accurate in the high frequency, and the stehetogrammetric DEMs tend to be more
accurate in the low frequencies. Frequency domain filtering involves four main stepstiognve
the DEMs into the frequency domain; applying a low or high pass filter to the appropriate DEM,;
adding the two desired DEM portions; converting the resultant data back to the spatial domain.
Honikel (1998) tested this method on and INSAR DEM genefabed ERS imagery, and on a

stereephotogrammetric DEM generated from SPOT imagery. Differenrbffitequencies were
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applied and in all cases the mean offset was the same as the higher accuracy SPOT DEM, but the

RMSE was lower than that of both input DEM

In another study by Crosetto and Aragues (2000) a stadsygrammetric DEM generated
from RADARSAT-1 imagery and an INSAR DEM generated from ERBnhagery were fused
using frequency domain filtering. Unfortunately, the DEM fusion was not the fodbe afrticle
and so the results of the fusion were not well reported however, the authors did state that the
fusion removed systematic errors that were present in the INSAR DEM, and that the DEM

precision was also improved.

A more recent study, by Karkee @t (2008), included a DEM gap filling step before the
frequency domain filtering step in the fusion of a stgghotogrammetric DEM generated from
ASTER imagery and an SRT (InSAR) data. The gap filling was necessary since the SRTM
DEM contained manydies due to shadow in the RADAR imagery and areas of poor coherence
between images. An erosion technique using the slope and aspect of the SRTM cells surrounding
the gap was used to fill the gaps. After the gap filling and frequency domain filteringptite i
DEM and fusion DEM were corroborated with a 1:25000 scale contour map of the study area.
Karkee et al. (2008) reported that the fused DEM had an RMSE that was 42% lower than that of
the ASTER DEM, and 10% lower than that of the SRTM DEM. The meaatsffsr all DEMs

were the same value, due to theregistration of the input DEMs before fusion.

2.5.4 Self-consistency
Another method of DEM fusion, specific to DEMs generated from sighetogrammetry
techniques, employs the theory of sadinsistency (Schtd et al. 1999, 2002). In this method

two DEMs are generated from the same pair of images by switching the reference and target
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roles for elevation extraction. If the elevation estimates at the same cell location differ by greater
than a threshold distantee estimates are not accepted. The threshold is determined by fitting all
disparities between the elevations of the DEM pairs to a Gaussian distribution, and threshold is a

user specified number of standard deviations from the mean of the distribution.

Schultz et al. (1999) generated 12 DEMs from six pairs of aerial photography images of a
barren desert area and applied the-seifsistency constraint to filter for reliable estimates. The
reliable estimates at each cell location in the study area weptysiwveraged to create the final
fused DEM. The average of each DEM pair (created from the reversal of roles of the imagery)
was also created for comparison with the fused DEM. Schultz et al. (1999) reported that the
fused DEM was slightly less accurateg@sured by the standard deviation of offsets with the
ground truth) than the average DEMs generated from three out of five DEM pairs. It was not
explained why the results of the sixth DEM pair were not provided. The study by Schultz et al. in
2002 only preided results fofive of the original DEM pairs, and not for the fusion product. The
fusion strategy was however, applied to DEMs derived from IKONOS imagery over an air force
base as an example an urban area, which provided new results. Only visisahastesf the air

force base area however were provided for one of the DEM pairs and the fused DEM.

The article by Stolle et al. (2005) was authored by many of the same people that authored the
Schultz et al. 2002 paper. In that more recent study (20@5kdame methodology for self
consistency fusion was applied to a different area of desert, and to 18 DEMSs of a different urban
setting that contained higise buildings. Only visual assessments and graphed distributions of

elevations were provided as rdsubr one of the input DEMs and the fused DEM.
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2.5.5 Multi-scale stochastic smoothing

A multi-scale Kalman smoothing filter was used by Slatton et al. (2002) to fuse InSAR
DEMs of different resolutions. The muktale Kalman filter was employed becaussoitsders
the stochastic variability in parameters and is optimal with respect to the minimal mean squared
error involvel in the DEM fusion model. In the Slatton et al. (206&)dy, one low resolution
INSAR DEM derived from ERS1/2 imagery was fusedh three higher resolution INSAR
DEMs generated fronTOPSAR imagery. The resultant fused DEM of the ERS DEM fusion
with the first TOPSAR DEM was then fused with a second TOPSAR DEM, and that resultant
DEM was fused with a third TOPSAR DEM. The results showed that mean height

uncertainty decreased with each additional DEM that was added to the fusion process.

2.6 Research Gaps and Opportunities

There are several methods of acquiring data weithote sensing for the purpose of creating
DEM. Each method has benefitsand limitations of use and accuracy depending on the
characteristics of the terrain and lacover, processing requirements, cost of acquisition and
desired area of coverage. Sodaatypes are useful strictly for elevation acquisition, or are have
multiple other uses potentially making themnere desirable data set. SatelliRADAR
(specifically SAR) technology has emerged as one of the leading forms of elevation acquisition,
in the form of steresadargrammetry and interferometry methods, for the emesrof large

areas.

A major consideration in the creation of a DEM is the potential sources of error and how the
error is reported. Aside from the accuracy of measurement of the instrument employed,

interactions of the transmitted energy with featuresreefeception by the sensor are important

32



to understand and account for when assessing the acquire&taettaelevation dataset requires
interpolation to create a gridded DEM, and interpolation can also add to the error of the data.
There is not a single @hod of interpolation which is universally the best, but rather some
methods perform better than others depending on terrain and land cover attributes, acquisition

technique, and desired outcome of DEM characteristics.

Advancements in DEM generation gldligahave increased the accuracy and coverage of
DEMs. Depending on the method of data acquisition, the characteristics of the land cover and
DEM generation, these DEMSs still contain inherent errors. This redundancy of DEM data and the
need to further redecerrors has provided the opportunity and rationale for the development of

DEM fusion techniques.

Many of the DEM fusion techniques published to date are indeed successful in increasing the
accuracy or the precision of elevation estimates for a regiontefest. Most of these fusion
methods however, fuse only two or three DEMs at a time and rely on more accurate estimates of
elevation or error to improve a less accurate DEM. Only one of the methods reviewed in this
chapter (selconsistency) was entirelgatadriven by the elevation estimates themselves, but
even in this technique the multiple resultant estimates of elevation at each cell location were

simply averaged as the final fusion step.

The question then arises: can a d#igen DEM fusion technigel be developed to fuse
multiple overlapping DEMs of the same area in an intelligent way that goes beyond simply
averaging the estimates at each cell location? To date, such a technique has not been presented in
published literature. This presents an ergtiopportunity for research in the field of DEM

fusion. While keeping the aspects of DEM generation, as well as possible error sources and
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estimation, in mind it may be possible to increase the accuracy and precision of a DEM product
using multiple, overlpping DEMSs, with a newly developed DEM fusion algorithm that exploits

the redundancy of data.
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3 METHODS

3.1 DEM Fusion Algorithm Overview

The DEM fusion algorithmdeveloped in this studynvolves the fusion of multiple,
overlapping DEMs of the same geograps$tiedy area. The goal was to fuse the DEMs without
anya priori knowledge of the error in the DEMs. This fusion method is therefore based on the
distribution of elevationsit each cell location, and the user input is limited to data distribution

parameters

At each cell location the elevations available from the multiple DEMSirgteremoved or
retained by slope and elevation thresholding. The threshold values are defined by the user as a
multiple of the standard deviation of the slope values or elewaabreach location. Retained
elevations are then clustered usingraeans clustering algorithm. The cluster merging distance
is also defined by the user, and is a percentage of the total range of retained elevations at each
cell location.Figure F1 in Appendix F contains a flowchart of the steps involved irkthe=ans
clustering portion of the fusion algorithm, and Appendix G containpitbhgrammingcode for
thek-means clusteringl'he results of the clustering step are then filtered witbdaptive man

filter, and snoothed with a Gaussian filter.

The data requirements for the algorithm are multiple, overlapping DEMs generated at same
resolution. The assumptions of this algorithm are that the DEMs are referenced to the same
horizontal projectionand déum as well as the sameertical datum. Figure -2 contains a

flowchart that outlines the main steps of the fusion algorithm.
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Figure3-1 Flowchart of the main steps in preparing and processing the DEfke fasion
algorithm.

3.2 Study Area

The DEM fusion algorithm was tested on an area of overlap for 12 DEMs that was buffered

inward by200 m to avoid edge effects of the DEM$he 316 knf study areds in Southern

Ontario, Canadd)orthwest of the city of Guph (seeFigure 32). The study area has post

glacial landscapé¢hat is mainly gently sloping with some hummocky topography presems

elevationin the arearangesfrom 310 to 443 nmabove mean sea lev@kferenced to th€008
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Earth Gravitational Modei EGM 2008).The Grand River flows in the general direction of
southwest through the study area frtita town offFergus to the city of Kitchen&aterloo.The
mainriver has cut aarrowgorge(up to 22 m deephnto thelimestonebedrock in the Northern
hdf of the study area. Té gorge and a few limestone and aggregate quarrietharenly

occurrence of steep terrain in the study area.

The landcover typein the study areas mostly cultivated agricultural fields(51%), with
crops consisting mainly of coy soybeans, wheat, or foragBsstures or areas with small shrubs
are consideredough landin this studyand coverl7% of the total study aredorests are a mix
of temperate deciduous and coniferous tree species, and13%eof the study area. Theban
areas cover only 6% of the study area, and consist mainly of small houses and yasdsnith
larger buildings such as two and thr&tery factories or warehouses. There are no large city

centres or highise buildings in thetudyarea.

The extent ofall RADARSAT-2 scenes used ihis study occurs over a 1350 karea that
defines the extent afhe data collection and processing for this project (i.e. RADARSAT
imagery, GPS data, ejc The data collection area is shownHigure 32, and alsan a ma of

theRADARSAT-2 scene extengsrovidedFigure 33.
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3.3 RADARSAT-2 Imagery, GCP coordinates, and DEMEXxtraction

The general methods of Toutin et al. (2010) were followedxtoact DEMs using stereo
radargrammetric methods and RADARSARTSAR) imageryThis section provides the general
stepsinvolved in: processing the RADARSAP imagery;ground control pint (GCH and tie

point (TP) collectionDEM generation

3.3.1 RADARSAT-2 scene selection and processing

Several scenes of RADARSAT FineQuad mode, SLC (single look coreg) imagery, at
various incidenceangles (2249°) were acquired over the study area dutimg spring and
autumnof 2010.The scenes were provided by Agriculture and Agod Canadalheimagery

had a resolution of approximatedy5 by 7.5m in the slant rangeandthey were projeatd in
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WGS 1984 UTM Zone 17N. Of thidatasetl6 scenes were used for DEM extractisee Figure
3-3 for a map of RADARSAT2 scene extentspelection and pairing of the scenes for sarde
stereeradargrammetric DEM extraction was based on the date apfisatton, the orbit pass

direction, incidence angle, and amount of overlap between scendafde&1).
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Study Area
RADARSAT-2 Scene Extents:
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Figure3-3 Map of RADARSAT-2 scene extents for the imagery used to generate the DEMs.
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Table3-1 RADARSAT-2 scenes used for DEM extraction with attributes used @resc
selection and pairing. Scepairs are numbered according to the ID of the DEM they were used
to generateGeneral pass directions aebeled: Al ascending; O descending.

S .5 —~ o} = =

< 3 c S e s sg &g

v 2 ) o= =50

C S 4EQ EL JTL T w9oEec

2 S8sc & é 52 g2 g= £ 3 Scene Pairs

h 4vs= O =< J%T nQoc< (number corresponds to the DEM created)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
S01 11/04 FQ2 22 77° 347° (A) 1

S02 14/04 FQl16 37 79° 349° (A) 1 2

S03 05/05 FQ2 22 77° 347° (A) 2 3
S04 08/05  FQ16 37 79°  349° (A) 3

S05 22/09  FQ21 42 80°  350° (A) 4

S06 02/10  FQ31 49 8l°  351°(A) 4

S07 26/10  FQ31 49 81°  351°(A) 5

S08 09/11  FQ21 42 80°  350° (A) 5 6

S09 19/11  FQ31 49 81°  351°(A) 6 7

S10 03/12 FQ21 42 80°  350° (A) 7

S11 15/04 FQ20 41  280°  190° (D) 8

S12 18/04 FQ5 25  282° 192° (D) 8 9

S13 09/05 FQ20 41  280° 190° (D) 9 10

S14 12/05 FQ5 25  282° 192° (D) 10 11

S15 02/06 FQ20 41  280° 190° (D) 11 12
S16 05/06 FQ5 25  282° 192° (D) 12

The polarimetric channels (HH, HV, VH, and VV) of each RADARSATscene were
initially in the form of uncalibrated GeoTIFF files with an associated metafiletaEach image
was imported into PCI Geomaticasing noradiometric calibration typand alsousing asigma
noughtcalibration type. The DEMs needed to be made from images without calibration, while
sigma nought calibration allowed features such as roads to be better distinguished and therefore

GCPs and tie points to be more easily placed.

Since Toutinet al. (2010) found that DEMs generated from the total power of the imagery

(i.e. the SPAN methqdas described by Lesnd Pottier, 2000were more accurate than those
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generated from the HH channel alone, 8f2AN channels were created and used for DEM
extraction in this study. Thé&PAN corresponds to the sum of the intensities for all four
polarimetric channels at each cell location (Toutin et al., 2010). The Total Power tool in
Geomatica was used on the-cadibrated polarimetric channels to create 3®AN channel for

each scene.

3.3.2 GCP locations and elevations

Road intersection centres were used for GCPs since they could consistadénted in
the RADARSAT-2 images. The GCP locations (x, y) were derived from 2010 SWOOP- ortho
images that had a restibbn of 20 cm and a horizontal accuracy of 50 cm (Ontario Ministry of
Natural Resource2010). The elevation of each GCP was interpolated from nearby GPS points
collected in a real time kinematic (RTK) survey of the road surface with pmhésted atéast

every 50 m.

If the intersection centre was within 10 metres of a GPS point, the nearest GPS point
elevation was used directly for the GCP elevation. The distance limit for nearest point
interpolation was chosen becauke road intersections the stidy areaare relatively flat and
the elevation ighereforenot expected to greatly change within 10 metres from the centre of the
intersection. All GCP points met this condition, except for twthese had GPS points along a
straight section of road totker side, so the elevation was interpolated from the nearest two GPS

points using linear interpolation.

Horizontal and vertical coordinates for a total of 49 GCPs were calculated within the data
collection area (sekigure 3-3 for amap of GCP locations The distribution of GCP locations

was moderately patchy due to the location of pantaisections that were consistentlgible in
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the RADARSAT-2 imagery The highest density of GCPs in the study area was in the Central to

Southeast region.

3.3.3 DEM extracton
DEM extractionwas performed withPCl OrthoEngine (v. 10.3) softward@he general
processing steps involved in using this software to generate DEMgelisdescribed by

Ostrowski and Cheng (2000).

Tout i-D &aslarggammetric Model (Toutin and Chéni@009) was used for DEM
generation, based an EGMO08 geoid file. GCPs were placed manually on displayed HV, HH,
VV colour composites of the RADARSAZ scenes, with residuals of less than 1 m. Tie points
with residuals of less than 2 mere collected betwen image pairs, at road intersectidhat

were not used for GCPs.

Epipolar images were created from t8RAN channels of the image pakpipolar images
are created by resampling timageryto a common grid so that the images are aligaed the
Y-paralax is reduced ta value close to the error of the GCPs and tie poirits. epipolar
images were used as the inputs for the Automatic DEM Extraction Thelsoftwareof the
DEM extraction toolsegments the images into horizontal strips and tba&iculaes the
correlationbetweernpixels of the imagesvithin each stripand an optimal solution is determined
within a variably sized moving windowThe sensor geometry calculated from the
radargrammetric modeé$ used along with the pixel correlatiom compué elevationsrom the
parallaxfor each grid cell locatariTr he o6f i |l Il hol es and filterd6 opt

the parallax of failed pixels based on a suitable number of successful neighbouring parallax

42



values, and filters the DEM for noise. dlextracted epipolar DEM was themoothed by the

software andjeocoded to a 10 nesolution regularly spaced grid.

3.4 DEM Fusion Algorithm Rationale and Implementation

The DEM fusionalgorithm was implementedn the 12 generated, overlapping DEMs. An
overview of the algorithm is provided fBection 3.1and aflowchart outlinng the major steps in
the DEM fusion #gorithm is provided in Figure -A. This section of the methods chapter
provides the rationale for each algorithm step and dle¢ails of how thealgorithm steps were

implemented for the study data.

3.4.1 Data preparation

The first step in the DEM fusion algorithm is to resample all input DEMe same grid
spacing anddl locations so that the datsa aligned. This is referred to as a DEM stack, and it
simplifies data processingdAs a result, b subsequent DEMs and rasters that are created
throughout the processingprkflow have the same grid cell resolution and alignment which also

facilitates their analysis and comparison at individual cell locations

All DEMs in this study were generated in reference to the same horizbetiain and
projection,andthe same vertical datyrbut were not initially aligned by grid cell location. The
DEMs were therefore resampled to the cell alignment of the refefl@kbé (described in
Section &.1) to allow for easier processing of the DEM fusion steps and also easier

corroboration of the DEBland fusion algorithm products with the refereD&M.
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3.4.2 Slope and elevation thresholding

The next steps in the DERMIsion algoritim are to filterthe dataat each cell location for a
certain level of consistency with each other. Slope and elevation thresholding are used to achieve
this by retaining associated elevations that are within the set thresholds. The threshold values for
slope and elevation are pdetermined by the user as a multiple of the standard deviation from
the mean slope or elevation value. In this way the threshold value changes with the distribution

of slope values or elevations at each location.

To implement slopehresholding, slope rasters are created for each DEM in the stack
resulting in a raster stack of slope values. At each cell location the mean and standard deviation
of the slope values are calculated, and any slope values that are outside the thresbetcdhu
standard deviations from the mean are flagged. The elevations in the DEM stack that correspond

to the flagged values in the slope raster stack are then removed.

In this study, aslope raster for each DEMas createdi si ng Hor n éamder{inite9 8 1) t
difference method, and the grid cell location numbering scheme suggested by Gallant and
Wilson (Gallant and Wilsaril996). Compared to other methods, the toirder finite difference
method has the advantage that local errors in elevation coetribas to errors in slope

estimation (Horn1981).

Slope thresholding was applied at each cell location on the stack of slope rasters and the
corresponding DEMs they were derived from. Slope values were compared at each cell location
and any values outsideo standard deviations of the mean were flaggée. thresholding value
of two standard deviations was chosen after a sensitivity test to ensure that the slope thresholding

was not too aggressive (i.e. too many initial elevation estimates were remved)EM values
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at eachcell location associated with flagged slope rasters were then removed. As a result, some

DEMs had O6NoDat adilocatmisues f or s ome

After slope thresholding, the next step in the DEM fusion algorithm is to threshold the
elevatons at each cell locatiokVhen elevation thresholding is performed the mean and standard
deviation of the elevationsteened after slope thresholding are calculatedach cell location in
the DEM stack. The elevations outside a threshold numberrafasthdeviations of the mean are

removed from the DEM stack.

In this study, kevation thresholding was applied to the DEM stassultantfrom the slope
thresholding stepAt each cell location, any elevations that were outside of two standard
deviations 6 the mean were removedifter testing multiple values this threshold value was
chosen since it achieved a level of filtering that was not too aggressive (i.e. it did not remove too
many of the elevation estimate3he elevations that were retained wesedi in thek-means

clustering step.

3.4.3 k-means clustering

In the DEM fusion algorithma modified k-means clusteringsimilar to that described by
Mather and Koch, 20)1lis performed on the values at each cell location in the DEM stack
remaining after the thsholding steps. The clusteristepis included in the algorithm to isolate
groups or clusters of elevatidimat are similar to each other. Given the large number of DEMs in
the stack, the assumptia, madethat the more clustered the elevations, ahemore accurate

they are.

The generak-means clustering algorithm is described well by MacQueen (1967). Though

many modifications can be made, the basis of this form of clustering is that initially thére are
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groups with known cluster centres. Points ip thata set are added to these groups based on
proximity to group centres. In this way, groups become clusters with points as members. Cluster
centresare recalculated as the average value of the memb@dmembers are then+&ssigned

to clusters based on their proximity to the new centres (Jain, et al. 1999). The clustering is
performed until ahere is no change in the location of the cluster centres (MatheKaeig

2011) The ISODATA methodvas introduced to allow clusters to be merged based on proximity
of the centres, ofor a cluster tosplit if the variance of a cluster wabove a thresholdilso,
clusters with few or no members can be remoVéis allows the number of clusters to change

with the pattern in the data and made the clustering resultddpsnidenon theinitial number

of clusters

The modifiedk-meansalgorithm proposed by Mathémitializes clustering with a relatively
large number of cluster centres compared to the anticipated number of clusters and only allows
for cluster mergingand removal in the case of low membership, dags not allow cluster
splitting. Thisfurther reduceshe dependency of the clustering results onitiiteal number of
cluster centres as well as their placement. Alsmoval of the clustesplitting from the
algorithm allows the clustering solution@wentually reach a state of equilibrium (i.e. no change

in cluster membership) (Mather and Koch, 2011).

In the proposed DEM fusion algorithm, clustering only occurs if there are more than a user
defined minimum number of elevations at each cell locatidar ghe thresholding steps
otherwise the average of the elevations is usst#ad of a clustering resulthe cluster merging
distance is set by the user as a percent of the range of elevations to be clustered. The stopping
condition of the clustering immet when no change occurs in cluster membership, or the user

defined maximum number of iterations has been perforiled final cluster is selected as the
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cluster with the highest number of members; if there are two or morerslilsée meet this
criterion the cluster with the smallest range in elevation is chosen. The average of the final

cluster at each cell location is output into a product DEM.

In this studyk-means clustering was performatieach cell location, using the DIEstack
resulting from the slope and elevation thresholditeps Clustering was performed if there were
more than three elevation estimates at a given cell location, otherwise the average of the
elevations was calculated and used indlyorithm productThe initial number of clusters was
calculated as five times the numlzdrelevations atachlocation. The centres of these clusters
were determined by placing them evenly within the range of elevations at the loddteon.
relatively large number of citers and their equal placement throughout the DEM range was
chosen to provide a dense yet unbiased initial cluster set so that the first round of clustering

would yield cluster centres similar to tdistribution of thanitial elevations

At each cell lgation, déevations were then assignéal the nearest cluster centrelugter
centres were there-calculated as the average value of the members within each cluster, while
clusters with no members were removed. The distance between cluster centoadaaied
and the centres nearest to each other identified. If these nearest centres were within the merge
distance (calculated as 10 percent of the total range of elevations at that cell location) the clusters
were merged and the new cluster centre was leadtlias the average of the merged members.
Several merge distances were testedsatting the distance equal 16 percent of thelevation

rangeat each cell locatioachieved the desired degree of clustering.

The remaining cluster centres were thendusethe next iteration andlevations were re

assigned amemberof thenearest cluster. The stopping condition for this loop in the algorithm
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was a zero percent change in cluster membership or if 50 iterations had been performed. The
maximum number oftérations forany celllocationin the study area wakl, so the zero percent
change condition was always reached. Oncekihreeans clustering was complete, the cluster
with thelargestnumber of members was identified. If more than one cluster met ttesann,

the cluster with the narrowest range in elevations was classtre final clusteThe average of

the elevations belonging to tli@al cluster was calculated and assigned as the elevattibiat

cell locationin theresultantfusion product

3.4.4 Filtering and snoothing

Previous steps in thproposedDEM fusion algorithm are performed on a eey-cell basis
and except for the slope thresholding sty values of neighbouring cells at each cell location
arenot taken into consideration. The result is an increase in the spatial variance of the fusion
product, compared to the input DEMs, after khmeans clustering step. To create a product with

less shorscale variance adaptive mean and Gaussian filtels wgerd to smooth the DEM.

Adaptive mean filters employ a moving window approach that calculates the mean and
standard deviation of neighbouring cell values and compares that to the center value. The user is
able to specify the window size and the threshalde as a multiple of the standard deviation of
values in the window. In this algorithm an adaptive mean filter is applied to the product DEM to
remove local outliers (minima or maxima outside the -gpecified standard deviation from the
mean) in the dta. These local spikes or pits in the data are best removed by an adaptive mean

filter first so that they do not influence the results of the Gaussian filter.

In this study,several combinationsf window sizes and threshold valugs the adaptive

mean fiter were applied to the data and the results were visually inspected. Ayamee
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window with an absolute difference threshold of one standard deviation was found to be the most

effective for removing local spikes and pits in the data.

The final stepn the proposedalgorithm is a Gaussian filter applied to the fusion product to
smooth the DEM and reduce much of the slsodle variance that can result from tameans
clustering. A Gaussian filter is a standard technique used for reducindrédgiercy noise in
elevation data (Milledge, et al. 2a9Walker and Willgoose 1999). A Gaussian filter can
smooth a DEM by a moving window that weights elevations in the neighbourhood based on a
Gaussian distribution, with values closer to the centre weighted strongly. For this algorithm
the user defines the standard deviation distance of the Gaussian function as a nhumber of DEM
cells. Increasing the standard deviation distance will increase the degree of smoothing in the final
product. It should be notetat the Gaussian filter is best suited for gently sloping terrain, and is

therefore not recommended for areas with steep cliffs.

In this study, tial and visual inspectiowerealso used to test the settings for haussian
filter, which was appliedo the fusion productafter the adaptive gan filter. A standard
deviation distance of 8 grid cells wdstermined as an appropriate settiogeduce shorscale

variance in the data, and yet not result in anlgv&noothed finaldsion product.

3.5 Corroboration of DEMs and Fusion Algorithm Products

The accuracy of the RADARSAZ DEMs and the fusion algorithqproducts (created at
various stages in the fusion proceduwere assessed by comparing these data with a more
accurateeferenceDEM. Statistics for comp&ons with thereferenceDEM were computed for

the whole DEM as well aareas classified by landuse.
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3.5.1 ReferenceDEM and DEMSs of difference

To corroborate the RADARSA? DEMs and fusion algorithm products another DEM
interpolated from higher accuracy datasweedas a reference DEM (rDEMYhese data were
mass points derived from SWOOP 2010 ositimagery. The mass points were created at a
regularly spaced 10 m interval with an accuracy of 50 cm both horizontally and vertically. Points
that were classified asees or buildings were removed from the dataset andethdtant data

gapswere filled with interpolated points (Ontario Ministry of Natural Resoyr2e$0).

The mass pointsvere interpolatednto a DEM usinga spline with tensioralgorithm The
interpolaton was performedh overlappingtiles that were later mosaickethe resultantDEM
possessda 10 m resolutionSince theDEM vertical datum was originally CGG2000 (Canadian
Gravimetric Geoid Model of 2000) it was transformed to EGM 2008 usingess s#rgrid shifts.
Thetransformation was performed to comparerfbEM with the RADARSATF2 DEMs and the
fusion algorithm products:igure3-4 contains theDEM, clipped to the study are@he rDEM is
void of trees and buildings, though it should be ndteat several aggregate and limestone

guarries are the cause of prominent, rectanglgpressions in the study area.

Since all DEMs (and therefore algorithm products) were resampled to the rDEM, the values
of the rDEM were simply subtracted from all DEMad products of the fusion algorithm, at
each cell location. The resultant rasters are referred to as DEMs of difference. Global statistics
were then performed on each DEM of difference. (the mean, minimum, maximurand
standard deviatioas well as th 10th, 25th, 50th (median), 75th, and 90th percentiles) for the
overall study area, and also by areas classified as certain types of lartgiobal meaand

medianoffses wereused to assess DE&d fusionaccuracywhilst the standard deviaticend
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the spread of the percentile ranges were used to assessaEMsionprecision.The DEMs of

difference were also used for further statistical analyses of the fusion algorithm products.
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Figure3-4 The rderence DEM (rDEM) created from SWOOP 2010 o+tmagery at 10 m grid
spacing, and gped to the study area extent.
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3.5.2 Classification by &nduse

To gain a better sense bbw accurate the extracted DEMs wesad how well the fusion
algorithm performean different land cover types (i.e. trees, crops, buildings, #éte DEMs of
difference were segmented by landuse dassforest, fields, urban, etayithin the study area.
The Ontario Agricultural Resource Inventory (AgRI) datasetpslggon coverageepresenting
landuse classeandwas utilized in this studyThe polygons werdigitized from 2006 and 2010
SWOOP imagery, with complete coverage of the study area. This data (version 15) was provided

by Dr. Stewart J. Sweeneyf theOntario Ministry of Agiculture and Food.

For this study, e AgRI dataset was checked with SWOOP 2010 imagery, and polygon
editing took place to account for any landuse changes between the time of original digitization
(potentially on SWOOP 2006 imagery) and the time of th&RRSAT-2 imagery acquisition
in 2010. The main changesadeto the AgRI polygons wermodifying field or forest polygons
wherenew buildingshad been constructed between 2006 and 2010. Another sagmifthange
was the removal of twgolf courses andeveal single, isolated rural homes from theban
landuse classThese features wemssigned tather landuse classes that were not used in this

study.

The edited AgRI polygon shapefilevas processed to create raster masks of the landuse
classes chosen fdhis study:Fields, Road Rough Land, Urban, Wateand Forest Other
classes available but not chosen were: Farmstead, Fencerow, Railway, Riparian and Quarry. The
polygon coverag®as clipped to the study area, and polygons were buffered inward by @0 m f
all chosen landuse classes, except for water and roads. The water and road features were so
narrow that buffering inward would result in almost no remaining area representing those

features. Buffering was performed at a distance of 2 grid cells (2® raydid mixed pixel
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effects from the RADARSATR2 imagery, and to avoid possible error in the AgRI polygon
locations. A separateinary rastemaskfor each landuse clasgas created from the associated

buffered polygonsvith a cell size of 10 m and alignéaltherDEM (see Figures-5).

Each landuse mask was used as a binary grid to select only regions identified to be of that
class from each DEM of difference. The grid cell count and percent ctuldg area that each
landuse mask covered is provided in [EaB2. Global statistics for the landuse specific DEMs
of difference were then calculated ( i.e. the mean, minimmaaximum,and standard deviation,
as well as the 10th, 25th, 50th (median), 75th, and 90th percgniiles global mean and
median offsetsvere used to assess DEM and fusion accuracy, whilst the standard deviation and
the spread of the percentile ranges were used to assessabENusionprecision for each

landuse class
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Table3-2 Total area for each landuse class in the study area by cell count, and as a percentage
of the study aredlote: the landuse class percentagedessin this tablethan reported for the
study areaincemany of thdanduse polygons were buffered inward #imere caralsobe a
change of area when polygons are converted to rasters. Ash&édital of the landuse classes
do not sum to theverallareabeause of the inward buffering, and the fact that texseother
landuse classin the study area (i.e. the overall ardegt werenot analysedndividually.

Landuse Class Cell Count  Percent of Study Area
Fields 1310668 41.48
Forest 277922 8.80
Roads 29408 0.93
Rough Land 113017 3.58
Urban 119308 3.78
Water 26367 0.83
Overall 3159814 100.00

55



4 RESULTS

4.1 DEM Extraction

4.1.1 Visual assessmentf generatedDEMs

The tvelve RADARSAT-2 DEMsthatwere extracted using stere@dargrammetric methods
are shown inAppendix A (seeFiguresA-1 to A-12). A visual assessment of the DEM&s
performed and several general observatiwese madeMainly, there existdvaryingdegrees of
obvious errorswith some DEMscontainingmore systematic errorfarge blundersor regional

offsetsthan others

The first noticeable difference between DEMSs is their range in elevation. DEM 02 has the
largest rangef 248.7 m and DEM 12 has the smallest rammjel 52.8 m. The smnd difference
noticedis the repeating patterns of elation with a high degree of shestale variationpften
causing a diagonal striping (or diamond shape) etipproximately every 3061 to 1000 min
the DEMs In DEMs 01-03 these pdernswere the most obvious, with those of DEM 02 being

the most pronouwred.

Therewere also largéblunders in the DEMs in the form efroneoudills and depressions
(e.g. anelevation change 060 or 100m in a distance ofl00 m). When all DEMs were
compared, the DEMs with the largest number of blunders, anc tevdrst degree, wel@EMs
04 and 02 When the areas affected by these large blunders examined iR2010 SWOOP
imageryor thelandusepolygonsprovided by the AgRI datasehe blundersvere found to occur

mainly in agricultural fields anoh some casewhere fields bordedforest patches or roads.
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Valley delineation for the Grand River and its subsidiaries alsod/ageween DEMs. DEM
10 appeadto have the most complethannelinclusionand continuity, wherea@EMs 04 and

06 were themost incomplete

4.1.2 Correlation between DEMs
Since the DEMs appeared to be quite -differ
moment correlation coefficient)(was calculated for all possible pairs of DEMserall and by
landuse classThe resultant correlation mates are provided inAppendixB. For the overalr
values (see TablB-1) the lowest correlatiowas between DEM 02 and all other DEMs, with
values between 0.49 and 0.78. Pairings involving DEMs 03 and @4 Vvelues between 0.85
and 0.91, while all othgvairings (except for those involving DEM 02)davalues above 0.91.

The highest correlatiowas between DEMs 08 and 12, with an associatealue of 0.98.

The landusespecific correlation coefficientsere calculated and are providedhe matrices
of Tables B2 to B-7. As well, thedifferencebetween each landusgecificr value andthe
overallr valuefor eachrespectiveDEM pair were calculated and are also given in the matrices.
A positive difference indicatethat there was a higher correlatiostiween the DEMs within the

given landuse class compdte correlation othe overall study area.

For the rough land and urban landuse classes valueswere higher than the overatl
values for every DEM pairingvith differences of up to 0.12 for rondand, and 0.18 for urban.

Thegreatest chandger urban and rough lardvalueswere for pairings withDEMs 02 and 04

Correlation coefficients between DEMs for the water and road landuse classeslightly
higher than the overall correlation coeféinis for most of the DEM pairings The greatest

difference between values for these landuse classes and the owvevallueswas for pairings
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with DEM 04 (ranging from 0.05 to 0.09 higher than the overafllues). The exceptionsere
for most pairingsvith DEMs 01, 02 and 03, where thevalues for the water and road classes

were slightly lower than the overallvalue.

For thefield landuse class,llaDEM pairingswere less correlated than the overall pairings,
except for a few pairings with DEM 03he pairingbetween DEMs 02 and Odad the most
negative difference between tihevalue for fields and that of theoverall study areawith a

difference 0t0.06.

For the forest landuse class therere an approximately equal number of cases where the
valuewas higher or lower than the overallalue. The negative differencesre however, of a
greater magnitude than the positive differenées.example, tbdifference in forest and overall
r values forpairings between DEM 02 and DEMs-Q3 rangd from -0.08 t0-0.12. In contrast,

the highest positive differenaeas 0.03 for the pairing of DEMs 03 and 04.

4.2 Fusion Algorithm Steps and Products

In this section the main steps of the fusion algorigmmassessed by a comparison of the
DEM retentionpercentage(for thresholding and clustering steps) as well as a visual assessment
of the algorithm productsThe algorithm products were created to help understand the
contribution of each step in the fusion algorithomthe final fused DEMA brief description of

each product is provided irable 41, and a summary below
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Table4-1 Summary of fusion algorithm product names and descriptions.

Product Name  Brief Description

Product 01 Average of elevations at each DEM cell location before any fusion
algorithm steps

Product 02 Average of elevations at each DEM cell location after slope and elevation
thresholding (the inputs for k-means clustering)

Product 03 Average of elevations that are members of the final k-means cluster at
each DEM cell location

Product 04 Resultant DEM after adaptive mean filtering is performed on Prod. 03

Product 05 The final algorithm product. The resultant DEM after Gaussian
smoothing is performed on Prod. 04

Product 01 is the average aach cell location of all aligned DEMs before any other
algorithm processing. It is used as the simplest form of fusion for a comparison to the
contribution of other algorithm steps. Product 02 is the average of all elevations, at each cell
location, afterslope and elevation thresholding only. Product 03 is the average of the final cluster
members, at each cell location, afkemeans clustering is performed on the elevations that are
retained after slope and elevation thresholding. Product @ resulof applying the adaptive
meanfilter to Product 03. Product 05 is the result of applying the Gaussian filter to Product 04.

The fusion algorithnproducts are shown in Figureslo G5 in Appendix C

4.2.1 Slopeand elevatiorthresholdng assessment

The purpese of the slope thresholding step in the fusion algorithm was to remove elevations
that wereassociated with slopes in tBEEM that were significantly different than other slopés
that location As a result of slope thresholding7% of cell locations hd an elevationfrom one

DEM removed and 2% of cell locationshad elevationsfrom two DEMs removed At the
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remaining locations no elevations were removidte number of elevations removed at each cell

location dd nothave a particular pattern acrdle fudy area.

Table 4-2 contains thepercenage of cell locationsfor each DEMwhere elevationswere
retained after slope thresholdjrfgr the overall study areaand for the field landuse clasehe
overall and field DEM retention percentages were similaepkfor DEM 02(76% overall and
80% in fields)andDEM 04 (69% overall and4% in fields) All otherDEMs retained values at
93% or more of theverall and fieldcell locations DEM 12 had the highest retentjat 993%,

followed by DEMs 08 (98.7%) and®q98.4%)

Table4-2 DEM retention after slope thresholding, elevation thresholdingkanéans
clustering, as a percentage of the total available cell locations, for the overall study area and for

the fieldlanduse class.

Percent retention of DEMs after fusion
algorithm steps: slope thresholding, elevation
thresholding, k-means clustering.

Overall Fields

DEM 01 98.72 ,97.82, 35.77 98.99 ,98.13, 35.54
DEM 02 76.26 ,38.54, 7.75 80.18 ,42.40, 8.41

DEM 03 95.01 ,91.26, 21.34 95.83,92.27, 23.04
DEM 04 69.24 ,57.99, 12.98 64.34 ,52.65, 12.45
DEM 05 96.49 ,90.74, 28.82 96.28 ,91.92, 29.73
DEM 06 93.86 ,92.52, 32.32 92.99 ,91.40, 31.35
DEM 07 97.45 ,96.01, 34.94 96.97 ,95.20, 33.21
DEM 08 98.37 ,97.67, 36.25 98.28 ,97.36, 35.91
DEM 09 98.69 ,98.47, 39.97 98.76 ,98.54, 40.16
DEM 10 98.24 ,96.09, 31.56 98.37 ,95.75, 31.55
DEM 11 98.05,97.01, 34.38 98.06 ,96.87, 34.28
DEM 12 99.30,98.99, 44.79 99.30,98.99, 44.79

Elevation thresholding was used as ttext step in the fusion algorithmremove elevations
that wereoutside two standard deviations of the mekvation at each cell locatioAs a result

of elevation thresholding64% of cell locationsoverall had an elevation from one DEM

60



removed,and 1% of cell locations had elevations from two DEMs removed. At the remaining

locations no elevations were remousdthe elevation thresholding

Overall retention percentagies each DEMafter elevation thresholdingeeTable4-2) were
slightly less tharthe percentages aft the previous algorithm stepl@dpe hresholding, except
for DEMs 02and 04.Theoverallpercentage for DEND2 changed from 76 to 38 and for DEM
04 from 69 to 586. All other DEMs had at least 9% retention overall after elevation
thresholding.The DEMs with the highest retention were agBBMs 12, 08, and 09The
retention percentages for the field landuse class wsoesimilar to those for the overall study

area, except for DEM 02 (42% for fields) and DEM 04 (53% for fields).

The combined effects ofhe twothresholdingsteps ould be seen ira visual assessmeand
comparisonof Products 01 an®2 (Figures G1 and G2, respectively. Both Product 01 and
Product 02did notpossess the systematic errors or large blunders thatpnesent in the input
DEMs. Visually, valleyinclusion and continuityvas also much improved in Products 01 and 02.
Similar to the input DEMstherewere erroneoushills and depressions in Products 01 and 02,
however thesewere on a much smallescale andvere less extreme than seakof the input
DEMSs. In Product 02 therroneousills and depressions are less pronounced than in Product 01,

though there is more shestale variance present in some areas of Product 02.

The effects of the threshing steps ould also be seen in a profile of a subset of the study
area(seeFigure 4-1). The slopes or elevations thatere significantly different from the other
values at each position in the profilgere removed. The averageof the values before

thresholding (Product O1lpand after (Product O2pre shown along with the elevation of the
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rDEM for comparisonFor each position in the profile the elevation of Produciv@ closer

than that of Product 01 to the rDEM.
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Figure4-1 Profile of input DEM elevations before and after slope and elevation thresholding.
The average elevation at each position before thresholding (Product 01) and after (Product 02)
are shown along with the elevation of the referdDE& (rDEM).
4.2.2 k-means clustering assessment
k-means clustering was performed on the elevations remaining after slope and elevation

thresholdingClustering occurredt each cell locatiowithin multiple iterations until either there
was a zero percent changn cluster membership, or until 50 iterations were performed. The
minimum number of itetions was 3 anthe maximum wasdl1 (only occurring atfive cell
locatiors), so the zero percent change stopping condition was alwaysl heeiverage number

of iteraions was 5which occurredt 3% of the cell locationgn theoverallstudy area
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The clustering algorithm then selected the cluster with the most members to be the final
cluster. If more than one cluster méist criterion the cluster with the smallesange was
chosen.The percentage of cell locations where there was only one possible final cluster was
72%, while 21% of the cell locations had two possible final clustésace the final cluster was
chosen the average of the members was calculateddiorcedi location resulting in Product 03

(seeFigure G3).

The mean number of members in the final clusters was 3, which occurdé&oaif cell
locations while final clusters with 4 members occurred at 34% of the cell locations ovérall.
three DEMs hatwere most oftein final clusterasvere DEMs 08, 09, and 1Both for the overall
study area and in field3he DEM retention percentages aftemeans clusteringor the overall
study area and for fieldsare provided in Table 4-2. The overall final cluster membership
percentagevas higlkestfor DEM 12 @6%) andDEM 09 (41%), and lowest for DEM 04 (28)
and DEM 02 (80). The final cluster membership percentages for fields were within one percent
of the associated overall values, for all DEMs well, it is interesting to note that of the
available values after the thresholding steps in fields, DEMs 02 and 04 had onind®4%of
the elevationgrespectively)that were in &-means final cluster; the same figure for DEM 12

was 45%.

Some of theeffectsof the k-means clusteringoalld be seen when a visual assessment of
Product 03was performed.Compared to Product 02, theneas much more shorscale noise
present in Product 03. The nois@s most prevalent in the Southwesgionof the study area.
Thoudh therewere not as mangrroneoushills or depressions1 Product 03which may be an
improvement oveProduct 03, thevalleys in Product O8vere notas continuous as theyere in

Product 02.
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The effects of th&k-means clustering steuld also be seethe sameprofile area shown
previously except with elevation data from before and dftereans clusterin{seeFigure 42).
Especially when compared to the available elevations showigure4-1, it was apparent that
at each location the elevations madusteredwere flagged as final cluster memberghe
averags of theelevationsbefore thresblding (Product 01)afterthresholdingProduct 02) and
after clustering (Product 02e shownn the profilealong with the elevation of the rDEM for
comparson. For each position in the profile the elevation of ProdBat#@ closer than that of

Products 02 anf@ll to the rDEM.
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Figure4-2 Profile of input DEM elevations befolemeans clustering and the mesnd of the
final cluster after th&-means clustering. The average elevation at each position before
thresholding (Product 01), after thresholding (Product 02), and after clustering (Product 03) are
shown along with the elevation of the reference DEM (rDEMe profile is the same positi
as the one shown in Figudel.
4.2.3 Adaptivemean, and Gaussiarfiltering assessment
Adaptive nean filtering was applied to removecal outliers in the data (spikes and pits)

afterthek-means clusteringtep Theeffect ofthis step on thésionalgorithm producf{Product
04) was noteasily apparent when viewed at gtady area scakseeFigure G4 in Appendix G,
but when viewed at &arger scaleremoval of the spikes and pitgere more obviousWhen
looking at ProducD4 at the study area scaleowever, somerroneoushigh areas and low

depressions in the dateere noticeably enlarged, in comparison to Product 03. This effast

especially apparent in the Southwest of the study area.
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Gaussian filtering was appliegk a final stepto smooth thefusion algorithm productoy
reducing shorscale variance in the datBroduct 05) The effect of the smoothingas apparent
when viewingProduct 05at the study area sca{seeFigure 43), as well as at &arger scale.
Becausedhe shortscale variatiorwas decreasethe patterns irelevationswere more continuous
and smooththan in Products 03 and ORroduct 05also appearetb besmootherthan Product
01, andthough itcontaired severalerroneoudills and depressits they are at a mudmaller
andfiner scale than Product Oft.was also noted tha Product 0%he river valleys wereaot as

continuous or well included as Products 01 an@2.
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Figure4-3 The finalproduct of the DEM fusion algorithm (Product 05), clipped to the study
area.

4.3 Corroboration of Input DEMs and Fusion Algorithm Products

To measure how accurate and precise the input DEMs and fusion algorithm preekets
with reference to the higher accayaDEM (rDEM), DEMs of difference from the rDEM were

created (se€iguresD-1 toD-17 in AppendixD). The global mean and median offsets were used
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to assess DEM and fusion accuracy, whilst the standard deviation and the spread of the percentile
ranges weraused to assess DEM and fusion precisioneach DEM of difference, positive
values correspond to locations where the DE& a higher elevatiothan the rDEM, and
negative values correspond to locations where the hEs/dower elevationthan the rDEMIn

this section rsults of the visual assessmeatsl the global measures of accuracy and precision

of the DEMSs of difference are presented.

4.3.1 Visual assessments of the DEMs of difference
A visual inspectionof the DEMs of difference for the 1&iginal DEMs (Figures D1 to D
12) revealedhat theassumed to be erroneoeigvation features in the DEMs (systematic noise,
hill and depression blunders, and a lack of channel inclusion) were indeed errors when compared
the rDEM.Most notably, n all DEMs of difference fothe originalDEMs the rivervalleyswere
over estimated to varying degrees, except for DEMs 02 and 04 wherevéreygenerally
underestimated. The exceptioves for the Elora Gorge where all DEMs ovestimate the
gorge, though thisvas least pronounced in DEMs 02 and 84.for theriver banks, mostvere

underestimated ithe DEMs, especially in DEMs 08 to0.12

Whenthe DEMs of difference for theriginal DEMs were comparedsomeregionsof poor
elevationestimation variedbetween DEMsThe Northwestegion of the studyareawas most
prevalently undesstimated in DEMs 01, 02 and 03, while the Southwegton was most

prevalently underestimated in DEM 04 and DEMs 08 to 12.

The same general areas of underestimaivere manifested diffenly in the algorithm
products When the DEMs of difference of the algorithm produetere visually assessed

(Figures D13 to D17; Produt 05 DEM of differenceis also shown in Figure-4), the
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Northwestregion of the study areavas generally over estined in Product O1except for the
edge of a large channel) and underestimated in Product 05.Wéseredso a noticeable transition
for the Southwestegion of the study area: Mvas generally well estimated in Product 01, but

gradually beameunderestimadd, for a greater area and to a greater degree, with each step of the

algorithm.
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Figure4-4 DEM of difference for Product 05, clipped to the study area.
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Another dissimilarity noticed between the DEMs offfdirencefor the productsvasin the
regional elevation estimation ¢fie Central and Southeastern regiohthe study area. In this
area the elevation was generally over estimated in Product 01, but was less so for Product 02,
and even less for Product.0® Product 05 this area had localized portions that were over or

underestimated, but they were not as extreme as Product 01 or even Product 02.

The otherappaent difference between the DEMs of difference for the algorithm products
was the estimation dhe rivervalleys and banks. The Elora Gorge was over estimated in every
product, but least so in Product 03. The banks of the main Grand \RiNey were generally
more underestimated in Product 01 than Product 05. Thevalleysthemselves, howevenere

more prominently overestimated in Product 05 compared to Product 01.

4.3.2 Accuracyand precisionof input DEMs andfusion algorithm products

Vertical offsetscomprising the DEMs of difference for the input DEMs and fusion algorithm
productswere summarizedy percentiles, minimum and maximum (extremes), mean and
standard deviation values. Box plots of the percentiles, extremes, and mean values are provided
in Figuresk-1 to E-4 in AppendixE. The following sectiorpresens results fromthe DEMs of
differene as the mean of offsetse( globalaccuracy) and standard deviation of offsets. (

globalprecision) with respect to the rDEM (s€able 43).

For the overall study area, DEMs 01 to 06, and DEM 08 had the highest mean and standard
deviation combinatios of all original DEMs. The largest standard deviation was for DEM 02,
and secondly for DEM 04. DEMs 10 and 11 had larger standard deviations than many other
DEMSs, however their mean offsets were quite low in contrast to the other DEMSs. It is interesting

to note that all of the DEMs had a positive mean offset, except for DEM 10.
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Table4-3 Global nears (1) and standard deviatisif Uoj DEMs or fusion algorithm produst

(Prod.)offsets fromthe reference DEM valuéor the whole study areayerall), and by landuse
class.Positive mean values indicate overestimation, and negative mean values indicate

underestimation, compared teetreference DEM.

n(a) Rough

(m) Overall Fields Forest Roads Land Urban Water
DEM 01 7.6 (8.8) 7.0 (8.9) 12.0(8.4)  6.7(8.7) 6.6 (7.4)  3.0(6.6) 13.0 (9.7)
DEMO02 16.2(32.0) 185(31) 235(36.8) 12.4(31.9) 85(33.3) -09(22.7) -3.9(27.6)
DEM 03 6.2 (13.4) 6.5(13.0) 11.5(15.0) 4.8(13.0) 3.6 (13.3) -1.6(10.3) 2.1(13.5)
DEMO04 3.6(20.0) 4.1(21.6) 11.2(18.1) 1.9(18.8) -1.2 (16.9) -5.1(8.9) -10.0 (10.8)
DEM 05 10.1 (9.0) 9.0 (9.4) 12.7 (8.7) 9.9 (8.4) 11.1(8.1) 13.4(6.2) 14.3(9.0)
DEM 06 7.8 (9.0) 6.9 (10.0) 11.3(7.7) 7.3(8.1) 9.1 (7.5) 7.2 (5.1) 11.0 (6.7)
DEM 07 1.5(7.2) 0.6 (7.7) 5.2 (6.1) 0.3 (6.4) 2.9(7.2) -1.2 (4.7) 7.5 (6.4)
DEM 08 7.6 (8.1) 7.3(8.4) 11.2 (8.0) 6.6 (7.5) 7.5(6.7) 5.0 (5.3) 6.8 (8.3)
DEM 09 2.6 (8.8) 24(9.0) 4.5(8.6) 2.4 (8.6) 3.1(73) -0.1(6.6) 0.1(10.9)
DEM10 -2.3(10.1) -2.9(10.5) 0.5(9.2) -3.7 (9.9) -1.0(8.3) -0.9(7.4) -5.5 (11.3)
DEM 11 0.5(9.8) 0.1(10.3) 2.1(8.8) -0.9 (9.5) 2.4(8.0) 2.4(6.3) -0.8 (9.8)
DEM 12 5.2(6.9) 4.8 (6.8) 9.9 (5.9) 4.7 (6.2) 51(6.4) -2.0(5.0) 7.7 (6.9)
Prod. 01 5.5 (6.0) 5.4 (5.9) 9.6 (6.0) 4.4 (5.7) 4.8 (5.7) 1.6 (3.5) 3.5(4.7)
Prod. 02 4.6 (4.9) 4.2 (4.8) 8.3 (4.4) 3.7 (4.5) 4.4 (4.5) 1.6 (3.1) 4.6 (5.2)
Prod. 03 4.3 (7.0) 38(7.2) 8.1(6.5) 3.6 (6.9) 50(6.1) 1.2 (5.1) 6.4 (8.0)
Prod. 04 4.4 (6.4) 3.8 (6.5) 8.1 (5.8) 3.6 (6.2) 5.0 (5.5) 1.1 (4.7) 6.7 (7.3)
Prod. 05 4.4 (5.2) 3.8(5.2) 8.0 (4.5) 3.6 (4.9) 5.2 (4.6) 1.1(3.7) 7.3(5.9)

The overallstudyarea contains many landuse types, ss ibformative to look athe results

of several different landuse types in isolatfoom others.All of the DEMs hd less of amean

offsetfor the field landuse classhen comparedbo the overall values, except for DEMs 02, 03,

04, and 10The standard deation of offsetswas greater for fields thatihe overall study area,

for all DEMs except for DEMs 02, 03, and 18I of the mean values for DEMs in the forest

classwere higher than theespectivevalues in the field class, and most of the forest class

standard deviationwere less than those of the field clais.the urban class the meaffsets

were lower(more negativejhan the respective values in thelds classexcept for DEMs 05,

06, and 11.The standard deviation values for all DEMsre thelowest in the urban class.

Rough landareas hd a higher mean than the respective value for fields, except for DEMs 01
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through 04.The standard deviation values for the rough land clsse lower than the forest
except for DEMs 06 and 12, and lower thaglds except for DEM 02. The roads and water
classes d not have garticularpattern of comparison with the other classes with respect to the

mean and standard deviations of the offsets footiggnal DEMs.

The pattern of change ithe mean and standhrdeviation of offsets when the fusion
algorithm productsvere compared veamore apparentVhen compared to Product 01, the mean
and standard deviation of tlefset for Product02 were less overall and for alanduseclasses
except for urbante mearwas the same and the standard deviatiaa lowel) and watei(both

the mean and standard deviatiwere higher)

Application of thek-meansclustering step(Product 03), when compared to Product 02,
decrease the mearoffset from the rDEM but increase the standard deviation of the offséts
all classes except for rough land and for water whereanbanswere increasedFiltering for
extreme values (Product 04) asidoothing the dat@Product 05)when compared to Product 03,
resuledin the meardecreamg for all classes except rough land and water (increased slightly),
and fields (emainedthe same)The standard deviation for this same comparison dectdéase

all classes

The final fusion algorithm product (Produ€®b) hal a lower standard devianh of offsets
than any of theoriginal DEMs, overall and for each landuse clake Product 05 standard
deviationswere higher than those of Product @erall and for each landuse cla$be mean
offset of Product O%vas, however,less than those of Produ@l and 02, overall and for all

landuseclassesexcept rough land and water.
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4.4 Further analysesof fusion algorithm products

Further analyses were performed to explore possible reasons for the differences in the
accuracy and precision results of the fusadgorithm products. Data from the field landuse class
was isolated and analysed since fields amaswithout piominent offterrain objects such as
trees or buildingsin the case of fields, thereforthe offsets of the fusion productthat are
DSMs) with respect to the rDEMa DTM) are taken to be a better measure of accuracy than in
other aread-ieldsare also open spaces not as likely to be influenced by adjacent landuse classes,
which ismorelikely an issue with the narrow corridor features sushcmds and surface water

features.

In this sectiorthe results fromwoa nal yses of the fusion al gori
presented. Firgt, t he frequency distributi owithrebpeattot he f
the rDEM, and the absolute aracy of the productscompared to each other at each cell
location, are examined. Secontly, the fusion algorithm product accuracy is classified and
presented based on: the number of members in each final @duostdre standard deviation of

elevations bfore the clustering step.

4.4.1 Frequency distributions

The frequency distributian(number of cell locationsof offsets from the rDEMfor all of
the fusion algorithnproductsn the field landuse clasareprovided inFigure 45. The data used
to create thelots were binned at an interval of 1 All distributionswere negatively skewed,
with that of Product 01 the most negativ skewed. Product 01 also hidee most positive mode
at 6 m while the modes of Product 03 and 04 (both at)4vere the least patsve. Products 02

and 05 hd the same mode at 5 m, though Product Gbahkigher frequencst that offset value
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compared to Product 0Producs 02 and 05 also liaa similar amount of spread in their

distributions whichwas much less than the other puots.

Frequency of elevation difference between fusion algorithm
products (Prod.) and reference DEM (rDEM)
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Figure4-5 Frequency distribution dhe relative accuracies féusion algorithm products. The
full extent of the positive and negative tails are not shown.

The datawasalso analysed to see how thbsolute accuracy of each product comgare
other productsat each cell location. Of particular interegis how muchthe fusio algorithm
steps (Products 02 @b) made an impr@ment in the elevation estimatempared to snply
taking the average ddll DEMs (Product 01)To achieve this, [asolute accuraciefor each
productwere calculated at each cell location for the field landuse.clagsvalues forProduct
01 werethen subtracted from # values of the other productsreating difference rasterA
negative cell value in the difference raster indisaeocation where the given producte(
Product 01 to 04) was more accurate than Product 0la qoditive valuendicates the given
product was less accurate than ProductSiice the statedcauracy of the rDEM was +0.5 m,
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valuesin the difference raster betweeéh5 m and 0.5 nndicatel the products compareddhthe

same accuracy.

Instead of just summarizing the aforementioned differences atkgyresented in more detail
in the frequeng distributions ofFigure 46. Most notable of these resuligs that the primary
mode of all distributionsvas at O m, indicating the same accuracy as ProducklE secondary
modeof Product 02was more negative than the modes of other prajuartdthe distribution

hada narrowerspread As well, all of the products laba negatively skeed distribution in this

graph.

Frequency of difference between absolute accuracy for
average of all DEMs (Prod. 01) and other fusion algorithm
Se0000 - products
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Figure4-6 Frequency distribution of the difference in absolute accuracy, at eachdield
location, between Product 01 and the other fusion algorithm proéassive values indicate
that Product 01 is more accurate, and negative values indicate it is less accurate, than the
respective other products.
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4.4.2 Number of final cluster members anstandard deviation before clustering
To gain a better understanding of tfectors influencing the accuracy of thkemeans
clustering other variables were analysed in relation to the accuracy of Prod=t@3or he
field landuse class wamjainusedsince theravere no offterrain objectexpected to beresent
in both the rDEM and th&2 input DEMs.The variablesnalysed weréhe number of members
in the finalk-means clusterandthe standard deviation of elevations at each cell location before

k-means clusteringrheresultsof theanalysis for theevarablesarepresentedhn this section

The k-means final cluster accuracyhe offset ofProduct03 from the rDEMN wasclassified
by the numbenf members in the final clustext each cell locationThe absolute accuracy of
Product 03 washen plotted as a cumulative frequency distributi@FD) for each class (see
Figure4-7). The progression of curves in the CFD skdthatwith an increase in the number of
final cluster memberthe standard devi#gon and the meaof the absoluteoffsetsfor Product 03
decreasa The curves fothe 7 and 89 clustermemberclasss were not as smooth as the others

since theravere fewer observations (cell locations) in those classes.

76



Number of members
y. in the final cluster
/ ///// —:

-_—3

/4 -
/

N\
N\

N
N

[an]
I=

=)
[o5)

Cumulative Frequency Probability

8-9

\‘.
T

o
|
L

0 2 4 3 8 10 12 14 16 18 20 22 24 26 28 30

| Z prod.oz = Z rpem | (M)

Figure4-7 Cumulative frequency distribution of the absolute accuradgyrméans final clusters
(Product 03), classified by the number of final cluster members.

To see if there was a spatial pattern in the number of members in thaustal,the number
of final cluster members was mapded each cell location in the 1@ landuse class (see Figure
4-8). Therewasa slight increase in the occurrence of high cluster membership in the &buthe
region of the study area, but generallyetspatialpatternsof this variableoccurredat the field

scale.
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Figure4-8 Map of the number of final cluster members at each cell location in the field landuse
class.

Thek-means final cluster accuracyawalso classified by the standard deviation of elevations
before clustering. The absolute accuracy of Product 03 was then plotted as a cumulative
frequency distribution (CFPfor each class (see Figuredd The progression of curves in the

CFD shoved tha with an increase in the standard deviation of elevations before clustieeing

78



























































































































































































































