Pseudomonas aeruginosa Bacterial Biofilms

By

Charlotte Pye

A Thesis
Presented to
The University of Guelph

In partial fulfilment of requirements
For the degree of
Doctor of Veterinary Science
In
Clinical Studies

Guelph, Ontario, Canada

©Charlotte Pye, August 2013
ABSTRACT

Pseudomonas aeruginosa Bacterial Biofilms

Charlotte Pye BSc, DVM
University of Guelph, 2013

Advisor:
Dr. J. Scott Weese DVM, DVSc, DACVIM

This thesis is an investigation of _Pseudomonas aeruginosa_ bacterial biofilms. The objective of the first study was to evaluate the biofilm-forming capacity of canine otitis isolates of _P. aeruginosa_ and to compare the minimum inhibitory concentrations (MICs) of antimicrobials for planktonic versus biofilm-embedded bacteria. Biofilm forming ability was assessed using a microtitre plate assay. Broth microdilution was used to assess the MICs of neomycin, polymyxin B, enrofloxacin and gentamicin for the planktonic and biofilm-embedded bacteria of eighty-three isolates. Thirty-three (40%) isolates were biofilm producers and MICs for biofilm-embedded bacteria were significantly higher than their planktonic counterparts for all antimicrobials (all P<0.05).

The objective of the second study was to evaluate the impact of Tromethamine edetate disodium dihydrate (Triz-EDTA®) in combination with antimicrobials on antimicrobial susceptibility of _P. aeruginosa_ biofilm-embedded bacteria. MICs of the four antimicrobials for the biofilm embedded bacteria and biofilm-embedded bacteria with added Triz-EDTA® were assessed with broth microdilution for thirty-one biofilm-producing isolates. Addition of Triz-EDTA® significantly reduced MICs for neomycin (P < 0.008) and gentamicin (P < 0.04) but not enrofloxacin (P = 0.7), or polymyxin B (P = 0.5).

The objective of the third study was to determine the presence of biofilm-associated genes
in biofilm forming and non-biofilm forming isolates. Four genes involved with carbohydrate matrix production (pelA), irreversible attachment (sadB) and quorum sensing (lasB, rhlA) were selected. DNA was extracted and polymerase chain reaction (PCR) was performed for all isolates. All isolates possessed lasB and sadB, 74 (90%) possessed pelA and 74 (90%) possessed rhlA. All thirty-two (100%) isolates that were classified as biofilm producers contained all genes. There was an association between the presence of pelA and rhlA and biofilm production (P < 0.017) and between the presence of rhlA and pelA and the quantity of biofilm produced (both P < 0.001).

These results highlight that biofilm formation of Pseudomonas aeruginosa otic isolates does occur and can impact antimicrobial therapy. Certain compounds can also influence antimicrobial susceptibility of biofilm-embedded bacteria. Genetics may also play a role in biofilm formation.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my DVSc supervisor Dr Scott Weese for his continued support and guidance throughout my program. Without his help and encouragement none of this would have been possible. Thank you also for always finding time to answer my incessant questions.

I would also like to thank all the members (past and present) of my DVSc committee for their support. My thanks go to Dr Ameet Singh, Dr Julie Yager, Dr Stephen Kruth, Dr Jason Coe and Dr Jeff Wilson. Thank you for your time and dedication to help me reach my goal. My laboratory work would not have been possible without the instruction and guidance of Ms. Joyce Rousseau and the helping hands of Ms Nadine Vogt and Amanda Li; so to you all I also send my thanks.

A thank you to both The Animal Health Laboratory and IDEXX laboratories that helped with isolate collection and taking the time to put the isolates aside for my research.

To Dr Anthony Yu, Dr Vincent Defalque, Dr Steve Waisglass and Ms. Jennie Tait I send a special thank you; for your enthusiasm, your emotional support and kind words.

A final thanks goes to my mother and father, Andrew Baker and Anna Cooper for their endless support, encouragement, love and unwavering belief in me.
DECLARATION OF WORK PERFORMED

I declare that, with the exception of the items below, all work reported in this thesis was performed by me.

Original isolate collection was performed by the Animal Health Laboratory (Guelph, Ontario, Canada) and IDEXX (Markham, Ontario, Canada). Dr Scott Weese assisted with statistical analysis of the results of this study. Ms. Joyce Rousseau submitted samples for sequencing, which was performed by Macrogen Inc.
TABLE OF CONTENTS

Abstract
Acknowledgements
Declaration of Work Performed
Table of Contents
List of Tables
List of Figures
List of Abbreviations

1. CHAPTER 1: Literature Review and Objectives

1.1 Introduction 1
1.2 Anatomy of the canine external ear 4
1.3 Otitis externa 5
1.4 *Pseudomonas aeruginosa* otitis externa 8
1.5 *Pseudomonas aeruginosa* microbiology and infections 9
1.6 Diagnosis of *Pseudomonas aeruginosa* otitis externa 12
1.7 Treatment of *Pseudomonas aeruginosa* otitis externa 14
1.8 *Pseudomonas aeruginosa* resistance to antimicrobials 18
1.9 Bacterial Biofilms 22
1.10 *Pseudomonas aeruginosa* biofilm
 1.10.1 *Pseudomonas aeruginosa* biofilm microbiology 31
 1.10.2 Treatment of *Pseudomonas aeruginosa* biofilm 37
 1.10.3 Biofilm MIC testing 39
 1.10.4 Minimum Biofilm Eradication Concentration (MBEC) 41
 1.10.5 *Pseudomonas aeruginosa* genetics noted in human literature and how these impact biofilm formation 42
1.11 Objectives 50
1.12 References 51

2. CHAPTER 2: Evaluation of biofilm production by *Pseudomonas aeruginosa* from canine ears and the impact of biofilm on antimicrobial susceptibility in vitro

2.1 Abstract 63
2.2 Introduction 64
2.3 Materials and methods 66
2.4 Results 68
2.5 Discussion 69
2.6 Tables 72
2.7 Figures 73
2.8 References 74
3. CHAPTER 3: Evaluation of the impact of Tromethamine edetate disodium dihydrate on antimicrobial susceptibility of *Pseudomonas aeruginosa* in biofilm *in vitro*

3.1 Abstract 80
3.2 Introduction 81
3.3 Materials and methods 83
3.4 Results 85
3.5 Discussion 86
3.6 Tables 89
3.7 Figures 90
3.8 References 91

4. CHAPTER 4: Evaluation of the presence of biofilm-associated genes in canine otic isolates of *Pseudomonas aeruginosa*

4.1 Abstract 97
4.2 Introduction 98
4.3 Materials and methods 100
4.4 Results 102
4.5 Discussion 103
4.6 Tables 106
4.7 References 107

5. CHAPTER 5: General Discussion and Conclusion

5.1 General discussion and conclusions 110
5.2 References 116

APPENDICES

Appendix 1 120
Appendix 2 121
Appendix 3 122
LIST OF TABLES

Chapter 3:
Table 1: Comparison of mean MIC$_{50}$ and MIC$_{90}$ for planktonic bacteria and biofilm-embedded bacteria of 31 isolates.

Chapter 4:
Table 1: Comparison of mean minimal inhibitory concentrations MIC$_{50}$ and MIC$_{90}$ for biofilm-embedded bacteria and biofilm-embedded bacteria grown in broth inoculated with Triz-EDTA® for 31 Pseudomonas aeruginosa isolates.

Chapter 5:
Table 1: Forward and Reverse Primers and product length for four genes of interest used for PCR.

Table 2: Prevalence of the presence of biofilm-associated genes in biofilm forming and non-biofilm forming canine otic isolates of Pseudomonas aeruginosa
LIST OF FIGURES

Chapter 3:
Figure 1: Comparison of mean MIC of enrofloxacin, gentamicin, polymyxin B and neomycin for planktonic bacteria versus biofilm-embedded for 31 *P. aeruginosa* isolates.

Chapter 4:
Figure 1: Comparison of mean MIC of enrofloxacin, polymyxin B, neomycin and gentamicin for biofilm-embedded bacteria versus biofilm-embedded bacteria grown in broth inoculated with Triz-EDTA® for 31 *Pseudomonas aeruginosa* isolates.
LIST OF ABBREVIATIONS USED IN THE TEST

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHL</td>
<td>N-acyl homoserine lactones</td>
</tr>
<tr>
<td>c-di-GMP</td>
<td>bis-(3’-5’)-cyclic dimeric guanosine monophosphate</td>
</tr>
<tr>
<td>C2</td>
<td>N-decanoyl-L-homoserine benzyl ester</td>
</tr>
<tr>
<td>CBD</td>
<td>Calgary Biofilm Device</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>Cup</td>
<td>Chaperone usher pathways</td>
</tr>
<tr>
<td>DGC</td>
<td>Diguanylate cyclase</td>
</tr>
<tr>
<td>eDNA</td>
<td>Extracellular DNA</td>
</tr>
<tr>
<td>EPS</td>
<td>Extrapolymeric Substance</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended-spectrum ß-lactamases</td>
</tr>
<tr>
<td>IFN-gamma</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>MBEC</td>
<td>Minimum Biofilm Eradication Concentration</td>
</tr>
<tr>
<td>Mbp</td>
<td>Mega base pairs</td>
</tr>
<tr>
<td>MCP</td>
<td>Methyl-accepting chemotaxis protein</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistant</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrogen oxide</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>OE</td>
<td>Otitis externa</td>
</tr>
<tr>
<td>PAMPs</td>
<td>Pathogen associated molecular patterns</td>
</tr>
</tbody>
</table>
PCR Polymerase chain reaction
PI3K Phosphatidylinositol-3-kinase
PIP₃ Phosphatidylinositol (3,4,5)-triphosphate
PQS Pseudomonas quinolone signal
PRRs Pattern recognition receptors
QS Quorum sensing
RSCVs Rugose small-colony variants
SCV Small colony variants
TLRs Toll-like receptors
TpbA Tyrosine phosphatase related to biofilm formation A
TPS Two-partner-secretion
Triz-EDTA Tromethamine Edetate Disodium Dihydrate
CHAPTER ONE: Literature Review and Objectives

1.1 Introduction

Otitis externa (OE) is a common condition in dogs and can account for anywhere between 4.5-20% of all cases presented to a small animal veterinarian (Hill et al 2006, Miller et al 2013). Otitis externa is due to primary, predisposing and perpetuating factors. Primary factors account for the underlying etiology that triggers the changes within the ear canal, such as allergic skin disease. Predisposing factors are present prior to the development of the otitis, including anatomic variation and moisture within the ear canal. Perpetuating factors occur as a result of the inflammation and include excessive debris (Miller et al 2013). Other perpetuating factors include fungal and bacterial infections. The most commonly isolated pathogens in cases of infectious canine OE are *Staphylococcus pseudintermedius, Pseudomonas aeruginosa* and *Malassezia pachydermatis* (Miller et al 2013).

In cases of bacterial otitis, *Pseudomonas aeruginosa* is often implicated (Cole et al 1998, Nuttall et al 2007). *P. aeruginosa* has not been isolated from healthy canine ears and, when present, can result in inflammation and ulceration within the external ear canal (Tater et al 2003, Miller et al 2013). Treatment may be difficult as *P. aeruginosa* is intrinsically resistant to multiple antimicrobial classes and can also acquire resistance (Nuttall et al 2007). In order to resolve the otitis, treatment must involve a regimen for the underlying primary and predisposing factors (Miller et al 2013). Due to this multi-modal approach, intrinsic resistance and the chronic nature of the disease, treatment may be of a long duration and can become costly. In refractory cases, surgical treatment of OE, which consists of total ear canal ablation, may be required (Miller et al 2013).
The vast majority of study of bacterial ecology and infection involves the free-living planktonic form. Yet, some bacteria are able to produce biofilm. A bacterial biofilm is a community of sessile bacteria that form layers of planktonic bacterial cells. As the biofilm matures, the cells become irreversibly attached to a surface and produce a matrix (extrapolymeric substance, EPS) made of carbohydrates, proteins and DNA (Donlan 2001). This matrix will provide the bacteria with protection from dessication, the host immune response and antimicrobials. Biofilm-embedded bacteria have an altered metabolism and enhanced cell-cell communication (Costerton 1999, Clutterbuck et al. 2007). This will serve to increase the resistance to antimicrobials and evasion of the host immune system (Clutterbuck et al. 2007). Biofilm formation is thought to be an important virulence factor for some bacteria and some infection types.

The role of planktonic P. aeruginosa in cases of otitis externa has been well described in the veterinary literature. However, there has been limited study of P. aeruginosa biofilms in canine otitis despite the fact that this is an infection that could be strongly associated with biofilm production (Clutterbuck et al. 2007). Pseudomonas spp. have been noted to form biofilms in any environment whereas other bacterial species often require a specific temperature or pH (Clutterbuck et al. 2007).

In human medicine, bacterial biofilms have been studied extensively and have been noted to form on indwelling catheters, tooth enamel, surgical implants, wounds, burns and in the lungs of patients with cystic fibrosis (Darouiche 2004, Kirketerp-Moller et al. 2008, Moreau-Marquis et al. 2008). Biofilms have also been studied, to a lesser degree, in the veterinary literature, and have been found to form within the middle ear cavity, in cases of mastitis, on surgical implants and on wounds (Donlan 2001, Ehrlich et al. 2002, Melchior et al. 2006, Watters et al. 2012, Singh et al. 2013). However, studies regarding Pseudomonas biofilm formation are limited.
Previous studies have documented that cells within a biofilm are less susceptible to antimicrobials \textit{in vitro} than their planktonic counterparts (Hoyle \textit{et al} 1992, Allesen-Holm \textit{et al} 2006). This may be due to the physical protection provided by the EPS, which prevents antimicrobials from reaching the bacteria. In addition, resistance could also be due to the metabolic changes within the biofilm that can affect the target of the antimicrobial (Caiazza \textit{et al} 2004, Khan \textit{et al} 2010). As the biofilm-embedded bacteria may be more resistant to antimicrobials, understanding the ability of clinical otic isolates of \textit{Pseudomonas aeruginosa} to form biofilms, and their susceptibility to these antimicrobials is paramount to allow treatment plans to be formulated. It is also important to investigate other treatment modalities that may help increase penetration of antimicrobials through the biofilm, or disrupt the biofilm. Tromethamine (Tris), edetate disodium dihydrate (EDTA) buffered to pH8 with Tromethamine HCL and deionized water, (Triz-EDTA$	extregistered$ Aqueous flush, Dechra Veterinary Products, Kansas, US) is used as an adjunct therapy for dogs with \textit{Pseudomonas otitis} (Nuttall \textit{et al} 2007). The tris buffer enhances the effect of the EDTA, which damages the cell surface of gram-negative bacteria such as \textit{Pseudomonas} (Wooley \textit{et al} 1983). Studies have shown that Triz-EDTA$	extregistered$ used in combination with an antimicrobial, will reduce the minimum inhibitory concentration and minimum bactericidal concentration for certain antibiotics for both planktonic bacteria and those within biofilms (Wooley \textit{et al} 1983, Sparks \textit{et al} 1994, Buckley \textit{et al} 2012).

\textit{Pseudomonas aeruginosa} has a genome containing 6.26 Mega base pairs (Mbp) that encode for 5567 genes (Lambert 2002). Studies have highlighted the potential role certain genes may have in biofilm formation (O”Toole \textit{et al} 1998, Musken \textit{et al} 2010). \textit{SadB} (surface attachment deficient) has been shown to contribute to the transition from reversible to irreversible attachment leading to initial biofilm formation (Lambert 2002, Caiazza \textit{et al} 2004). \textit{Pel} codes for a specific type of carbohydrate expression within the biofilm matrix. Mutants will develop a different
morphology and may not form attachment structures needed for biofilm formation (Friedman et al 2004). Cell-to-cell signalling systems (quorum sensing systems) are important for communication between cells in the biofilm. It has been noted that the lasR-lasI and rhlR-rhl systems are two of the main systems operating in P. aeruginosa (Davies et al 2007). Previous studies have found that mutations in genes coding for these quorum sensing signals can lead to defective biofilm production, which could lead to decreased protection from the external environment and antimicrobials (Sauer et al 2002). Identifying genes that are present during biofilm formation or those that may play a role in biofilm formation will help us further understand the biofilm production of Pseudomonas otic isolates.

1.2 Anatomy of the canine external ear

The canine external ear includes the external pinna and both the vertical and horizontal canals (Appendix 1). The pinna and vertical canal are formed from auricular cartilage, which becomes funnel shaped at the base of the pinna and forms the beginning of the vertical canal (Heine 2004). The tragus and anthelix, protrusions of the auricular cartilage, are found at the base of the pinna and mark the entrance to the vertical canal (Cole 2004, Heine 2004). This vertical canal measures approximately two and a half centimetres, extending ventrally and rostrally before turning medially into the horizontal canal (Cole 2004). Annular cartilage and auricular cartilage of the osseous external auditory meatus comprise the horizontal canal (Heine 2004). The external canal stops at the tympanic membrane where there is a separate band of the annular cartilage. This represents the junction between the external ear canal and the middle ear, formed by the osseous bulla (Cole 2004).

The skin lining the external ear canal is an extension of the skin covering the rest of the body. This skin has a thin epidermis and a dermis containing adnexa (hair follicles, sebaceous glands,
ceruminous glands) (Miller et al 2013). There are breed specific variations in the size and shape of the ear pinnae, the number of sebaceous glands and ceruminous glands within the external ear canal (Heine 2004, Cole 2009). Cerumen, made from desquamated keratinized epithelial cells and secretions from the ceruminous and sebaceous glands, coats the canal (Heine 2004). Neutral lipids make up the majority of the lipid content of cerumen in normal canine ears (Huang et al 1994). There is a regular turnover of the cerumen and epithelium within the ear canal, which will remove debris within the external ear (Heine 2004).

A healthy canine ear canal will still contain low numbers of bacteria and yeast. In one study by Tater et al, they documented that 96% of normal canine ears contained yeast and the highest number noted was 2.1 per high power field (Tater et al 2003). The most commonly isolated bacteria from the canine ear are *Staphylococcus* spp. and *Streptococcus* spp. Rod shaped bacteria, other than *Corynebacterium*, are not usually found in normal canine ear canals (Angus 2005).

The function of the external ear canal is to collect sound waves at the ear pinnae, funnel them into the external canal and then transmit them to the tympanic membrane through to the inner ear (Miller et al 2013, Cole 2009, Cole 2012). In a non-inflamed canine external ear, the tympanic membrane can usually be visualized via otoscopy and the pH of the canal is 6.1-6.2 (Grono 1970).

1.3 Otitis externa

Otitis externa (OE) is defined as inflammation of the external ear canal as a result of multiple underlying causes and etiologies (Miller et al 2013). In response to the inflammatory triggers, the blood vessels in the dermis dilate leading to increased permeability and edema. Stenosis of the external canal may then occur due to edema present within the tissue surrounding the canal. The subsequent inflammation leads to a highly permeable epithelium causing loss of epidermal
barrier function. As epidermal barrier integrity is lost, bacterial and toxin penetration is increased through the skin, which further exacerbates the inflammatory process (Angus 2005). The external ear canal becomes filled with cerumen, as production increases in times of inflammation (Angus 2005). Cerumen blocking the external ear canal, combined with the stenosis, will provide a warm, moist environment that favours growth of microorganisms (Angus 2005). There are also changes in the cerumen composition including decreased lipid content which changes the microenvironment within the ear and may further facilitate proliferation of microorganisms (Angus 2005, Cole 2009).

In dogs with acute OE, the pH of the external ear canal becomes more acidic and can drop to approximately 5.9; which maybe a more appropriate pH for bacterial populations to flourish (Grono 1970). As the disease process becomes more chronic, the continued inflammation leads to hyperplastic epithelium, increased epidermal turnover and hyperkeratosis (Angus 2005). Normal epithelial migration within the external ear canal is disrupted and therefore, more cellular debris accumulates blocking the ability of debris to exit the canal exacerbating accumulation of excess cerumen. Neutrophils will migrate into the ear canal in any acute inflammatory process but this will be exacerbated during a bacterial infection. A purulent exudate will begin to form and in certain cases can be seen draining from the ear canal (Angus 2005). Bacterial exotoxins, in combination with neutrophil proteases, can further compromise the epithelium causing erosion and ulceration. This is especially the case if the bacterium Pseudomonas aeruginosa is present (Angus 2005). Chronic changes to the ear canal also include mineralization of the cartilage surrounding the ear canal, glandular hyperplasia and further stenosis (Angus 2005).

Otitis externa is a common condition of dogs. The prevalence of canine OE varies from 4.5% to 20% or above (Hill et al 2006, Miller et al 2013). In 2011, OE was the most common pet health insurance claim in North America and has been for years prior to this survey (Veterinary
Pet Insurance Co. 2012). OE is a frustrating problem for pet owners and veterinarians. Treatment can be difficult as certain bacteria are intrinsically resistant to multiple antimicrobial classes and may also acquire resistance (Nuttall et al 2007). This will lead to increased treatment costs, the potential for further antimicrobial resistance to develop and the need for multi-modal therapy. If medical treatment fails, patients may need surgical treatment such as a total ear canal ablation or lateral bulla osteotomy which both have the potential for increased morbidity and complications (Miller et al 2013). The inflammation and pain suffered by canine OE patients is also of great concern to owners and veterinarians.

Otitis externa is due to primary, predisposing and perpetuating factors. Primary factors include underlying etiologies that trigger the changes within the ear canal; such as allergic skin disease and endocrine disease. Predisposing factors are present prior to the development of the otitis, and include anatomic variation in pinnal size and shape, and excess moisture within the ear canal. Perpetuating factors include middle ear disease or excessive production of debris and occur as a result of the inflammation (Miller et al 2013). Other perpetuating factors, sometimes known as secondary causes of OE, include fungal and bacterial infections (Miller et al 2013). The dominant pathogens in cases of infectious canine OE are Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Malassezia pachydermatis (Miller et al 2013).

Otitis externa occurs at any age but certain breeds are predisposed, including Cocker spaniels, Brittany spaniels, Jura des Alpes, Golden retrievers, Poodles, West Highland White terriers, German shepherds, Pyrenean Shepherds and Labrador retrievers (Saridomichelakis et al 2007, Miller et al 2013). Clinical signs associated with OE include head shaking, aural pruritus, pain, alopecia of the pinnae, discharge and odour from the ear canal (Miller et al 2013). Dogs will often have clinical signs associated with the underlying primary factor causing the otitis, such as interdigital erythema (allergic skin disease) or symmetric alopecia (endocrine disorders) (Rosser
Cases of OE can be both unilateral or bilateral (Miller et al 2013). A previous study documented that cases of bilateral otitis externa were slightly more prevalent at 53% of total otitis cases (Pugh et al 1974).

Otitis externa can be acute or chronic in nature. There is currently no accepted definition for what constitutes chronicity in cases of OE; clinically a patient with chronic disease will present with glandular hyperplasia, stenosis of the external ear canal and mineralization of the ear canal. The infection present can also move into the middle ear to cause otitis media (Miller et al 2013).

Performing a thorough dermatological examination is extremely important in cases of suspected OE, as there may also be alopecia, excoriations, erythema on the side of the face, back of the ear pinna and aural hematomas (Cole 2012, Miller et al 2013). Palpation of the external ear canal may reveal thickening of the pinna or mineralization of the external ear canal and hyperesthesia. In cases of ear canal mineralization due to chronic otitis, medical treatment is rarely successful and surgical management is usually required (Miller et al 2013).

1.4 *Pseudomonas aeruginosa* otitis externa

Pseudomonas aeruginosa and other gram-negative rod shaped bacteria are not commensal bacteria of the external ear canal (Cole et al 1998, Yoshida et al 2002, Tater et al 2003, Sturgeon et al 2012). *P. aeruginosa* is one of the most common bacterial species isolated from the ear canal of dogs with OE and is isolated in up to 35% of cases of otitis externa and media (Cole 2012, Nuttall et al 2007). In one study, *P. aeruginosa* was isolated from 27.8% of canine ear samples submitted over a 6-year period and the frequency of isolation per year did not change over this same period (Petersen et al 2002).

Aural examination will reveal erythema, possibly alopecia around the ear, crusting and usually pruritus. There may be a yellow/green malodorous discharge emanating from the external
ear canal containing bacteria, white blood cells and debris (Shaw 2012, Miller et al 2013).

Infections of the external ear canal due to Pseudomonas aeruginosa also present with pain and ulceration (Nuttall et al 2007). If the otitis externa is left untreated, it can progress to otitis media after rupture of the tympanic membrane due to inflammation. Otitis media can result in neurological signs (Miller et al 2013).

1.5 Pseudomonas aeruginosa microbiology and infections

Pseudomonas spp. are gram-negative bacteria that are not part of the enterobacteriaceae family. They are found ubiquitously within the environment in soil, water, decaying vegetation and on animals. The most clinically significant member of this family is Pseudomonas aeruginosa (Koenig 2012). Pseudomonas aeruginosa is an opportunistic pathogen and will lead to infection in individuals that are immunocompromised or if skin epithelium is damaged from trauma. In human hospitals, Pseudomonas is a leading cause of nosocomial infections via colonization of catheters, skin wounds, ventilator-associated pneumonia and it is also a cause of respiratory infections in individuals with cystic fibrosis (CF) (Pier 1998, Kierbel et al 2007). Colonization by Pseudomonas spp. occurs when the fibronectin coat surrounding host cells is destroyed due to trauma or infection (Koenig 2012). The same is true in animals: those that are immunocompromised or have impaired immune function are more likely to succumb to infection with P. aeruginosa. The bacteria are normally found in the gastrointestinal tract, genital regions and upper respiratory tract but rarely lead to clinical disease as numbers are kept low by normal bacterial flora in these areas. If there is injury to these sites, inflammation or chronic antibiotic therapy that destroys normal flora, numbers can increase and lead to infection (Koenig 2012).

Pseudomonas aeruginosa and other gram-negative bacteria have an outer membrane plus the inner cytoplasmic membrane and intermediate peptidoglycan layer (Koenig 2012). This outer
membrane is not present in gram-positive bacteria. The polysaccharide capsule (also known as the glycocalyx) surrounds the outside of the bacteria. This capsule is a virulence factor and acts to protect the outer membrane from attack by components of the complement membrane complex and inhibits the attachment by phagocytic cells (Koenig 2012). The outer layer of the membrane is composed of mainly lipopolysaccharides (LPS), another important virulence factor for *Pseudomonas*. The LPS consists of a lipid portion embedded in the membrane, (lipid A, which is the component of endotoxin) and polysaccharide (also known as the ‘O’ antigen) that extends from the bacterial surface (Pier 2007, Koenig 2012). The ’O’ antigen is what determines the serogroup of the bacteria. There are approximately 11 variants of this ‘O’ antigen for *Pseudomonas* spp. The serogroup O14 and O15 lack detectable ‘O’ antigens but are still able to cause infection, indicating that there may be other components within the LPS, such as lipid A, acting as virulence factors (Pier 2007). Pattern-recognition receptors (PRRs) are expressed on cells of the innate immune system. Their function is to bind to pathogen-associated molecular patterns (PAMPs) entering the body. The lipid A portion of LPS acts as a PAMP that binds specifically to Toll-like receptor 4 (TLR-4), a PRR found on monocytes and at lower levels on B cells. The lipid A is thus a trigger of the innate immune response to infection by *Pseudomonas* (Clutterbuck *et al* 2007, Pier 2007). If TLR-4 recognizes the LPS and the innate immune response is activated there may be resistance to infection. However, if the LPS is protected from binding to TLR-4, the innate immune response will not be triggered (Pier 2007). LPS also stimulates cytokines to be produced and released and also triggers the complement cascade (Pier 2007). *Pseudomonas* can produce collagenase, lecithinase, lipase, protease, hemolysin, fibrinolysin, leukocidin and enterotoxin (Koenig 2012). These enzymes play a role in inflammation and the damage done to the host tissue by *Pseudomonas* spp. Complement is then activated and opsonization of the bacteria will occur. Bacterial cells will also be phagocytized
and the adaptive immune system will be activated (Clutterbuck et al 2007).

Pseudomonas spp. can survive on a wide range of substrates and adapt to changes in the environment (Lambert 2002). *Pseudomonas* causes infections ranging from ear disease to sepsis and the pathogenicity of the bacteria depends upon the presence of virulence factors, such as the LPS, toxins and adhesins (Klemm et al 2000, Pier 2007). For an infection to occur, the bacteria must first adhere to an epithelium via the presence of adhesins on the bacterial cell binding to lectins on the host cell surface. Adhesins are structures located on the bacterial outer membrane that are part of the bacterial fimbriae (an appendage on the outer surface of the bacterium). These adhesins are relatively sensitive and will only bind to certain molecules/proteins (Klemm et al 2000, Koenig 2012).

Pseudomonas aeruginosa will preferentially bind and enter cells via the basolateral surface (Koenig 2012). Organs, including skin, are usually lined with a multicellular epithelium containing cells that have both apical and basolateral surfaces. Each surface has specific proteins and lipids and are separated by tight junctions. The apical surface is a barrier to the outer environment and helps to exchange materials between the lumen of the cell and the external environment; whereas the basolateral surface is used for interactions with other cells and exchange with blood (Kierbel et al 2007). *Pseudomonas* will bind near a cell-to-cell junction and activate phosphatidylinositol-3-kinase (PI3K) to move to the apical surface. Protrusions from the membrane that are enriched with phosphatidylinositol (3,4,5)-triphosphate (PIP₃) and actin will accumulate at the apical surface as the site of binding. The protrusions lack apical membrane markers and are made of constituents of the basolateral membrane. Through this mechanism, epithelial damage makes it easier for *Pseudomonas* to enter the cell (Kierbel et al 2007).

Pseudomonas has few nutritional requirements and thrives in many different environments (Siegrist 2007). Moist environments provide the best resources for the bacteria; such as drains,
bath tubs etc. Open wounds, catheters or inflamed epithelium are susceptible to contamination from moist environments and hence infection by *Pseudomonas* (Koenig 2012).

1.6 Diagnosis of *Pseudomonas aeruginosa* otitis externa

Diagnosis of otitis externa is based on history, clinical signs, dermatologic examination, otoscopic examination, otic cytology and possibly cultures from the external ear canal. History taking should include questions regarding underlying disease and previous episodes of OE to determine what the primary factor is and whether this is a new episode of acute OE or whether OE is recurrent and chronic (Miller *et al.* 2013). A thorough dermatologic exam should take place to document whether there are any primary or secondary lesions in other regions of the body, such as erythema, epidermal collarettes, pustules or excoriations, that would provide evidence for the primary factor underlying the development of OE (Miller *et al.* 2013).

In any case of otitis externa, cytology must be performed to diagnose any secondary infections such as *Pseudomonas*. Visual appearance of otic exudate is often misleading and a veterinarian cannot make a definitive diagnosis of an infection due to a specific colour or texture of the exudate (Miller *et al.* 2013). A cotton swab is inserted into the external ear canal to the level of the junction of the horizontal and vertical canals. This swab is then removed and rolled onto a slide (Shaw 2012). The sample is heat fixed and stained using a Romanowsky-type stain (modified Wright’s stain or DiffQuik®) (Cole 2012). There is discrepancy between studies as to how many organisms constitute an active infection versus normal flora for Staphylococci. However, for *Pseudomonas*, even small numbers of the organism can constitute an infection, as gram-negative rods are not usually seen within the ear canal of unaffected dogs (Tater *et al.* 2003, Cole 2012). When inflammatory cells are noted on cytology, this is a significant finding and the number of organisms is irrelevant; especially if the organisms are located within the cells (Miller
et al 2013). Although cytology can identify the shape and number of microorganisms within the external ear canal, it cannot definitively determine the species. A bacterial culture is required to speciate bacteria and allow for antimicrobial susceptibility testing.

Cytology results will serve as a guide as to whether aerobic bacterial culture and susceptibility testing is required. In most cases where gram-negative rods are visualized, a bacterial culture and susceptibility testing is recommended as well as in cases where previous topical antibiotics have been ineffective (Shaw 2012, Cole 2012). Susceptibility testing indicates the minimum inhibitory concentration (MIC) of systemic doses of antibiotics. If an oral antibiotic is selected, especially for cases of otitis media, these culture results will guide the choice of oral antibiotic. For most cases of otitis externa, topical therapy will be used. Response to topical medication does not often correlate with susceptibility testing results and the choice of topical antimicrobial may not always be based on the culture results (Morris 2004). In one study 10/16 cases were reported to be resistant to a certain antimicrobial based on bacterial culture and susceptibility results. Clinically and cytologically 90% of these cases responded to topical therapy with this same antimicrobial (Robson et al 2010). There is concern as to whether bacterial culture and susceptibilities are reproducible and their validity. A study by Graham-Mize et al found that parallel cultures submitted to the same laboratory for Pseudomonas aeruginosa differed in their susceptibility patterns in 11% of cases and the cytology findings were in agreement with the culture findings only 68% of the time (Graham-Mize 2004). Another study found that some diagnostic laboratories inconsistently isolated Pseudomonas from bacterial cultures with rods noted on cytology, and there was also variation between susceptibility patterns (Schick et al 2007). This variation could be due to small numbers of organisms being present or differences in sample preparation and processing. However, these results are concerning as
Pseudomonas otitis can be challenging to treat and with antibiotic resistance always a concern, using antibiotics that *Pseudomonas* is not susceptible to, could lead to further resistance.

Otoscopic examination will detect whether foreign bodies are present within the ear canal, the magnitude of stenosis of the ear canal and whether exudate is present in the canal (Miller *et al* 2013). Both ears should be examined and cytology must be taken from both ear canals to compare the difference between the two in cases of bilateral OE and to compare abnormal to normal in cases of unilateral OE. The unaffected ear, or less affected, should be examined first to determine the baseline for that individual and to prevent the patient from becoming painful early in the examination, necessitating sedation or anesthesia (Miller *et al* 2013). In some cases of chronic or painful ear disease, sedation or anesthesia maybe required and even then this may not allow adequate visualization if the canal is stenotic or filled with debris/exudate. In these cases, anti-inflammatory therapy maybe needed for 7-14 days before otoscopic examination is successful (Miller *et al* 2013). In these latter cases where debris is present, flushing of the ear canal with sterile saline is required to remove exudate (Gortel 2004). When examining both ears, the otoscopic cone must be changed between the ears, as previous studies have documented that *Pseudomonas* and other organisms can be transmitted from one ear to the other via an otoscope cone (Newton *et al* 2006).

1.7 Treatment of *Pseudomonas aeruginosa* otitis externa

When treating *Pseudomonas aeruginosa* otitis there are two factors that must be addressed: keeping the ear canal clean and treatment with appropriate antimicrobials. Ear cleaners can be prescribed for patients with instructions for owners to properly clean the external ear canal. There are many products available including those with ceruminolytics, anti-inflammatories and anti-microbials. Cleaners routinely used in cases of OE show varying degrees of antimicrobial activity
as well as their “cleansing” activity (Cole et al 2003, Swinney et al 2008, Steen et al 2012). Ear flushing, under anesthesia or sedation, maybe important for treatment success if excess exudate is preventing administration of topical compounds or owner ear cleaning is not thorough enough. Flushing acts to manually remove excess cerumen and purulent exudate within the ear canal to allow increased contact of the topical antimicrobial with the ear canal epithelium (Gotthelf 2005). Ear flushing is also necessary if treatment fails to resolve the otitis. It is often recommended to flush ears infected with *Pseudomonas* prior to any treatment, as the exudate is usually purulent and can be very thick (Gortel 2004).

Topical therapy is most commonly used to treat canine otitis externa because antibiotic concentrations of 100-1000 times that of systemically delivered antimicrobials can be achieved in order to overcome resistant populations of *P. aeruginosa* (Morris 2004, Cole 2012). If medications are to be given topically, they must be able to reach the surface of the skin within the canal. This may mean, as stated above, that there is indication for using ear cleaners, measuring out the specific volume of the topical otic medication or using adjunctive therapy such as Tromethamine (Tris), edetate disodium dihydrate (EDTA) buffered to pH8 with Tromethamine HCL and deionized water, (Triz-EDTA® Aqueous flush, Dechra Veterinary Products, Kansas, US) to help antibiotics reach their site of action (Shaw 2012). Triz-EDTA® is commonly used as an adjunct therapy for dogs with *Pseudomonas* otitis (Nuttall et al 2007). It has been documented that flushing the canal with Triz-EDTA® 15 minutes prior to the application of a topical antimicrobial agent is beneficial in resolving the infection (Cole 2012). The tris buffer within the compound is thought to enhance the effect of the EDTA. EDTA acts to damage the cell surface of gram-negative bacteria such as *Pseudomonas* (Wooley et al 1983). EDTA treatment leads to chelation of cations from the outer membrane and hence disruption of the membrane (Hancock et al 1984). Previous studies have shown that Triz-EDTA® used in combination with an
antimicrobial can reduce the MIC and minimum bactericidal concentration (MBC) for certain antibiotics against planktonic bacteria (Wooley et al 1983, Sparks et al 1994). In a study by Farca et al, cases of canine otitis externa were treated successfully with topical Triz-EDTA® followed by topical enrofloxacin. Every dog in this study had an otic bacterial culture performed and *Pseudomonas aeruginosa* isolated. For every isolate, the bacterial population was noted to be resistant to enrofloxacin administered at systemic doses. All of these canines had been non-responsive to topical and systemic enrofloxacin previously (Farca et al 1997).

There are many otic medications available and care should be taken when selecting the appropriate medication for topical therapy. All medications have different antibiotics included, which have different mechanisms of action and spectrum of activity. The majority of otic medications contain not only an antibacterial agent but also a topical steroid and antifungal along with a specific vehicle or surfactant (Morris 2004). When rods are noted on cytology, otic medications including gentamicin, polymyxin B and enrofloxacin can be considered for treatment (Shaw 2012). Most otic medications come with label directions to instill a specific number of drops into the ear canal. Some clinicians prefer for a volume of fluid to be instilled as opposed to a number of drops i.e. 1ml in a large dog. This is due to growing concern that a small number of drops will not fully coat the external ear canal and potentially lead to subtherapeutic concentrations of antimicrobials being used therefore extending treatment and potentiating resistance (Morris 2004). Ticarcillin combined with potassium clavulanate, hypromellose, benzalkonium chloride and disodium edetate was found to successfully treat *Pseudomonas* otitis in a small numbers of cases and was also found to be stable for a prolonged period of time. Combining the ticarcillin with the clavulanic acid prevents resistance to the ticarcillin from developing, as the clavulanic acid would inactivate β-lactamases produced by the *Pseudomonas* (Bateman et al 2012).
Antibiotic therapy success depends on selecting the appropriate antibiotic, dose and duration of therapy (Shaw 2012). Any antibiotic selected, whether given systemically or topically, must be effective against gram-negative bacteria. With OE, there is debate as to whether systemically administered antibiotics will reach the desired concentration within the external ear canal. Unless the ear canal epithelium is ulcerated, which may be the case with *P. aeruginosa*, systemic antimicrobials are unlikely to reach therapeutic concentrations within the canal (Morris 2004). The fluoroquinolones are the only family of antibiotics with activity against *Pseudomonas* that can be given orally. All other systemic antibiotics must be given by injection or topical medications must be used (Guardabassi *et al* 2008). Previous studies show that levels of antibiotics given intravenously do not reach the required MIC within tissue for *Pseudomonas* (Cole *et al* 2009).

Antimicrobials for canine OE are most often selected empirically based on otic cytology, unless a bacterial culture and susceptibility has been performed (Morris 2004). There is currently no standard of care treatment for *Pseudomonas* OE due to limited data available and low numbers of studies performed. From a review by Nuttall *et al*, it was noted that the treatments with the highest success rates were Triz-EDTA® plus topical enrofloxacin, specific ear cleaners with antibacterial action, an otic gel containing norfloxacin and ketoconazole and both topical and injectable ticarcillin (Nuttall *et al* 2007). Susceptibility patterns of *Pseudomonas aeruginosa* isolates taken from cases of chronic canine OE have been studied and the most common antibiotics that *Pseudomonas* are susceptible to are aminoglycosides (gentamicin, tobramycin, neomycin and amikacin), polymyxin B, fluoroquinolones (marbofloxacin, enrofloxacin), ceftazidime, ticarcillin and imipenem (Barrassa *et al* 2000, Guardabassi *et al* 2008). Neomycin and gentamicin may not always be successful in clearing OE as they are inactivated in purulent material, so maybe best selected when there is scarce pus within the ear canal (Guardabassi
Monitoring of otitis externa is important to determine when there is resolution of the otitis. Resolution should not be judged on improvement of clinical signs solely but rather based on resolution of clinical signs and negative cytological findings (Miller et al 2013).

For acute *Pseudomonas* OE a first-line antimicrobial should be selected based on cytologic findings, for example polymyxin B. Therapy for at least 7-14 days is warranted and then the patient should be re-evaluated (Morris 2004). For chronic or recurrent OE, treatment maybe needed for a longer period of time and oral anti-inflammatories, such as glucocorticoids, may also be required. Topical treatment may require second or third line antibiotics, such as fluoroquinolones or aminoglycosides (Morris 2004). Oral antibiotics may also be needed if there is ulceration and pain (Morris 2004). Regular ear cleaning may be performed to maintain a clean microenvironment within the ear and to prevent recurrence of otitis (Nuttall et al 2004).

Treatment of the underlying condition is most important for resolution of the OE (Nuttall 2007, Miller et al 2013, Cole 2012). Each underlying cause or factor should be addressed i.e. primary, predisposing, perpetuating and secondary factors (Miller et al 2013). Depending on the severity of the otitis externa, oral anti-inflammatory therapy may be required to increase the patency of the ear canal (Gortel 2004).

1.8 *Pseudomonas aeruginosa* resistance to antimicrobials

Treatment of *Pseudomonas aeruginosa* otitis can be difficult, as these bacteria are intrinsically resistant to multiple antimicrobial classes and may also acquire resistance during treatment (Nuttall et al 2007). *P. aeruginosa* is frequently resistant to fluoroquinolones, first and second generation cephalosporins and penicillin derived β lactam antibiotics (Bateman et al 2012, Nuttall et al 2007). A study by Petersen et al performed over a six-year period noted that all otic
isolates of \textit{P. aeruginosa} were resistant to ampicillin, cephalothin, trimethoprim sulfadiazine and tetracycline but most were susceptible to aminoglycosides, ticarcillin, piperacillin and ciprofloxacin. This is in contrast to other studies that found the bacteria was resistant to other fluoroquinolones (Cole \textit{et al} 1998, Petersen \textit{et al} 2002). Previous studies have documented that high levels of fluoroquinolones are detected in ear tissue after systemic administration, which would prevent resistance from occurring readily if the correct dosages are being utilized (Cole \textit{et al} 2008). It is interesting to note that in this same study by Cole \textit{et al}, when otic samples of \textit{Pseudomonas} were compared to skin samples, fewer otic isolates were susceptible to gentamicin and amikacin. This could be due to the common usage of aminoglycosides in topical ear medications (Petersen \textit{et al} 2002). Resistance leads to decreased treatment options and increased morbidity.

Emergence of antimicrobial resistance is steadily increasing which could be due to transmission between patients or due to exposure to multiple antimicrobials over the lifetime of a patient. Resistance after antimicrobial exposure can result in multidrug resistant \textit{Pseudomonas aeruginosa} strains. In humans, Multi Drug Resistant (MDR) \textit{Pseudomonas} previously occurred rarely in patients without cystic fibrosis (CF) (Aloush \textit{et al} 2006). However, overall resistance is prevalent in isolates from hospitalized patients and resistance to certain antimicrobials is rising (Livermore 2002).

The overall intrinsic resistance noted for \textit{P. aeruginosa} is due to low permeability of its cell wall (Lambert 2002). Any antimicrobials used for \textit{P. aeruginosa} infections must cross the cell wall to reach the target. Aminoglycosides inhibit protein synthesis by binding to the 30s subunit of the ribosome, fluoroquinolones bind to the A subunit of DNA gyrase, \(\beta\)-lactams inhibit transpeptides on the outer face of the membrane that assemble peptidoglycan and polymyxin B will bind to phospholipids in the outer membrane destroying barrier function (Lambert 2002). If
these antimicrobials are unable to reach their target molecules, they cannot exert their antimicrobial action.

There are three basic mechanisms of resistance in any organism including failure of the antibiotic to accumulate in the cell, changes in targets of the antimicrobial or inactivation of the drug (Lambert 2002, Stewart 1994). Failure of antimicrobials to accumulate within an organism is often due to either restricted permeability, as is seen with Pseudomonas, or efficient removal of antibiotic molecules from the cell by action of efflux pumps (Lambert 2002). Efflux systems are comprised of energy dependent pumps in cytoplasmic membranes, the outer membrane porin and linker proteins that join these other two molecules together (Lambert 2002). All antibiotics, except polymyxins, are susceptible to extrusion via efflux systems (Lambert 2002). The Opr family are a group of outer membrane porins in Pseudomonas species and other gram-negative bacteria. Pseudomonas will produce different proteins within the Opr family and a loss of one of these proteins is not always the cause of antibiotic resistance (Lambert 2002). However, loss of oprD is associated with resistance to imipenem and reduced susceptibility to meropenem, as these antibiotics require a porin to cross the outer membrane (Livermore 2002, Quale et al 2006).

The Mex family of proteins are part of the efflux pump system found in many bacterial species. OprD is regulated with MexEF-oprN. MexAB-oprM is another pump system, combined with the porin protein, that is responsible for extrusion of β-lactams, chloramphenicol, fluoroquinolones, macrolides, tetracyclines, sulfonamides, trimethoprim and a range of disinfectants. If this system is upregulated there will be resistance to those antibiotics that can be pumped via this system. Other efflux pump systems have also been documented and shown to increase resistance to antimicrobials when upregulated. MexXY-oprM extrudes aminoglycosides and MexEF-oprN extrudes carbapenems and fluoroquinolones (Lambert 2002, Livermore 2002). MexT mutants are strains with mutations in both the pump system and the porin protein leading to
upregulation of the *MexEF-oprN* and reduced *oprD* function, the result of which is resistance to both fluoroquinolones and imipenem and reduced susceptibility to meropenem (Livermore 2002). If all efflux pumps systems are upregulated this means that individual isolates can become resistant to greater numbers of antibiotics. Resistance to aminoglycosides has been noted in laboratory strains due to overexpression of *oprH* leading to decreased permeability (Livermore 2002).

Changes in the target molecule can include mutations in target enzymes. For example the mutation in *gyrA* gene (encodes A subunit of DNA gyrase) and *parC* gene (encodes topoisomerase IV) have been documented to lead to resistance to fluoroquinolones (Tejedor et al 2003). Although in Tejedor’s study, they found that the *parC* gene was not mutated in any of the fluoroquinolone resistant *P. aeruginosa* isolates. This suggests this gene is not solely responsible for resistance to this family of antimicrobials. In this same study the use of an efflux pump inhibitor lead to decreased MICs for the fluoroquinolones so it is possible that a combination of decreased efflux and genetic mutation are responsible for the resistance documented for the fluoroquinolones (Tejedor et al 2003). Changes in the 30s subunit of the ribosome influence sensitivity to streptomycin and other aminoglycosides and resistance to β lactams stems from alteration of penicillin-binding proteins (Lambert 2002).

Inactivation and modification of antibiotics occurs via multiple routes. All *Pseudomonas* strains possess the *ampC* gene for inducible β lactamases (Lambert 2002, Livermore 2002). β lactamases will break down the β lactam ring forming part of β lactam antibiotics rendering the antibiotics ineffective. The efflux pump system previously mentioned is thought to contribute to antimicrobial resistance in combination with *ampC* (chromosomal β lactamases) (Lambert 2002). Over-expression of this enzyme results from spontaneous mutation in the regulatory gene *ampR*. Over production of the *ampC* β lactamase poses a threat to cephalosporins and other β lactam
antibiotics (Lambert 2002). Other β lactamases produced include extended-spectrum β-lactamases (ESBLs), which are plasmid-mediated enzymes active against penicillins and cephalosporins (Lambert 2002). An example of an ESBL is PER-1, which is a β-lactamase that confers resistance to ceftazidime. Use of β lactamase inhibitors, such as clavulanic acid, confers protection of the antibiotic against the plasmid-mediated enzyme but not that produced via induction of the ampC enzyme. Inactivation of aminoglycosides occurs through production of enzymes which transfer acetyl, phosphate or adenylyl groups to amino and hydroxyl substituents on antibiotics (Lambert 2002). Modifying these enzymes uses cytoplasmic cofactors (acetyl co-enzyme A or ATP) to supply molecules added to the aminoglycoside antibiotics. Acquisition of the genes for the modifying enzymes would require transfer from bacterial strains bearing plasmids (Lambert 2002). If cells mutate during antibiotic treatment, this does not lead to over expression of these enzymes, as is the case with chromosomal β lactamases (Lambert 2002).

Trying to prevent resistance from developing is challenging with many different routes to consider. This necessitates the need to select appropriate antimicrobials and use appropriate doses over the treatment period to prevent subtherapeutic concentrations from occurring.

1.9 Bacterial Biofilms

In nature bacteria can exist in a planktonic and biofilm embedded state (Clutterbuck 2007). Biofilm growth is the most predominant mode of growth for bacteria within the environment and is likely a survival mechanism (Boles et al 2005). A biofilm is a bacterial population that is adherent to a biological or non-biological surface and is enclosed by an extra-polymeric substance (EPS) (Costerton et al 1995). Microorganisms form biofilms that exist in the environment, whether upon inanimate objects or living animals. The bacteria attach to these surfaces, including soil and aquatic systems, and have been documented in the human literature
developing on medical devices, within the middle ear, external ear, lungs, heart valves, surgical implants and tooth enamel (Donlan 2001). Biofilms have been noted in the veterinary literature associated with chronic mastitis in cows, within the middle ear cavity, on surgical implants and wounds and as a potential virulence factor in *Staphylococcus pseudintermedius* which is the most common cause of skin and surgical site infections in dogs (Ehrlich *et al* 2003, Melchior *et al* 2006, Singh *et al* 2013).

In order for biofilms to form there must be specific environmental cues, such as nutrient availability, presence of iron and oxygen limitation that trigger this lifestyle switch (Costerton *et al* 1995, O’Toole *et al* 1998, O’Toole *et al* 2000, Clutterbuck 2007). Increased levels of acylhomoserine lactone produced by individual cells will also lead to specific gene expression that contributes to biofilm formation (Costerton *et al* 1999). Other signals come from quorum sensing (QS) molecules. These molecules aid in cell-to-cell signaling and genes such as *las* and *rhl* are responsible for the expression of some of these molecules in *Pseudomonas* spp. These molecules will also regulate expression of virulence determinants (Parsek *et al* 2000).

Biofilm formation occurs during a five-stage cycle: initial attachment, irreversible attachment, two maturation stages and dispersal (see Appendix 2). This cycle begins when planktonic cells attach to a surface (O’Toole 2003, Ma *et al* 2009). Biofilm formation in gram-negative bacteria occurs when bacterial cells first swim along a surface, using flagellar-mediated motility, until attachment occurs at a specific site (O’Toole *et al* 2000). These cells then form a monolayer where their attachment is initially reversible. Reversible attachment involves cell pole mediated interactions where the cells make contact with a surface via the cell pole (Clutterbuck 2007). Van der Waals forces and electrostatic charge play a role in this initial attachment (van Loosdrecht *et al* 1989). Once contact with a surface is made and reversible attachment has occurred, bacteria use type IV pili to move slowly within the monolayer. Movement occurs when
the pili extend and then retract to propel the bacterium forward (Stoodley et al. 2002). When surface contact occurs the bacteria are still motile. Initial growth of bacteria is the production of microcolonies (clusters of cells), which form when cells aggregate together. With further movement of the cells using type IV pili, known as twitching motility, the attachment becomes irreversible. This will develop once surface interactions are stable (Stoodley et al. 2002, Clutterbuck 2007). Twitching motility is also thought to be involved in further microcolony production (O’Toole et al. 1998). Remaining bacteria will move between the colonies that have formed (Klausen et al. 2003).

Irreversible attachment occurs when the cells cannot be removed by gentle rinsing. At this time the individual cells reorient to the longitudinal cell axis (Jackson et al. 2004). It is thought that the twitching motility enables bacteria to overcome electrostatic repulsion present on the surface and adhere to this same surface (van Loosdrecht et al. 1989). The bacteria undergo cell division, form larger microcolonies and produce extrapolymeric matrix (EPS) (Donlan 2001). Previous studies document that the EPS of a biofilm is visible within 5 hours after inoculation and characteristics associated with a mature biofilm can be seen after 10 hours (Harrison-Balestra et al. 2003). The lasR-lasI QS system in Pseudomonas aeruginosa will also be activated when attachment becomes irreversible and rhlR-rhlI will be activated during the first maturation stage. Both of these are QS systems that activate genes that contribute to biofilm formation (Clutterbuck 2007).

The EPS forms around the cells and is composed of polysaccharides, nucleic acid and proteins. This self-produced barrier protects the cells from environmental conditions, shear stress, antimicrobials and the host immune response (Clutterbuck 2007). The EPS is highly hydrated with a composition of 98% water (Donlan 2001). This hydrated matrix surrounding the bacterial cells will protect against dessication from the external environment (Clutterbuck 2007). All
bacterial cells produce glycocalyx but in biofilm, cells are cemented together and immobilized by this glycocalyx (Davies et al 1998, Clutterbuck 2007). Due to the increased number of bacterial cells in a biofilm and the glycocalyx surrounding them, making them immobile, diffusion of nutrients and oxygen to individual cells is minimal. Water channels form within the biofilm allowing for transport of nutrients and oxygen to the cells. Water channels are maintained by rhamnolipid surfactants, whose production is controlled by quorum sensing molecules (Davey et al 2003). This limited supply of nutrients and oxygen means that cells grow slower within a biofilm (Donlan 2001). RpoS, a transcription factor, can be activated in Pseudomonas biofilms when nutrients become limited. RpoS is a stationary-phase sigma factor that can also regulate resistance for gram-negative bacteria. The activation of this gene is a self-protective mechanism to facilitate survival of the bacteria by initiating release of cells from the biofilm due to nutrient depletion (Clutterbuck 2007).

The other components of the EPS depend on environmental conditions, age of the biofilm and the strain forming the biofilm (Harmsen et al 2010). Three genes psl, pel and one for alginate, contribute to biofilm formation in Pseudomonas aeruginosa by encoding for specific exopolysaccharides that make up part of the EPS (Friedman et al 2004, Leid et al 2005). Pel is involved in the production of glucose and is involved in pellicle formation. Psl (polysaccharide synthesis locus) is involved in mannose production (Clutterbuck 2007). The study by Ma et al looked at the distribution of psl exopolysaccharide and found that, during the attachment stage, this polysaccharide was noted primarily on the bacterial cell surface in a helical pattern (Ma et al 2009). It is hypothesized that this helical nature may contribute to cell-to-cell interactions with adjacent bacteria, which will begin to establish a matrix between the two individual cells (Ma et al 2009). Another theory is that other proteins or lipids may have a similar shape and so insertion of cells is easier (Ma et al 2009). Cells treated with cellulase showed dissociation of the psl from
the surface of the bacteria. This could indicate that this polysaccharide is attached to the cell surface via the target of cellulase β-1,3 or β-1,4-linked glucose (Ma et al 2009). Further studies showed that cellulase treatment reduced biofilm development, indicating that psl expression is likely essential for biofilm development (Ma et al 2009). This finding is further substantiated by studies documenting that pslAB mutants are unable to initiate biofilm formation; the A and B are different genes within the psl cluster of genes (Jackson et al 2004). Levels of psl were detected in regions with no bacterial cells but it is unknown whether the genetic material dispersed from a cell or whether it remains attached to a surface after the bacteria have dispersed. This expression could facilitate recruitment of cells to the surface and connecting them together (Ma et al 2009).

Depending on environmental conditions and nutrient cues, biofilms can form flat structures or microcolonies with a three-dimensional arrangement. Conditions that are high in nutrients favour production of flat biofilms whereas in low nutrient environments, the “classical” three-dimensional mushroom shaped biofilm will form (Clutterbuck 2007). A pellicle may form which is a part of the biofilm that forms at the air-liquid interface (Sakuragi et al 2007). Distribution of polysaccharides within each of these microcolonies is different (Ma et al 2009). In the “classical” mushroom shaped colonies there is less of psl expressed in the lower centre (Ma et al 2009). Studies have also shown that if colonies form mushroom structures, the stalks are formed from growth of non-motile bacteria and the caps are aggregations of motile bacteria. There will also be cavities within these microcolonies (Klausen et al 2003).

When focusing on motile bacteria, two factors contribute universally to biofilm formation. These are extracellular polysaccharides and swarming motility (O’Toole 2008). There is an inverse relationship between biofilm formation and swarming motility (O’Toole 2008). This stands to reason as bacteria within the core of the biofilm that are embedded are non motile and
the more the bacteria move once irreversibly attached, the more difficult biofilm formation becomes.

Extracellular DNA (eDNA) is a third important component of the biofilm matrix. The eDNA is derived from chromosomal DNA and functions in cell-to-cell connections within the biofilm. It is released in the largest amounts during the late phase of growth (Allensen-Holm et al 2006). This release is not noted in QS mutants, suggesting that QS plays a role in DNA release (Allensen-Holm et al 2006). This eDNA is intertwined between cells in large clumps (Allensen-Holm et al 2006). A *fliMpilA* *Pseudomonas aeruginosa* mutant that does not have the cellular appendages of flagella and pili did not produce eDNA. eDNA is found primarily within the stalks of mushroom shaped biofilms. Pili will attach to DNA, which explains why the caps of the mushrooms are formed from motile bacteria (Allensen-Holm et al 2006). Cell autolysis occurs in microcolonies and it is thought to mediate eDNA release (Webb et al 2003). Previous studies indicate that treatment with DNase leads to disruption of biofilm integrity (Webb et al 2003).

As the cells cycle through two maturation stages, certain genes are upregulated and there is marked phenotypic variation between the planktonic cells and the biofilm embedded cells (Clutterbuck 2007). *Arc* proteins are involved with anaerobic processes and play a role in amino acid metabolism and these are also upregulated during the first maturation phase. This highlights that there is likely oxygen limitation in regions of the biofilm (Sauer et al 2002, Clutterbuck 2007). During the second maturation phase, where optimal thickness is achieved, over 70 genes will undergo alterations in expression with the result of proteins being significantly different to those in the first maturation stage (Whiteley et al 2001).

Biofilm embedded bacteria have a decreased ability to evade stresses as they are confined to the biofilm and their motility is repressed (Whiteley et al 2001, Sauer et al 2002). When nutrients are depleted as a result of biofilm growth, it is necessary for bacteria to be able to separate from
the biofilm. This process is known as detachment (Boles et al 2005). Once the biofilm reaches its maximum thickness, detachment, or dispersion, will occur. This increase in thickness occurs after activation of las and rhl quorum sensing systems. During this time, proteins within the biofilm are more similar to those in planktonic cells (Clutterbuck 2007). Biofilm reaches maximum thickness during the second maturation stage, which is the point where biofilm bacteria are phenotypically different from planktonic bacteria. At least 50% of the proteins undergo changes in regulation between the planktonic stage and this second maturation stage (Sauer et al 2002). Detachment can be continual (erosion) or can be rapid with a larger number of cells being dispersed (sloughing). Detachment of individual or clumps of cells creates motile bacteria that can cause infection (Boles et al 2005). Cells that are lost can retain characteristics such as antimicrobial resistance (Clutterbuck 2007). Cells detach from the biofilm due to either growth and division or removal of biofilm aggregates that contain masses of cells (Donlan 2001). At the dispersion stage, there are numerous bacteria within the centre of the microcolonies. Swarming is facilitated by biosurfactant and rhamnolipid (Kohler et al 2000). Rhamnolipids are glycolipids with many functions including facilitating swarming, altering surface polarity of bacteria and they have surface-active properties that decrease adhesive interactions and therefore can function as detachment factors (Al-Tahhan et al 2000, Kohler et al 2000, Boles et al 2005). They also have antimicrobial activity against other bacteria (Haba et al 2003). Rhamnolipids can cause release of lipopolysaccharides from P. aeruginosa, which will enhance the hydrophobicity of the bacteria leading to increased adhesiveness, which can contribute to initial biofilm formation (Al-Tahhan et al 2000, Harmsen et al 2010). In previous studies, inactivation of the rhamnolipid genes eliminated the accelerated detachment phenotype. We can presume that rhamnolipids are needed for detachment to occur (Boles et al 2005). Dispersion of biofilm embedded cells can also
be induced by the addition of alternate carbon sources such as glutamate or citrate and ammonium chloride (Sauer et al 2004).

Most wild-type biofilms release a small number of cells continuously and will also spontaneously detach after prolonged growth (Boles et al 2005). An rhlAB, Pseudomonas aeruginosa mutant shows the following growth pattern for detachment: First biofilm slackens and individual bacteria will begin to move within the structure. Cavities then form within the biofilm where bacteria can be seen swimming around. The cavity size increases over time and then ruptures (Boles et al 2005). The remaining biofilm will then detach leaving a monolayer of cells behind (Boles et al 2005). Growth in wild type bacterial populations is similar but occurs after longer periods of time (Boles et al 2005). The presence of bacteria within cavities highlights that some motility is retained, whereas previous work has shown that swimming motility is suppressed during biofilm growth (Whiteley et al 2001). Cells detach slowly from the biofilm and can show intermediate resistance to certain antimicrobials when compared to those within biofilm (Boles et al 2005). This suggests that detachment may restore certain phenotypes including antibiotic sensitivity and motility. In mixed biofilms with both wild type and mutant bacteria, the wild type may localize to the centre of biofilm and the mutant to the exterior. Pure wild type bacterial biofilms do not undergo detachment until later whereas when mixed genotypes are present, detachment occurs earlier (Boles et al 2005).

The surface the biofilm develops on can be smooth or rough and ranges from hydrophobic material such as Teflon, to hydrophilic material such as metal or glass (Donlan 2001). Biofilms have been found to grow more rapidly on surfaces that are rough and hydrophobic (Donlan 2001). The presence of flagella, pili and the glycocalyx capsule will impact the rate of growth of bacterial biofilms (Donlan 2001). A study by Hoyle et al documented that calcium treatment of biofilms stopped piperacillin from diffusing across the biofilm, indicating that calcium may
change the structure of the EPS or interact with efflux pumps or genes controlling entry of the antimicrobial into the cell (Hoyle et al 1992).

Once the bacteria are embedded within the biofilm they avoid being cleared by both the innate and adaptive immune response. Host defences are often not effective against biofilms. Indwelling devices, if colonized by a biofilm, must be removed as they cannot be adequately treated with antimicrobials (Jesaitis et al 2003). This extra protection from the EPS also means that traditional concentrations of antimicrobials, that would be used to kill the planktonic form, will be ineffective in killing cells within a biofilm (Clutterbuck 2007).

In the human literature, it has been noted that biofilm embedded bacteria are less susceptible to antimicrobials than their planktonic counterparts (Drenkard et al 2002). Attack by antimicrobials can change the phenotype of the bacteria within the biofilm in many ways, which may be yet another reason why biofilm embedded bacteria are less susceptible to antimicrobials. Levels of alginate are actually increased in response to imipenem by as much as a twenty fold increase in the level of alginate in biofilms exposed to imipenem, as opposed to control biofilms (Bagge et al 2004). Certain antimicrobials have also been found to alter biofilm formation; such as azithromycin delaying biofilm formation in vitro (Gillis et al 2004). It has been noted that azithromycin retards biofilm growth and formation by blocking QS controlled lasB, by suppressing the virulence factors in mucoid strains of the bacteria and inhibits alginate production. Azithromycin also increases the sensitivity to hydrogen peroxide for biofilm embedded cells. However, in this same study it was noted that azithromycin has no effect on mature biofilms (Hoffman et al 2007).

Bacteria embedded within biofilms also have other methods of resistance. First the EPS provides a barrier between the external environment and the bacteria preventing penetration by the host immune response and antimicrobials (Lambert 2002, Clutterbuck 2007, Donlan et al
2011). For example small hydrophilic molecules such as β lactam antibiotics can only pass through channels created by porin proteins and certain mutations in genes coding for these proteins can occur within biofilms (Lambert 2002). The nutrient limitations within the biofilm mean that the cellular growth rate is decreased. As many antimicrobials function on actively growing cells this means that the antimicrobial function maybe decreased. The efficacy of certain antibiotics is also reduced due to the lower oxygen requirements within the biofilm e.g. tobramycin and ciprofloxacin (Clutterbuck 2007). This decreased rate of growth will also decrease the rate that antimicrobial agents are taken into the cell. If no antimicrobial is present then there will be no antimicrobial action (Donlan et al 2011). Due to the close proximity within biofilms, plasmids may also be exchanged between individual cells, which can confer resistance from one cell to another (Donlan et al 2011). These factors along with altered gene expression and quorum sensing lead to increased resistance to antibiotics once bacteria are embedded within the biofilm (Clutterbuck 2007).

1.10 Pseudomonas aeruginosa biofilm

1.10.1 Pseudomonas aeruginosa biofilm microbiology

Pseudomonas can readily form biofilms in any environment conducive to growth, compared to other bacteria that require specific conditions such as temperature and pH (Clutterbuck 2007). Pseudomonas aeruginosa biofilms are commonly noted in humans with cystic fibrosis and diabetics with foot ulcers (Moreau-Marquis et al 2008, Watters et al 2012). Most of the human research targeting Pseudomonas biofilm production stems from these two diseases. For isolates obtained from the lungs of CF patients, there is variation in their ability to form biofilm (Head et al 2004). In the lungs of CF patients, the mucus produced is hyper viscous and hence there is reduced clearance of inhaled particles. Pseudomonas can attach to the mucin and form biofilms.
The low oxygen environment facilitates biofilm formation and the calcium imbalance documented further allows bacterial adherence (Clutterbuck 2007). The presence of QS molecules in CF sputum has been documented as evidence that Pseudomonas forms biofilms in the lungs of CF patients (Moreau-Marquis et al 2008). The ratio of these molecules noted in sputum from CF patients is similar to that seen in vitro with biofilm growth, as opposed to planktonic growth (Moreau-Marquis et al 2008). Recent studies performed show that treatment with azithromycin in vitro, which interferes with QS signaling, as well as alginate production, helps clear P. aeruginosa from a mouse model of chronic lung infection (Hoffman et al 2007).

Some Pseudomonas isolates do form biofilms and others do not. Reasons why some isolates form biofilms have been hypothesized. It has been documented that nutrient depleted environments favour biofilm formation and high concentrations of nutrients suppress biofilm formation (Costerton et al 1995). Hydrophobicity of a surface and minor temperature changes do not appear to impact biofilm formation for Pseudomonas (Head et al 2004). However, other studies have found that transcription of certain genes that play a role in biofilm formation are temperature dependent such as pel (Sakuragi et al 2007).

Biofilms can also form in anaerobic conditions and are thicker than those formed under aerobic conditions (Yoon et al 2002). It is unknown why this is the case but is likely linked to the fact that Pseudomonas biofilms grow better in low oxygen environments (Walter et al 2003, Clutterbuck 2007). This could potentially be an adaptive mechanism due to the fact that oxygen transport within biofilms is limited (Clutterbuck 2007). Pseudomonas can grow anaerobically via denitrification, where nitrate or nitrite is used as an alternate substrate to oxygen. In vitro nitrate supplementation decreased killing of biofilm embedded cells by ciprofloxacin and tobramycin and diminished the activity of other antibiotics tested (Borriello et al 2004). This fact suggests that oxygen limitation within a biofilm plays a large role in antibiotic tolerance for Pseudomonas.
PilA mutants, those with defective pili, are unable to form biofilms under anaerobic conditions suggesting that pili are needed for anaerobic biofilm production, potentially to begin the attachment process (Yoon *et al* 2002).

P. aeruginosa biofilms have a dense cell mass at the base of the biofilm with 27% of the biomass at the attachment surface (Costerton *et al* 1995). Planktonic cells will interact with a surface dependent on many factors including nutritional status of the environment (Costerton *et al* 1995). *P. aeruginosa* exhibits different behaviours when it encounters solid or semisolid surfaces. The cells can then form biofilms, swarm and begin pili-mediated twitching (O’Toole 2008). Cells within biofilms are thought to be different than their planktonic counterparts (Sauer *et al* 2002). For example, *P. aeruginosa* growing on a surface has increased expression of *algC*, a gene required for synthesis of extracellular polysaccharide (Stapper *et al* 2004). Other differences include changes in expression of pili, fimbriae and proteins (O’Toole *et al* 1998). Strains of *Pseudomonas* that are known as “mucoid types”, commonly found in the lungs of CF patients, over-produce alginate (Hentzer *et al* 2001). These mucoid types develop highly differentiated biofilms that are more heterogeneous in their cellular structure (Hentzer *et al* 2001). Mucoid biofilms over producing alginate have also been found to be more resistant to certain antimicrobials and form thicker, rougher biofilms with enhanced microcolony formation (Hentzer *et al* 2001). Other studies document that alginate is not critical for biofilm formation and alginate over production is not responsible for decreased levels of biofilm biomass, but it does change the architecture of the biofilm; when alginate is produced the biofilm bacteria will stay together and form compact colonies and then grow vertically and horizontally (Stapper *et al* 2004). *Pseudomonas* bacteria that lack alginate are killed by human leukocytes in the presence of IFN-gamma, whereas bacteria from wild-type biofilms are not killed by human leukocytes (Leid *et al* 2005). This suggests that alginate also plays a role in defense against the host immune response.
The main family of cells that kill alginate negative bacteria are mononuclear cells (Leid et al 2005). Alginate can act as a barrier in biofilms by surrounding cells and binding them together. It can also bind cationic antibiotics such as aminoglycosides and therefore restrict their diffusion into the cell (Lambert 2002).

Neutrophils are likely the most significant component of the host defence against Pseudomonas biofilms (Jesaitis et al 2003). When bacteria in a biofilm are exposed to neutrophils in vitro, the bacteria exhibit increased oxygen consumption and a cloud of bacteria is released that then surrounds the neutrophils. The neutrophils become surrounded by the biofilm but still appear able to engage in phagocytosis, degranulate and mount a respiratory burst. Neutrophil contact stimulates individual cells to move away from this contact (Jesaitis et al 2003). Previous studies have documented that the presence of neutrophils will lead to a reduction in the number of planktonic P. aeruginosa bacteria present but once the neutrophils have died and lysed, their remaining parts, specifically actin and DNA, lead to an increase in biofilm development (Walker et al 2005).

Biofilm formation in half of a population of defective Pseudomonas fluorescens cells in minimal media was restored in one study by supplementing the media with iron or by using either citrate or glutamate as the sole energy source. This suggests that multiple, convergent pathways are involved in biofilm formation and that the presence of iron and appropriate polysaccharides contributes to biofilm formation (O’Toole et al 1998). Lactoferrin has activity as an iron chelator. Lactoferrin is one component of the innate immune system and can inhibit bacterial growth at high concentrations (Singh et al 2002). Lactoferrin may also be bactericidal by binding LPS and disrupting membranes so bacteria do not differentiate into biofilm structures (Singh et al 2002). The absence of lactoferrin will lead to normal biofilm development (Banin et al 2005). Lactoferrin has also been noted to alter cell movement and in the presence of lactoferrin,
daughter cells move away from the point of cell division (Singh et al 2002). Lactoferrin also prevents biofilm formation by stimulating twitching motility (Singh et al 2002). If increased lactoferrin prevents biofilm formation, there is a possibility that iron may play a role in biofilm development as well. Banin et al studied the effects of iron on biofilm formation and found that, in the absence of lactoferrin, if no functional iron uptake system was present, biofilms would still form flat, thin colonies (Banin et al 2005). Pseudomonas aeruginosa cannot acquire sufficient iron for biofilm development via passive diffusion but can obtain iron and support biofilm formation using endogenous pyoverdine and pyochelin (siderophores; iron chelating compounds secreted by microorganisms) or ferric dicitrate or desferrioxamine (Banin et al 2005). Fur (ferric uptake regulator) is an intracellular iron regulator found in Pseudomonas and suppresses transcription dependent on iron levels. However, Fur mutants can form biofilms even in the presence of lactoferrin (Banin et al 2005).

Pseudomonas can induce the synthesis of EPS matrix components in response to signals that are sensed by sensor kinase response regulators such as LadS, RetS and GacS (Goodman et al 2004). RetS and GacS operate in an opposing manner. RetS will suppress genes that encode for polysaccharide components of the biofilm, including pel, which plays a role in polysaccharide production in biofilms. GacS is needed to activate genes involved in chronic persistence including those involved in biofilm formation; gacS mutants did not proceed past the irreversible attachment phase and the biofilms formed were flat and lacked a layered structure typically noted in mature biofilms (Goodman et al 2004 Davies et al 2007). GacS mutants are found to be hyper motile and hence poor biofilm producers (Davies et al 2007). However, some gacS mutants also give rise to small colony variants (SCV). These variants display a hyper-biofilm forming phenotype and are less motile and more tolerant to antimicrobial agents than the mutant strains (Davies et al 2007). This suggests that gacS may have a role in regulating the conversion of
variants back to a normal morphology (Davies et al 2007). Previous studies have documented that, for CF isolates, low concentrations of antibiotics may select for hyper-biofilm-forming SCVs from biofilms of the mutant gacS. This indicates that if subtherapeutic concentrations of antibiotic are used for the treatment of biofilms, this may increase the biofilm-forming ability of the bacteria leading to further difficulties with treatment (Drenkard et al 2002, Davies et al 2007). This highlights the need to develop a screening test for biofilm antibiotic susceptibility and to accurately document when biofilms may form. The study by Davies et al also showed that silver ions might trigger these hyper-biofilm-forming SCVs (Davies et al 2007).

It has been shown previously that eDNA in the matrix can induce antibiotic resistance (Mulcahy et al 2008). The eDNA within the extracellular matrix creates a cation-limited environment that is detected by Pseudomonas. LPS modification genes are induced leading to antimicrobial resistance, especially to aminoglycosides (Mulcahy et al 2008). The DNA also disrupts the integrity of the cell envelope leading to cell lysis by chelating cations (Mulcahy et al 2008).

Specifically for Pseudomonas aeruginosa, changing bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) concentrations also affect biofilm formation and swarming motility. They do this by production of specific polysaccharides within the biofilm matrix and by control of flagellar function (O’Toole 2008). C-di-GMP is a second messenger found in bacteria that will regulate processes such as the change from planktonic motile cells to an adhesive structure such as a biofilm. A study by Head et al documented that, among a group of flagellar mutants and a wild-type strain of Pseudomonas aeruginosa, the isolates forming the most biofilm were the isolates with mutations in the flagellar gene. This same study also documented isolates with twitching motility formed the smallest amount of biofilm (Head et al 2004). This suggests that, although twitching motility is important in the initial stages of biofilm attachment, continued
motility has a negative impact on biofilm formation.

Along with the las and rhl QS systems, Pseudomonas has its own third cascade known as the Pseudomonas quinolone signal (PQS). This is synthesized from anthranilic acid (Musk et al 2006). Links between this cascade and biofilm formation have yet to be precisely documented.

N-decanoyl-L-homoserine benzyl ester (C2) is a newly discovered QS inhibitor. This C2 will decrease rhamnolipid production to 50% compared to control populations (Yang et al 2012). Swarming motility is dependent on rhamnolipids acting as a biosurfactant and these are dependent on QS. Changes in colony morphology and size have been documented with the addition of C2 (Yang et al 2012). Certain antibiotics such as gentamicin, meropenem and tobramycin also show synergistic activity when combined with C2 (Yang et al 2012). C2 had been noted to inhibit virulence of Pseudomonas aeruginosa by inhibiting expression of lasR, lasI, rhlR and rhlI, all QS molecules with a role in expression of virulence factors (Yang et al 2012).

Cell death and lysis occur in microcolonies of Pseudomonas aeruginosa; after 12 days of growth, up to 50% of the microcolonies can be lysed (Webb et al 2003). No cell death is noted in rpoN mutants, which are deficient in both type IV pili and flagella. Las mutants and rhl mutants showed wild-type death in biofilms, suggesting that both of these QS molecule may contribute to longevity in non-mutant strains (Webb et al 2003). Detachment in Pseudomonas biofilms is similar to other bacteria and involves either the discharge of individual bacteria, separation of cell clusters or the mass detachment of whole colonies (Stoodley et al 2001, Boles et al 2005).

1.10.2 Treatment of Pseudomonas aeruginosa biofilm

We know from previous research that bacteria within biofilms may be up to one thousand times more resistant to antimicrobials (Mah et al 2003). Bacteria within biofilms may also be more resistant to disinfectants and other compounds. P. aeruginosa biofilms are resistant to toxic
oxygen products such as hydrogen peroxide. The bacteria can convert this product back to oxygen with catalase and superoxide dismutase activity rendering it ineffective (Hassett et al 1998, Lu et al 1998). This indicates that selecting the appropriate antimicrobial is even more important if bacterial biofilm growth is suspected. The same principals of selecting antimicrobials without intrinsic resistance to P. aeruginosa, apply to biofilm embedded bacteria as for those noted for the planktonic bacteria.

It has also been documented that levels of alginate are actually increased in response to imipenem by as much as a 20-fold increase in the level of alginate in biofilms exposed to imipenem as opposed to control biofilms (Bagge et al 2004). This fact is concerning as it suggests that exposure to antimicrobials may actually promote biofilm development. This same mechanism has also been documented for aminoglycosides (Hoffman et al 2005). As with the planktonic form of the bacteria, topical therapy maybe more effective for Pseudomonas aeruginosa biofilms as increased antimicrobial concentrations can be reached.

Research into compounds that may affect the EPS and barriers to antimicrobial penetration are underway. As with planktonic cells, studies have shown that Triz-EDTA® used in combination with an antimicrobial, can reduce the MIC and minimum bactericidal concentration (MBC) for certain antibiotics against biofilm embedded bacteria (Wooley et al 1983, Buckley et al 2012). Gram-negative bacteria exposed to Triz-EDTA® have increased permeability to extracellular solutes and leakage of intracellular solutes and are also sensitized to lysozyme, bactericides and antibiotics. The bacterial cells release periplasmic enzymes, cell membrane associated proteins, lipopolysaccharides, protein, phospholipid and divalent cations from the cell wall (Wooley et al 1983). EDTA enhances the loss of P. aeruginosa biofilm cells and is more effective when combined with gentamicin as opposed to being used as the sole agent (Banin et al 2006). A combination of EDTA and gentamicin in a Tris buffer eliminated biofilm-associated
cells in a previous study (Banin et al 2006). EDTA was also noted to kill bacterial cells within the mushroom structure of the biofilm and will also induce dispersal of cells from a biofilm (Banin et al 2006). A study by Wooley et al documented that P. aeruginosa did not grow in media in the presence of EDTA and was lysed in the presence of EDTA-Tris in sterile water. This is in contrast to other studies that documented that Triz-EDTA® alone does not have any anti-microbial activity (Wooley et al 1983, Buckley et al 2012). Other compounds being researched to disrupt biofilm formation include: iron salts, plant extracts and vegetable extracts. Iron salts have been documented to decrease the formation of biofilms by decreasing expression of virulence factors and genes, which express proteins essential for scavenging iron (Musk et al 2005). Extracts from marine plants, such as red algae Delisea pulchra, have also shown promise in preventing growth of bacterial biofilms via inhibiting N-acyl homoserine lactones (AHL), which are part of the QS signalling system in gram-negative bacteria that can start the QS cascade (Bauer et al 2002, Musk et al 2006). Certain vegetables can secrete compounds similar in composition to the AHL which can also interfere with biofilm synthesis (Bauer et al 2002). AHL derivatives are also being manufactured to attempt to disrupt bacterial biofilms (Musk et al 2006). The protein GroEL1 is produced by Mycobacteria and has been found to have some anti-biofilm activity (Musk et al 2006). Further work will be needed to determine if these compounds will have an application in the treatment of biofilms.

1.10.3 Biofilm MIC testing

Multiple methods are currently available for determining and measuring biofilm growth. Biofilm formation in Pseudomonas aeruginosa is noted to be the best on minimal arginine medium or LB medium (Caiazza et al 2004). Current methods to identify biofilm production include; scanning electron microscopy, transfocal electron microscopy, confocal laser
microscopy and detection of genes associated with the ability of bacteria to form biofilms (Gotz 2002, Davies et al 2007). Many of these methods are costly and time consuming, so cheaper and more convenient in vitro tests have also been developed.

The method outlined by Stepanovic et al documents biofilm growth for Staphylococcus within a microtitre plate, staining with crystal violet and measurement of optical density (Stepanovic et al 2000). In previous studies, a positive correlation has been noted between biofilm colony forming units and optical density, which suggests optical density is an appropriate method for measurement of bacterial ability to form biofilms (Head et al 2004). This method has been changed slightly by many researchers depending on the bacterial species being studied, but is commonly used (Bendouah et al 2006).

The Calgary biofilm device (CBD) uses the innate ability of biofilms to form on any surface and grows a biofilm on plastic pegs inserted into a microtitre plate with the appropriate media. The CBD was developed due to enhanced antimicrobial resistance within biofilms (Olsen et al 2002). After incubation and biofilm formation, sonication is used to remove the cells from the peg and determine the extent of biofilm formation via counts on plates. Susceptibility to antimicrobials is noted by growing biofilms on these pegs with stock solutions of antimicrobial dilutions within the wells of a microtitre plate (Ceri et al 1999). This method has also been changed slightly based on individual researchers, including breaking the pegs with biofilm on and isolating in culture (Davies et al 2007, Sandoe et al 2006).

The Modified Robbins Device measures tubular flow through membranes. These membranes can have antimicrobial discs attached, which are then removed and susceptibility is tested (Hoiby et al 2001).

There is the obvious question as to which of these methods is most appropriate to evaluate biofilm growth and that question is unanswered at this time. Currently there is no approved
method for evaluating the effectiveness of antimicrobial agents against biofilm-associated bacteria outlined by the National Committee for Clinical Laboratory Standards (Curtin et al. 2003, Moreau-Marquis et al. 2008).

1.10.4 Minimum Biofilm Eradication Concentration (MBEC)

Minimum inhibitory concentration (MIC) is the conventional way to determine susceptibility of planktonic bacterial cells to antimicrobials (Curtin et al. 2003). The MIC is defined as the lowest concentration of an antimicrobial agent that prevents visible growth of the microorganism and is measured by exposing a growing bacterial population to different concentrations of antimicrobial agents (Curtin et al. 2003). The MIC can be altered based on the numbers of cells present, the medium used or a longer incubation period; therefore standardized methodology is documented by the National Committee for Clinical Laboratory Standards (Curtin et al. 2003).

The minimum bactericidal concentration is the lowest concentration of an antimicrobial that lead to a 99.9% reduction of the bacterial population (Curtin et al. 2003).

The Minimum Biofilm Eradication/eliminating Concentration (MBEC) is the concentration of an antimicrobial agent required to kill a bacterial biofilm (Olsen et al. 2002). Determination of this may help with selecting the most appropriate antibiotic that results in disruption of the biofilm and success of antimicrobial therapy (Olsen et al. 2002). Recently, one commercial laboratory has developed an in vitro test to determine MBEC of a bacterial population and this is the becSCREEN® (Spectrum laboratories®, Phoenix, Arizona) (Spectrum Laboratories Inc. 2013). This test uses a modification of the Calgary Biofilm device to determine MBEC. Previous studies have documented difference between the MIC and MBEC for Pseudomonas aeruginosa with the MBEC being much higher than the MIC (Sepandj et al. 2004). Other than the becScreen®, there are no commercially available tests to measure MBEC.
MBEC requires growth of a biofilm first prior to susceptibility testing. Finding the MBEC, if a bacterial biofilm has formed or is suspected, is important due to the fact that bacteria within biofilms are less susceptible to antimicrobials than their planktonic counterparts (Drenkard et al 2002, Clutterbuck 2007). This will mean that a more appropriate antimicrobial and dose of antimicrobial will be used to treat a bacterial biofilm infection.

1.10.5 *Pseudomonas aeruginosa* genetics noted in human literature and how these impact biofilm formation

Pseudomonas aeruginosa has a large genome that contains 6.26 Mbp (encoding 5567 genes) (Lambert 2002). In an effort to determine whether certain genes play a role in biofilm formation, multiple studies within the human literature denote the presence of genes within the *Pseudomonas* genome that may or may not contribute to bacterial biofilm formation.

One study uncovered 15 *Pseudomonas* mutant strains known as surface attachment deficient (*sad*) mutants. In these strains there was a cluster of genes named *sad* genes (O’Toole et al 1998). In a full screen identifying 394 and 285 genetic determinants contributing to the biofilm phenotype, only the gene *sadB* was identified from this family of *sad* mutants (Musken et al 2010). The *sadB* gene codes for a protein with unknown function and *sad* genes play a role in attachment of the bacteria within the biofilm. *P. aeruginosa* PA14 *sad* mutants were found to be non-motile and it has also been documented that *sadB* is required for the transition from the reversible to the irreversible stage of biofilm formation (Caiazza et al 2004, O’Toole et al 1998). If an isolate has a mutated form of the *sadB* gene, biofilm will not be produced even if there is good twitching motility (Clutterbuck 2007, Musken et al 2010). At 24 hours, *sadB* mutants have very low numbers of irreversibly attached cells (90% of the cells are reversibly attached in the mutant strain whereas only 25% are reversibly attached in the wild-type strain) which maybe due
to an unstable interaction between the mutant and the surface (Caiazza et al 2004). It has also been shown that sadB levels correlate with the transition to irreversible attachment. This suggests that biofilm formation is positively correlated with sadB levels (Caiazza et al 2004). The highest levels of sadB proteins are present when P. aeruginosa is grown on LB medium or when arginine is provided as a carbon source. Lower levels of sadB protein were observed in cells grown in glucose compared to those grown on arginine (Caiazza et al 2004). Other studies have noted that bacteria with the sadB mutation also had defects in swimming motility and produced denser biofilm than the wild-type strains (Musken et al 2010). As mentioned earlier, evidence exists that flagellar driven motility for biofilm establishment is important and can vary depending on environmental conditions. Mutations in sadB increases flagellar reversal rates but has a minimal effect on the linear swim speed (O’Toole 2008). These effects are observed only under conditions with high viscosity. The cheIV chemotaxis-like cluster also works with sadB and sadC to regulate flagellar function. Mutations in cheIV make cells deficient in type IV pili-mediated twitching motility (O’Toole 2008). SadB mutants are also unable to form biofilm on surfaces other than PVC (O’Toole et al 1998). SadC mutants, another gene located in the sad gene cluster, are defective in forming biofilms and have increased swarming motility. The sadC gene produces a protein containing a GGDEF domain, which is common among proteins with a diguanylate cyclase (DGC) activity. DGC is required for synthesizing bis-(3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP), an intracellular signalling molecule. Levels of c-di-GMP in bacterial cells correlate with the transition from the sessile form to motile form. High levels of this molecule promotes biofilm formation (O’Toole 2008). Elevated c-di-GMP leads to induction of specific gene transcription, including those belonging to pel and psl clusters (Starkey et al 2009). P. aeruginosa has over 60 genes involved in making and binding c-di-GMP (O’Toole 2008).
Two cell-to-cell signalling systems (QS) in P. aeruginosa are lasR-lasI and rhlR-rhlI. The lasI gene product directs synthesis of an extracellular signal; N-(3-oxododecanoyl)-L-homoserine lactone. The lasR product is a transcriptional regulator that requires N-(3-oxododecanoyl)-L-homoserine lactone to activate virulence genes (Davies et al 1998). LasI mutants will form flat colonies similar to those strains with a mutation in pelA (Sakuragi et al 2007). Development and study of the wild type versus mutant strain showed that the Las quorum-sensing system is involved in the development of cell clusters (Davies et al 1998). Studies have documented that Pseudomonas strains defective in las quorum sensing produce similar quantities of EPS as wild-type bacteria but the mutants were unable to form normal biofilms (Davies et al 1998). It was observed that these Las mutant biofilms had greater space between individual cells that was not filled with EPS (Sauer et al 2002). A lasI mutant formed only a thin layer of biofilm that was easily broken, indicating that the las mutant is defective in matrix production. Overall las mutants had a 60% reduction in adhered biofilm formation indicating that the las QS mutants are defective in biofilm formation (Sakuragi et al 2007). The Rhl system is highly expressed within Pseudomonas biofilms (Singh et al 2000). RhII products direct the synthesis of the extracellular signal N-butyryl-L-homoserine lactone, which is needed for activation of virulence genes and expression of stationary-phase factor RpoS by the rhlR gene product. Quorum sensing requires a specific density of bacteria to function (Davies et al 1998).

Along with the las and rhl QS systems, another cell-to-cell signal has also been identified as the Pseudomonas quinolone signal (PQS). In the study by Allensen-Holm et al, it was found that isolates deficient in the pqsA gene, which produces PQS, generated low amounts of eDNA and pqs mutants, which overproduce PQS, generated increased mounts of eDNA. PQS has also been noted to be involved in the lysis of P. aeruginosa cells (Allensen-Holm et al 2006). In nature, an active lasR (QS) protein is required for PQS production. This indicates that a gene
required for PQS synthesis is controlled through the *las* quorum sensing system (Pesci et al 1999). PQS has also been shown to induce *rhlI* in *Pseudomonas aeruginosa*, which suggests that the quorum sensing signals may be intertwined (McKnight et al 2002).

Pel and *psl* are two genes that code for the different carbohydrate expression within the biofilm, as outlined previously. *Pel* genes are thought to play a role in manufacturing glucose-rich components of the biofilm matrix and *P. aeruginosa* strain PA14 relies on the *pel* locus, that contains seven genes, to produce a glucose-rich extracellular polysaccharide, which then becomes part of the pellicle (Friedman et al 2004, Ryder et al 2007). *Pel* levels are affected by c-di-GMP (O’Toole 2008). A role for both *pel* and type IV pili in the initial attachment process of bacteria has also been suggested (Ryder et al 2007). *Pel* mutants exhibit differences in colony morphology appearing smoother than other colonies and will not form a pellicle/stalk (Friedman et al 2004). With glucose as a carbon source, the bacteria within the biofilm will differentiate into nonmotile and motile subpopulations. The nonmotile cells form microcolonies that become the “stalk” of the mushroom shape and the motile cells become the “cap” of the mushroom (Klausen et al 2003). If citrate is the carbon source, the biofilm will be flat, as the entire cell population is motile at the initial phase of biofilm development (Klausen et al 2003). Transcription of *pel* genes is activated by the *las* QS system (Sakuragi et al 2007). *Psl* genes contribute to a mannose-rich biofilm (Friedman et al 2004). The *psl* locus contains approximately 11 genes (Friedman et al 2004). Loss of the *pel* gene does not lower resistance to most antimicrobials, but will lead to enhanced biofilm resistance for aminoglycoside antibiotics (Khan et al 2010). This result is interesting as it suggests that even with decreased EPS formation, biofilm-embedded bacteria continue to be more resistant to antimicrobials than their planktonic counterparts.

Tyrosine phosphatase related to biofilm formation A (TpbA), is a tyrosine phosphatase that will suppress biofilm formation via the *pel* locus. Mutants of this phosphatase will exhibit hyper-
biofilm-formation, enhanced production of EPS, altered colony morphology, elevated c-di-GMP and little swarming (Ueda et al 2009). TpbA, if inactivated, leads to increased biofilm formation and when activated, leads to decreased swarming. TpbA reduces the amount of cellular c-di-GMP present and therefore affects biofilm formation, as c-di-GMP is a positive regulator of biofilm formation, EPS production and swarming motility (Ueda et al 2009).

Chaperone usher pathways (cup) contain genes belonging to a specific cluster numbered A1-A5. CupA2 was previously identified as the ladN66 gene. The gene product belongs to the FGS family, which are chaperones that assemble fimbriae (Vallet et al 2001). Not much is known about these genes other than cupA3 is likely involved in biofilm formation, as cupA3 mutants are deficient in biofilm formation (Vallet et al 2001).

Rugose small-colony variants (RSCVs) are variants of Pseudomonas that produce wrinkled, small colonies able to form a biofilm. These RSCVs have elevated levels of c-di-GMP compared to wild-type strains (Starkey et al 2009). Overexpression of a phosphodiesterase that degraded c-di-GMP eliminated the formation of hyper-biofilm production in these RSCV phenotypes (Starkey et al 2009). Within the RSCVs, EPS formation and motility appear to be controlled by c-di-GMP, as is the case in wild type biofilms (Starkey et al 2009). C-di-GMP promotes biofilm formation by downregulating motility and upregulating production of secreted polysaccharides (Borlee et al 2010).

Other genes that play a role in biofilm have also been documented. The pilA gene is required for synthesis of type IV pili and filC is required for flagellar synthesis (Sauer 2004). PilA mutants do not grow normally and form a biofilm with incomplete surface coverage and irregularly shaped colonies (Klausen et al 2003). FleR or rpoN are also genes that control the expression of pili and flagella. When mutant strains of these genes were grown, levels of sadB were elevated leading to increased biofilm production (Caiazza et al 2004). If proteins leading to
pili or flagella expression are not made, the bacteria will be non-motile and biofilm formation can occur. Two-partner-secretion system (TPS) encoded by cdrA and cdrB, encode a large adhesin and its transporter and contribute to biofilm formation (Starkey et al 2009). CdrA expression is elevated with high levels of c-di-GMP which, in turn, leads to biofilm formation (Borlee et al 2010). UreB encodes a urease and is one of the most extensively differentiated regulated genes identified in *Pseudomonas aeruginosa* (Whiteley et al 2001). The enzyme is thought to be involved in the maintenance of pH homeostasis in biofilm cultures (Musken et al 2010). This enzyme leads to alkalization of the environment; urea is hydrolyzed to ammonia and carbon dioxide (Musken et al 2010). UreB mutants produced low levels of biofilm (Musken et al 2010).

The lungs of CF patients are initially colonized with a nonmucoid *P. aeruginosa* strain. Over time the mucoid variant can emerge. This mucoid phenotype is usually due to overproduction of alginate, which is known to be a capsular polysaccharide virulence factor (Ryder et al 2007). Mutations most often occur in the regulator gene *mucA*, which negatively regulates the expression of alginate (Ryder et al 2007). Alginate appears to protect *Pseudomonas* from inflammation by scavenging free radicals released by macrophages and from clearance via phagocytosis (Pier 1998). The cells are also more resistant to IFN-gamma mediated killing by cells of the innate immune system (Leid et al 2005). Alginate production is not required for biofilm formation but, through mutations in *mucA*, does affect resistance to antimicrobials (Ryder et al 2007). In planktonic cells, the *ampC* gene is induced upon exposure to imipenem (Bagge et al 2004). Biofilm cells exposed to imipenem increased in average thickness and many genes involved in alginate synthesis are expressed at slightly higher levels (Bagge et al 2004).

Anaerobic biofilms of *Pseudomonas aeruginosa* require rhl quorum sensing to survive (Yoon et al 2002). *Rhl* mutants exhibit high levels of toxic nitrogen oxide (NO), which may account for premature cell death (Yoon et al 2002). Research into the porin proteins, members of
the Opr family, identified an oprF mutant that was a poor biofilm producer (Musken et al 2010). It has been suggested that OprF maybe important for NO detoxification and the establishment of biofilms in anaerobic conditions (Yoon et al 2002).

 Death and cell lysis can occur based on the orientation of the biofilm, which suggests Pseudomonas maybe capable of programmed cell death (Ma et al 2009). Two genetic loci have been identified in Pseudomonas, cidAB and lrgAB, which are similar to proteins found in Staphylococcus aureus that contribute to cell death and cell lysis (Rice et al 2008). CidAB is a holin and lrgAB is an anti-holin. Holins are small proteins located in the cell membrane encoded by phages. They control hydrolases and the timing of cell lysis during bacteriophage infection. Holins are antagonized by anti-holins (Rice et al 2008). Deletion of either of these loci led to accumulation of more dead cells and a high Optical Density (OD) (Ma et al 2009). Pseudomonas lrgAB and cidAB mutants resulted in more cell death but normal and reduced cell lysis respectively within biofilms (Ma et al 2009). This resulted in a larger cavity within microcolonies and premature dispersal of cells. This suggests that cell death and lysis contribute to the formation of the psl matrix cavity and dispersal.

 As biofilm embedded bacteria generally have an increased MIC for antimicrobials when compared to their planktonic counterparts, and we know that genetics may play a role in this resistance; it stands to reason that some Pseudomonas mutants may have decreased resistance to antimicrobials when in a biofilm. At the gene locus 45E7 in Pseudomonas aeruginosa there was no difference between the MBC for planktonic cells for the wild type and mutant strains for certain antimicrobials. However, when comparing the MBC for the same antimicrobials for biofilm embedded versus mutant strains, the MBC was lower for those within the biofilm (Mah et al 2003). The ndvB gene codes for glucosyltransferase, which is required for the synthesis of cyclic-β-(1,3)-glucans. Glucans play a role in adaptation to low osmotic media and flagella-
mediated motility. The ndvB mutant was more sensitive to antimicrobials in a biofilm but not planktonic (when compared to the wild-type) (Mah et al 2003).
1.11 Objectives

The objectives of this research were as follows:

A. To evaluate the biofilm-forming capacity of canine otic isolates of *Pseudomonas aeruginosa*.

B. To compare the minimum inhibitory concentration (MIC) for gentamicin, neomycin, polymyxin B and enrofloxacin for the planktonic versus biofilm-embedded bacteria *in vitro*.

C. To evaluate the impact of Tromethamine Edetate Disodium Dihydrate (Triz-EDTA®) use on *in vitro* antimicrobial susceptibility of biofilm-embedded *Pseudomonas aeruginosa*.

D. To determine the prevalence of selected biofilm-associated genes in *Pseudomonas aeruginosa* and to evaluate the association of these genes with *in vitro* biofilm production.
1.12 References

Drenkard E, Ausubel FM. *Pseudomonas* biofilm formation and antibiotic resistance are linked to phenotypic variation. *Nature* 2002; 416: 740-743.

O’Toole GA. To Build a Biofilm. J. Bacteriol. 2003; 185: 2687-2689

Sturgeon A, Costa M, Weese JS. Preliminary evaluation of the bacterial microbiome of the skin and ear in dogs. In 7th World Congress of Veterinary Dermatology 2012; 23: 63.

CHAPTER 2: Evaluation of biofilm production by *Pseudomonas aeruginosa* from canine ears and the impact of biofilm on antimicrobial susceptibility *in vitro*

Manuscript

Evaluation of biofilm production by *Pseudomonas aeruginosa* from canine ears and the impact of biofilm on antimicrobial susceptibility *in vitro*

The following manuscript was submitted to Veterinary Dermatology on January 14, 2013. The manuscript was accepted for publication on April 23, 2013. The article is included in this thesis in the final edited version.
Evaluation of biofilm production by *Pseudomonas aeruginosa* from canine ears and the impact of biofilm on antimicrobial susceptibility *in vitro*

Charlotte C. Pye*, Anthony A. Yu*, J. Scott Weese†

*Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada

† Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Acknowledgments

The authors would like to thank the Animal Health Laboratory (Guelph, Ontario, Canada) & IDEXX laboratories (Markham, Ontario, Canada) for collecting samples and Ms. Joyce Rousseau, Ms. Amanda Li & Ms. Nadine Vogt for their assistance with specimen processing.

Funding: This study was self funded.

Conflict of interest: None declared.

Running title: Pseudomonas biofilm antibiotic susceptibility
2.1 Abstract:

Background: *Pseudomonas aeruginosa* is a common cause of canine otitis. *P. aeruginosa* biofilm formation has been documented in human medicine, but the role of biofilms in canine disease is not well documented. Bacteria within biofilms can be more resistant to antibiotics compared with their planktonic form; therefore understanding the biofilm-forming capacity of isolates and their susceptibility to antimicrobials is important when developing treatment regimens.

Objectives: To evaluate the biofilm-forming capacity of canine otic isolates of *P. aeruginosa* and to compare the minimum inhibitory concentration (MIC) of the planktonic versus biofilm-embedded bacteria.

Methods: Biofilm-forming ability was assessed using a microtitre plate assay. Broth microdilution was used to assess the MIC of neomycin, polymyxin B, enrofloxacin and gentamicin for the planktonic and biofilm embedded bacteria.

Results: 83 isolates from dogs with otitis were tested. 33 (40%) were classified as biofilm producers. Biofilm MICs for polymyxin B, neomycin, gentamicin and enrofloxacin were significantly higher than for the planktonic form (P<0.05).

Conclusions and clinical importance: Biofilm production by otitis isolates of *P. aeruginosa* is common and may play a role in the pathogenesis of disease. The MICs for biofilm-embedded bacteria differ from their planktonic counterparts, potentially leading to a lack of response to treatment. If polymyxin B, gentamicin, neomycin or enrofloxacin is to be used for topical treatment of a *Pseudomonas* otitis, the concentration of the medication should be increased, in particular if addressing chronic otitis because biofilms may have developed.
2.2 Introduction

Bacterial otitis is a common problem in dogs and *Pseudomonas aeruginosa* is often implicated.\(^1\)\(^2\) This bacterium is not considered part of the normal otic microflora.\(^3\)\(^4\) When present, *P. aeruginosa* infection can lead to ulceration and inflammation within the ear canal. Otitis is believed to be multifactorial, and treatment can be difficult in some cases. Although poorly investigated, the presence of bacterial biofilm may be an important factor in the pathophysiology of disease and resistance to treatment.

A bacterial biofilm is a sessile community of bacteria that develops as monolayers of planktonic bacterial cells irreversibly attach to a surface that produce a matrix (extrapolymeric substance, EPS) comprised of carbohydrates, proteins and DNA.\(^5\) Once the exopolysaccharide matrix has been formed, it provides extra protection for the sessile bacterial cells inside the biofilm from external factors, such as dessication, the host immune response and antimicrobials.\(^6\)\(^7\) Bacteria within a biofilm also have markedly altered metabolism and enhanced cell-cell communication; factors which further assist evasion of the immune system and antimicrobials.\(^6\)

In human medicine, formation of biofilms and their role in many types of infections have been extensively evaluated. Biofilms may form in the lungs of patients with cystic fibrosis, within wounds, on surgical implants and within the middle ear.\(^8\)\(^9\)\(^10\) Previous studies from the human literature have confirmed that bacterial cells within biofilms are less susceptible to antimicrobials *in vitro* than their planktonic counterparts.\(^5\)\(^11\)\(^12\) This decreased susceptibility may be partly due to the extracellular polysaccharide components present within the biofilm, to the biofilm providing physical protection to prevent antimicrobials reaching the bacteria, or to metabolic alterations that affect the antibiotic target.\(^13\)\(^14\)
Although the role of the planktonic *P. aeruginosa* has been well described, the role of biofilms in canine otitis is not well documented.1 As bacteria embedded within a biofilm may be more resistant to antimicrobials, understanding the biofilm-forming ability of clinical isolates and their susceptibility, in comparison to their counterpart planktonic form, is important for developing appropriate treatment regimens for canine patients.

The objectives of this study were to evaluate the biofilm forming ability of canine otic isolates of *P. aeruginosa* and to evaluate the impact of biofilm formation on *in vitro* antimicrobial susceptibility.
2.3 Materials and Methods

Bacterial Isolates

Eighty-three epidemiologically unrelated, multi-drug resistant *Pseudomonas aeruginosa* isolates from dogs with otitis externa were collected from the Animal Health Laboratory (Guelph, Ontario, Canada) and IDEXX (Markham, Ontario, Canada) between the years of 2010-2011. Multidrug resistance was defined as resistance to two or more antimicrobial classes. Isolates were plated and then stored in cryostore vials (Innovatek Medical Inc., Vancouver, Canada).

Planktonic minimum inhibitory concentrations (MICs)

Antimicrobial susceptibility was tested using agar dilution as per Clinical and Laboratory Standards Institute (CLSI) guidelines. Enrofloxacin, neomycin, gentamicin and polymyxin B, antimicrobials commonly included in topical otic medications, were tested at 2-fold concentrations between 1 and 256 µg/mL.

Biofilm Growth

In vitro biofilm production was assessed using a microtitre plate assay. Pure, 18-24 h growth of *P. aeruginosa* isolates were inoculated to a 0.5 McFarland suspension in enrichment broth containing 10 g/L tryptone (Oxoid, Nepean, Canada), 5 g/L yeast (Oxoid, Nepean, Canada) and 5 g/L sodium chloride (Fisher Science, Ottawa, Canada). Aliquots of 200 µl were inoculated in triplicate into a flat-bottomed 96 well microtitre plate (Sarstedt Inc., Montreal, Canada) and incubated for 24 hours at 35-37°C. A negative control consisting of uninoculated broth was included in triplicate on each plate. Following incubation, the contents of the wells were discarded and each well was washed three times with phosphate buffered saline (PBS) using micropipetting to ensure maintenance of biofilm integrity. Microtitre plates were then heat fixed.
at 60°C for 60 min. Adhered cells were stained using 150 µl of 0.1% crystal violet for 15 min at room temperature. The crystal violet was then aspirated with a pipette and excess stain was rinsed off with running water. The microtitre plates were then dried at 35°C for 15-30 min and crystal violet was re-solubilized with 150 µl of 95% ethyl alcohol. The optical density of each well was measured at 570nm (OD_{570}). The triplicate negative control mean OD_{570} was subtracted from the triplicate mean OD_{570} of the study samples. Isolates were classified as biofilm producers if the net OD_{570} was greater than 0.135. They were further classified as low biofilm producers if the net OD_{570} was > 0.135 but ≤ 0.27, moderate biofilm producers if OD_{570} was > 0.27 but ≤ 0.54 and high biofilm producers if OD_{570} was > 0.54 in accordance with a previous study.16

Biofilm bacteria susceptibility testing

A subset of thirty-one isolates was tested. Biofilm was produced on microtitre plates as described above, but after initial rinsing with PBS, wells were not stained. Instead, 100 µl of LB broth was added to each well along with 100 µl of enrofloxacin, gentamicin, polymyxin B or neomycin at two-fold dilutions from 0.5-2048 µg/ml. Testing was performed in triplicate. A positive control of 200 µl of LB broth was also tested in triplicate. Growth or no growth was visually assessed after 24 h incubation at 35-37°C and the lowest concentration that inhibited visible growth was considered the MIC.

Statistical analysis

Results of the susceptibility testing were analyzed with SPSS using a paired t-test. Significance was set as $P < 0.05$.
2.4 Results

Thirty-three (33/83; 40%) of the isolates were classified as biofilm producers. Eleven isolates (11/83; 13%) were classified as high biofilm producers, fifteen (15/83; 18%) as moderate biofilm producers and seven (7/83; 8%) as low biofilm producers. Biofilm bacteria susceptibility testing revealed that MICs were significantly higher in biofilm-embedded versus planktonic bacteria for all antimicrobials; enrofloxacin (P < 0.028), gentamicin (p < 0.049), polymyxin B (P < 0.0003) and neomycin (P < 0.009) (Table 1 and Figure 1).
2.5 Discussion

This study illustrates that biofilm production by canine otic isolates of *P. aeruginosa* is common, with variability in the degree of *in vitro* biofilm production between isolates. The ability to produce biofilm could be an important virulence factor by facilitating establishment of resistant infections within the ear canal and middle ear and by hampering elimination of infection by the immune system and antimicrobials. Although many bacterial species require specific pH or temperature to grow and produce biofilm, *Pseudomonas* has been reported to produce EPS wherever conditions are appropriate for bacterial colonization.\(^6\) This ability might be a reason that *Pseudomonas* is a leading cause of bacterial canine otitis.

While many *Pseudomonas* isolates produced biofilm *in vitro* in our study, 60% either produced no biofilm or a very small amount. Factors affecting biofilm formation by these isolates were not evaluated in this study. Time, *in vivo* factors and a variety of genes may play a role in biofilm formation. Future studies may investigate the genetic components of canine isolates of *P. aeruginosa* that may contribute to biofilm formation as has been highlighted with human isolates, because investigation of these genes in canine *Pseudomonas* is currently lacking.\(^17-18\) Better understanding of the mechanisms involved in biofilm formation is required in order to understand the pathophysiology of biofilm-associated infections and to develop preventive and treatment measures.

As anticipated, these data indicate that MICs for biofilm-embedded bacteria are significantly higher than their planktonic counterparts, as is expected based on previous studies of *Pseudomonas* of human origin.\(^19\) This also suggests that biofilm formation may be an important survival characteristic in canine otitis. Biofilm can physically protect bacteria from antimicrobial exposure, particularly with large polar molecules (e.g. aminoglycosides) as well as antimicrobial peptides.\(^20\) Both the aminoglycoside antibiotics and enrofloxacin bind to structures within the
bacterial cell.21-22 With the physical protection provided by the biofilm matrix, these antibiotics may not be able to penetrate the cell and exert their effects, hence contributing to increased antimicrobial resistance. Polymyxin B binds to the lipopolysaccharides of the cell membrane to alter structure and make the cell more permeable.23 If it is also not able to penetrate the polysaccharide matrix it cannot bind to the LPS and lead to cellular death. The population of cells within a biofilm is heterogeneous with both fast and slow growing cells. Downregulation of metabolism and growth may contribute to biofilm resistance, particularly for antibiotics that act on actively growing cells such as enrofloxacin and aminoglycosides.24 An additional factor is the potential for antimicrobials such as aminoglycosides to induce biofilm formation.25 While not studied here, it is possible that this phenomenon could have played a role in significantly higher MIC for biofilm-embedded bacteria versus the planktonic form.

One concern with this study is whether \textit{in vitro} susceptibility testing can approximate an \textit{in vivo} biofilm. There is disagreement within the literature regarding the appropriate test to determine antibiotic MIC values for bacterial biofilms.26 Multiple tests exist, however, there is a lack of standardization between the testing modalities and a lack of consensus over which test is the most appropriate for biofilm MIC determination.26,27 While the microtitre plate assay is widely used, it is clearly an artificial system that cannot mimic the complexity of the microenvironment of an inflamed ear. However, biofilm formation within the middle ear cavity of chinchillas has been documented \textit{in vivo}, and other studies have demonstrated biofilm formation on other mucosal surfaces such as within sinuses of rabbits.28-29 These studies support the notion that biofilms form readily on mucosal surfaces and therefore potentially form within the external ear canal. Although conditions may be appropriate for biofilm formation \textit{in vitro}, in a diseased state the epithelium of the external ear canal may have an increased turnover rate and
cerumen production. This may serve as an efficient defense mechanism as it will prevent adherence of larger numbers of micro-organisms and disrupt biofilm formation.

Topical therapy is most commonly used to treat canine otitis externa. Even culture-resistant planktonic populations of *P. aeruginosa* can be overcome, because topically applied antibiotic concentrations reach 100-1000 times that of systemically delivered antimicrobials at the site of infection. This study has highlighted the potential role of biofilm formation in canine otitis and the possibility that biofilm could impact the success of antimicrobial therapy. Biofilm formation may be an important virulence factor in *P. aeruginosa* and an important step in the development of otitis externa. Further study of the role of biofilm in disease, the impact of biofilm formation on clinical treatment failure and factors that regulate biofilm production are indicated to help elucidate the pathophysiology of otitis and to develop better treatment approaches.
2.6 Tables

<table>
<thead>
<tr>
<th>Drug</th>
<th>MIC_{50} (µg/ml)</th>
<th>MIC_{90} (µg/ml)</th>
<th>MIC Range (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planktonic</td>
<td>Biofilm</td>
<td>Fold diff</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>4</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>4</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>Neomycin</td>
<td>64</td>
<td>128</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1: Comparison of mean MIC_{50} and MIC_{90} for planktonic bacteria and biofilm-embedded bacteria of 31 isolates.
2.7 Figures

Figure 1: Comparison of mean MIC of enrofloxacin, gentamicin, polymyxin B and neomycin for planktonic bacteria versus biofilm-embedded for 31 *P. aeruginosa* isolates.
2.8 References

CHAPTER 3: Evaluation of the impact of Tromethamine edetate disodium dihydrate on antimicrobial susceptibility of *Pseudomonas aeruginosa* in biofilm *in vitro*

Manuscript

Evaluation of the impact of Tromethamine edetate disodium dihydrate on antimicrobial susceptibility of *Pseudomonas aeruginosa* in biofilm *in vitro*

The following manuscript was submitted to Veterinary Dermatology on June 6, 2013. The article is included in this thesis in the submitted version.
Evaluation of the impact of Tromethamine edetate disodium dihydrate on antimicrobial susceptibility of *Pseudomonas aeruginosa* in biofilm *in vitro*

Charlotte C. Pye*, Ameet Singh*, J. Scott Weese†

*Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada

† Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Acknowledgments

The authors would like to thank the Animal Health Laboratory (Guelph, Ontario, Canada) & IDEXX laboratories (Markham, Ontario, Canada) for collecting samples and Ms. Joyce Rousseau for her assistance with specimen processing.

Funding: This study was self-funded.

Conflict of interest: None declared.

Running title: Biofilm susceptibility with Triz-EDTA®
3.1 Abstract:

Background: Biofilm formation by *Pseudomonas aeruginosa* has been documented in canine otic isolates. An increase in minimum inhibitory concentration (MIC) for specific antibiotics has been noted for biofilm embedded bacteria. Tromethamine edetate disodium dihydrate buffered to pH8 with Tromethamine HCL and deionized water (Triz-EDTA®) has been documented to potentiate bactericidal activity when used in combination with topical antibiotics but the impact on biofilm-embedded bacteria is unknown.

Objective: The objective of this study was to evaluate the impact of Triz-EDTA® use on *in vitro* antimicrobial susceptibility of biofilm-embedded *Pseudomonas aeruginosa*.

Methods: Biofilm formation was documented using a microtiter plate assay. Broth microdilution was used to assess the MIC of neomycin, polymyxin B, enrofloxacin and gentamicin for the biofilm embedded bacteria and biofilm-embedded bacteria with added Triz-EDTA®.

Results: 31 isolates from dogs with otitis were tested. Addition of Triz-EDTA® significantly reduced MICs for neomycin (P < 0.008) and gentamicin (p < 0.04) but not enrofloxacin (P = 0.7), or polymyxin B (P = 0.5).

Conclusions and clinical importance: Triz-EDTA® may be a useful adjunctive treatment for chronic cases of *Pseudomonas* otitis where biofilms may have developed, if gentamicin or neomycin are to be used as a topical treatment. *In vivo* study is required to confirm this effect.
3.2 Introduction

Bacterial otitis externa is a common condition seen in dogs and the bacterium *Pseudomonas aeruginosa* is often implicated in the pathogenesis of the disease.\(^1\) *Pseudomonas aeruginosa* is a bacterium that is not a commensal organism of the external ear canal and has not been identified on cultures obtained from healthy canine ears.\(^2\)-\(^5\) *Pseudomonas* can cause infection when inflammation is present within the ear canal due to an underlying etiology such as allergic skin disease, endocrinopathy or immune mediated disease.\(^6\) *Pseudomonas* otitis externa can be a frustrating disorder to treat with an unpredictable response to antimicrobial therapy. Various factors may account for this, including an underlying disorder and the degree of aural inflammation present. Another possible reason is the presence of bacterial biofilm. A bacterial biofilm develops from monolayers of planktonic bacterial cells that first irreversibly attach to a surface, produce a matrix of carbohydrates, proteins and DNA (extrapolymeric substance, EPS) and then become irreversibly attached to that surface.\(^7\) Bacteria within the biofilm can evade the host immune response, dessication and antimicrobial therapy by physical protection provided by EPS, altered metabolism and various other changes in the individual bacteria and the community as a whole.\(^8\)

Biofilm formation has been documented extensively in human medicine, with multiple studies demonstrating biofilm production by clinical isolates of *P. aeruginosa* and reduced *in vitro* susceptibility of biofilm embedded bacteria, including otic isolates.\(^9\)-\(^13\) Recently, biofilm formation was identified in canine otic isolates of *Pseudomonas aeruginosa*, with 40% of the isolates forming a quantifiable biofilm.\(^14\) The role of biofilm formation in cases of canine otitis externa has not been well described, but biofilm production could play an important role in development and maintenance of otitis externa despite antimicrobial treatment. Investigating
treatment modalities or compounds that may increase penetration of antimicrobials through the biofilm, or biofilm disruption, is important.

Tromethamine (Tris), edetate disodium dihydrate (EDTA) buffered to pH8 with Tromethamine HCL and deionized water, (Triz-EDTA® Aqueous flush, Dechra Veterinary Products, Kansas, US) is commonly used as an adjunct therapy for dogs with *Pseudomonas* otitis. The tris buffer within the compound is thought to enhance the effect of the EDTA, which acts to damage the cell surface of gram-negative bacteria such as *Pseudomonas*. Previous studies have shown that Triz-EDTA® used in combination with an antimicrobial, can reduce the MIC and minimum bactericidal concentration (MBC) for certain antibiotics against planktonic bacteria and those within biofilms. The objective of this study was to evaluate the impact of Triz-EDTA® use on *in vitro* antimicrobial susceptibility of preformed *Pseudomonas aeruginosa* biofilms.
3.3 Materials and Methods

Isolates

Thirty-one multi-drug resistant *P. aeruginosa* isolates recovered from the ears of dogs with otitis externa that were previously demonstrated to produce biofilm in vitro were studied. Each isolate was obtained from a different canine.\(^{14}\)

Biofilm Growth and biofilm bacteria susceptibility testing

Biofilm growth and susceptibility testing was carried out as documented in a previous study.\(^{14}\) *In vitro* biofilm production was assessed using a microtitre plate assay.\(^{18}\) Biofilm forming capacity of each isolate had previously been documented by measuring the optical density of each well at 570nm (OD\(_{570}\)), after overnight incubation. Isolates were inoculated in triplicate along with a triplicate negative control. The triplicate negative control mean OD\(_{570}\) was subtracted from the triplicate mean OD\(_{570}\) of the study samples. Isolates were classified as biofilm producers if the net OD\(_{570}\) was greater than 0.135. They were further classified as low biofilm producers if the net OD\(_{570}\) was > 0.135 but ≤ 0.27, moderate biofilm producers if OD\(_{570}\) was > 0.27 but ≤ 0.54 and high biofilm producers if OD\(_{570}\) was > 0.54 in accordance with a previous study.\(^{14,18}\) For susceptibility testing, pure, 18-24 h growth of *P. aeruginosa* isolates were inoculated to a 0.5 McFarland suspension in enrichment broth containing 10 g/L tryptone (Oxoid, Nepean, Canada), 5 g/L yeast (Oxoid, Nepean, Canada) and 5 g/L sodium chloride (Fisher Science, Ottawa, Canada). Aliquots of 200 µl were inoculated in triplicate into a flat-bottomed 96 well microtitre plate (Sarstedt Inc., Montreal, Canada) and incubated for 24 hours at 35-37°C. A negative control consisting of uninoculated broth was included in triplicate on each plate. Following incubation, the contents of the wells were discarded and each well was washed three times with phosphate buffered saline (PBS) using micropipetting to ensure maintenance of
biofilm integrity. 100 µl of LB broth was then added to each well along with 100 µl of enrofloxacin, gentamicin, polymyxin B or neomycin at two-fold dilutions from 0.5-2048 µg/ml. Testing was performed in triplicate. A positive control of 200 µl of LB broth was also tested in triplicate. Growth or no growth was visually assessed after 24 h incubation at 35-37°C and the lowest concentration that inhibited visible growth was considered the MIC.

Triz-EDTA® susceptibility testing

LB broth containing 10 g/L tryptone (Oxoid, Nepean, Canada), 5 g/L yeast (Oxoid, Nepean, Canada) and 5 g/L sodium chloride (Fisher Science, Ottawa, Canada) was produced to include 24% Triz-EDTA® (Dechra Veterinary Products, Kansas, US). This broth contained 0.53 mg/ml Tris and 0.14 mg/ml EDTA. Biofilm was produced on microtitre plates as described above. After initial rinsing with PBS, 100 µl aliquots of this LB broth with added Triz-EDTA® were inoculated into a flat-bottomed 96 well microtitre plate (Sarstedt Inc., Montreal, Canada). 100 µl of enrofloxacin, gentamicin, polymyxin B or neomycin at two-fold dilutions from 1.0-512 µg/ml was then added to each well. Testing was performed in triplicate. A positive control of 200 µl of LB broth was also tested in triplicate along with a second control of 200 µl of LB broth containing Triz-EDTA®. Growth or no growth was visually assessed after 24 h incubation at 35-37°C as per Clinical and Laboratory Standards Institute (CLSI) guidelines for planktonic bacteria and MIC testing. The lowest concentration that inhibited visible growth was considered the MIC.
Statistical analysis

The impact of Triz-EDTA® on MIC was evaluated for each antimicrobial with SPSS using a paired t-test. The impact of biofilm category (high/moderate/low) was assessed using ANOVA with Tukey’s test. Significance was set as $P < 0.05$.
3.4 Results

Addition of Triz-EDTA® resulted in significantly lower MICs for biofilm-embedded bacteria treated with neomycin (P < 0.003) and gentamicin (p < 0.02), but not for enrofloxacin (P = 0.5), or polymyxin B (P = 0.3) (Figure 1 and Table 1). For enrofloxacin, the MIC actually increased in the presence of Triz-EDTA® for 20 (64.5%) isolates. For 12 (38.7%) isolates, the increase in MIC was 4-fold or higher. In contrast, a 4-fold or higher increase in MIC was only noted for 4 (12.9%) isolates for polymyxin B, 1 (3.2%) isolate for neomycin and no isolates for gentamicin. 10 (32.3%) isolates were high biofilm producers, 13 (41.9%) were moderate and 8 (25.8%) were low. There was no impact on biofilm categorization (high/moderate/low) on the impact of Triz-EDTA®, as indicated by the fold difference in MIC (all P > 0.12). There was no inhibitory effect of Triz-EDTA® without antibiotic for any isolate.
3.5 Discussion

This study indicates that the addition of Triz-EDTA® can have a significant impact on the susceptibility of biofilm-embedded P. aeruginosa to certain antimicrobials. This is consistent with previous studies that documented a decrease in the minimum inhibitory concentration of specific antibiotics for Pseudomonas aeruginosa with the addition of Triz-EDTA®.16-17,20

As evidenced by the lack of an effect of Triz-EDTA® alone on bacterial growth, the effect on MICs is not simply an additive effect of another antibacterial substance. Rather this is a synergistic effect that could be mediated by Triz-EDTA® opening pores in the bacterial cell wall to facilitate drug penetration.21 When exposed to Triz-EDTA®, the cell surfaces of gram negative bacteria can become damaged, leading to increased leakage of intracellular components and increased penetration of antimicrobials.15 This finding is consistent with previous studies.22

The difference in the impact of Triz-EDTA® on the efficacy of different antimicrobials bears consideration. A significant effect was only noted for neomycin and gentamicin, two aminoglycosides, which could indicate that the mechanism of activity is specific to these two drugs or this drug class. However, both aminoglycoside and fluoroquinolones (enrofloxacin) bind to structures within the bacterial cell.23-24 It stands to reason that if Triz-EDTA® facilitates penetration of the antimicrobials into the bacterial cell, these antibiotics could exert their effects more readily. The lack of an impact of enrofloxacin and polymyxin B was therefore surprising. It is possible that this is related to statistical power; however, of additional interest (and concern) was the increase in biofilm MIC with added Triz-EDTA®, in 64.5% of isolates in the presence of enrofloxacin. While a one-dilution (2-fold) difference in MIC could simply represent test-to-test variation, the 4-fold or higher difference that was identified for 39% of isolates suggests that this was a true increase in MIC in response to Triz-EDTA®. Potential reasons for this are unclear and require further investigation. These data are also in contrast with a previous study that showed
that addition of Triz-EDTA® into the treatment regimen of otitis externa, previously unresponsive to enrofloxacin alone and noted to be resistant to enrofloxacin on a bacterial culture, lead to resolution of the otitis.20 However, that study looked at low numbers of clinical cases of \textit{P. aeruginosa} otitis externa where the bacteria were not defined as being planktonic or biofilm-embedded, as opposed to this study of only biofilm-forming \textit{P. aeruginosa}. Therefore, the results may not truly be contradictory and rather indicate differences in effect with different study populations. Another limitation with this study is whether an \textit{in vitro} susceptibility test can be compared to \textit{in vivo} biofilm formation. Biofilm formation within the middle ear cavity of chinchillas has been documented \textit{in vivo} and other studies have demonstrated biofilm formation on other mucosal surfaces such as within sinuses of rabbits.25-26 These studies support that biofilm formation on mucosal surfaces is possible. \textit{Pseudomonas aeruginosa} biofilm formation has been consistently documented in the lungs of patients with cystic fibrosis where mucus production is altered and greatly increased.9 Both cerumen and the mucus produced by cystic fibrosis patients, contain high levels of glycolipids, and have many other similarities, which could potentially facilitate biofilm formation in both of these anatomical locations.27-28 Conditions and host defense within the external ear canal should also be taken into account. Local production of antibodies and increased cerumen production in diseased states may contribute to changes in biofilm formation or resistance.6 Multiple tests exist to determine antibiotic MIC values for bacterial biofilms. Currently, there is a lack of standardization as to which test is most appropriate.29-30 Another consideration is the isolate collection that was used. Selection of biofilm producers was required for the isolates; however, up to 60\% of canine otic \textit{P. aeruginosa} do not produce biofilm \textit{in vitro}.14 Therefore, the results must be taken as an indication of the impact of Triz-EDTA® on MIC for those isolates that do produce biofilm, not \textit{P. aeruginosa} as a whole.
This study evaluated the MIC, not minimum bactericidal concentration (MBC). Whether this is of relevance is unclear, but research has also shown that the addition of Triz-EDTA® can significantly reduce the MBC of silver sulfadiazene against multi drug resistant *Pseudomonas aeruginosa.*\(^{17}\) The minimum inhibitory concentration is defined as the lowest concentration of an antimicrobial that will inhibit visible growth of the microorganism after overnight incubation. The minimum bactericidal concentration is defined as the lowest concentration of an antimicrobial that will prevent growth of an organism after subculture onto antimicrobial-free media.\(^{31}\) Although visible growth was inhibited at the MICs documented in this study, the bacteria within the biofilm may not have been completely eliminated and hence could potentially re-grow after cessation of antimicrobial therapy. The clinical relevance of this is unclear but it may be of importance since persistence of a small percentage of bacteria viable within the biofilm could result in recrudescence of infection. The impact of Triz-EDTA® on MBC of isolates within this study was not documented but this would be an area for future research.

This study has highlighted the potential role for Triz-EDTA® as an adjunctive treatment of *Pseudomonas* otitis. Further study will be needed to investigate the role of biofilm formation in disease and the impact of anti-biofilm approaches for treatment of prevention of disease *in vivo.* Study of other topical compounds that may interact synergistically with Triz-EDTA® is also indicated.
Table 1: Comparison of mean minimal inhibitory concentrations MIC\textsubscript{50} and MIC\textsubscript{90} for biofilm-embedded bacteria and biofilm-embedded bacteria grown in broth inoculated with Triz-EDTA® for 31 \textit{Pseudomonas aeruginosa} isolates.
3.7 Figures

Figure 1: Comparison of mean MIC of enrofloxacin, polymyxin B, neomycin and gentamicin for biofilm-embedded bacteria versus biofilm-embedded bacteria grown in broth inoculated with Triz-EDTA® for 31 Pseudomonas aeruginosa isolates.
3.8 References

CHAPTER 4: Evaluation of genetic markers for biofilm production in canine otic isolates of *Pseudomonas aeruginosa*

Manuscript

Evaluation of genetic markers for biofilm production in canine otic isolates of *Pseudomonas aeruginosa*

This manuscript has yet to be submitted for publication.
Evaluation of the presence of biofilm-associated genes in canine otic isolates of

Pseudomonas aeruginosa

Charlotte C. Pye*, Ameet Singh*, J. Scott Weese†

*Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada

† Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Acknowledgments

The authors would like to thank the Animal Health Laboratory (Guelph, Ontario, Canada) & IDEXX laboratories (Markham, Ontario, Canada) for collecting samples and Ms. Joyce Rousseau for her assistance with specimen processing.

Funding: This study was self-funded.

Conflict of interest: None declared.

Running title: *Pseudomonas* biofilm genetics
4.1 Abstract:

Background: *Pseudomonas aeruginosa* is an important canine pathogen and there is increasing evidence that biofilm formation by this bacterium is common and that biofilm forming ability may be an important virulence factor. Factors regulating biofilm production in canine *P. aeruginosa* have not been investigated, but a variety of genes associated with attachment (*sadB*), extrapolymeric substance formation (*pel*) and quorum sensing (*rhl, las*) may be important.

Objective: To determine the prevalence of selected biofilm-associated genes (*sadB, pelA, lasB* and *rhlA*) in both biofilm forming and non-biofilm forming canine otic isolates of *P. aeruginosa*.

Methods: DNA was extracted from eighty-three *Pseudomonas aeruginosa* isolates obtained from canine ears. Sequences for the genes to be evaluated were obtained from National Centre for Biotechnology Information GenBan database and primers selected. Polymerase chain reaction (PCR) was performed for all isolates with primers for the above genes.

Results: All isolates possessed *lasB* and *sadB*, 74 (90%) possessed *pelA* and 74 (90%) possessed *rhlA*. All isolates that were classified as biofilm producers contained all four genes. There was an association between the presence of *pelA* and *rhlA* and biofilm production. There was also an association between the presence of *rhlA* and *pelA* and biofilm optical density at 570nm (OD570) (P<0.001).

Conclusions and discussion: These putative biofilm-associated genes were common in *P. aeruginosa* from canine ears. This study highlights the potential role of specific genes in biofilm formation. Future investigation into how genes are expressed within biofilms, as well as study of other potential biofilm-associated genes, would be of value.
4.2 Introduction

Pseudomonas aeruginosa is an important cause of infection in dogs, particularly in cases of bacterial otitis externa.\(^1\) Antimicrobial resistance is common with *P. aeruginosa*, complicating treatment of infections.\(^2\) Further complicating *P. aeruginosa* infections is the process of biofilm formation.\(^3\) A bacterial biofilm is a sessile community of bacteria that becomes irreversibly attached to a biological or non-biological surface. Once attachment occurs, bacteria produce an extrapolymeric substance matrix (EPS) composed of proteins, carbohydrates and DNA.\(^3\)

Bacterial biofilms have been studied extensively in the human literature as they can form on catheters, surgical implants and chronic wounds.\(^4\)-\(^5\) Biofilm production by *P. aeruginosa* has received particular attention in cystic fibrosis patients, where biofilms in the airways, along with antimicrobial resistance, can result in significant morbidity and mortality.\(^6\) Biofilms have been studied in the veterinary literature, although studies regarding *Pseudomonas* biofilm formation are limited.\(^7\)-\(^9\) It was recently determined that *Pseudomonas aeruginosa* from canine otic isolates can form biofilms, and biofilm embedded bacteria have increased minimum inhibitory concentrations (MIC) for certain antimicrobials.\(^10\) This is not surprising based on human data but indicates the potential role of biofilm production in the pathophysiology of *Pseudomonas* infections in animals.

In a study of canine otic *P. aeruginosa*, biofilm formation was not ubiquitous, with 40% of the isolates producing a quantifiable bacterial biofilm *in vitro*.\(^10\) This suggests that there may be specific genes that are expressed that allow for biofilm production. *Pseudomonas aeruginosa* has a large (>6Mbp) genome that encodes over 5500 genes.\(^2\) Previous studies have investigated certain potential biofilm-associated genes in human *Pseudomonas* isolates, but canine study is lacking.\(^11\)-\(^13\)

A variety of genes might be associated with biofilm formation. Surface attachment
defective (sad) mutants, mutants defective in one of the genes in the sad cluster, have been investigated in biofilm-forming and biofilm-deficient strains and it has been documented that expression of wild-type sadB is required for the transition from the reversible to the irreversible stage of biofilm formation.14

Production of the carbohydrate matrix is a key step in biofilm formation, and pel is thought to play a role in manufacturing glucose-rich components of the matrix.15-16 Different carbon sources lead to a biofilm forming a different shape and pel-deficient mutants exhibit differences in colony morphology, appearing smoother that other colonies with no pellicle.15,17 As the carbon source for the biofilm becomes incorporated into the extrapolymeric matrix, this may suggest that pel-deficient isolates may not produce functioning EPS leading to abnormal biofilm formation.

Two cell-to-cell signalling systems (quorum sensing systems) previously documented in \textit{Pseudomonas aeruginosa} are the lasR-lasI and rhlR-rhl systems. Studies have documented that \textit{Pseudomonas} strains defective in Las QS produce similar quantities of EPS as wild-type bacteria, but the mutants were unable to form ‘normal’ biofilms due to increased space between cells.18-19 Las mutants have been documented to have a 60% reduction in adhered biofilm formation and the onset of lasB activity has also been shown to correlate with initial development of biofilm cell clusters.19-20 Along with the las and rhl QS systems, another cell-to-cell signal has been identified in \textit{Pseudomonas}, the \textit{Pseudomonas} quinolone signal (PQS). In nature, an active lasR protein is required for PQS production. This indicates that a gene required for PQS synthesis is controlled through the las quorum sensing system.21 \textit{Pseudomonas aeruginosa} biofilms that grow under anaerobic conditions require rhl quorum sensing to survive.22

The objective of this study was to determine the prevalence of sadB, pelA, lasB and rhlA in canine otic isolates of \textit{P. aeruginosa} and to evaluate the relationship between the presence of these genes and \textit{in vitro} biofilm formation.
4.3 Materials and Methods

Isolates

Eighty-two multi-drug resistant *P. aeruginosa* isolates recovered from the ears of dogs with otitis externa were studied. Each isolate was obtained from a different canine. Thirty-two of these isolates had previously been demonstrated to form biofilm in vitro. The other fifty had been documented as non-biofilm producing isolates. Biofilm formation was documented using a microtitre plate method. Each isolate was documented to produce a specific quantity of biofilm via measurement of the optical density of each well at 570nm (OD$_{570}$). Isolates were inoculated in triplicate along with a triplicate negative control. The triplicate negative control mean OD$_{570}$ was subtracted from the triplicate mean OD$_{570}$ of the study samples. Isolates were classified as biofilm producers if the net OD$_{570}$ was greater than 0.135. They were further classified as low biofilm producers if the net OD$_{570}$ was > 0.135 but ≤ 0.27, moderate biofilm producers if OD$_{570}$ was > 0.27 but ≤ 0.54 and high biofilm producers if OD$_{570}$ was > 0.54 in accordance with a previous study.

Sub-culture and DNA extraction

Pure 18-24 h growth of *P. aeruginosa* isolates was inoculated into 1ml of PCR-grade water. This mixture was vortexed and centrifuged at 10,000-12,000 rpm for 1-2 min. The supernatant was removed and 200 ul of InstaGene matrix® (Bio-Rad, Mississauga) was added. This mixture was then vortexed and incubated for 30 min in a 56°C water bath. After incubation the mixture was vortexed again at high speed for 10 s and then placed in a heat block for 8 min at 100°C. After further vortexing for 10 s and centrifugation at 10,000-12,000 rpm for another 2-3 min the DNA was then stored at -20°C until use.
Polymerase chain reaction and gel electrophoresis

Previously extracted DNA was used as the DNA template for the PCR reaction. Stock solutions were made to 10pM/µl of both forward and reverse primers for the four genes in question. These primers are described in table 1. The multiplex PCR reaction contained 12.5 µl of KAPA (KAPABiosystems, Boston), 1.0 µl each of the forward and reverse primer stock solutions, 6.5µl of water and 2µl of the template DNA from each isolate. PCR conditions were as follows: 94°C for 30 sec; 30 cycles of 94°C for 30 sec, 30 cycles of 59°C for 30 sec and 30 cycles of 72°C for 1 min.; final extension at 72°C for 5 min. For gel electrophoresis, 1.5% agarose gel (Invitrogen, Burlington) with 10µl of Gel-red (Biotium, Hayward) added, was used. Samples were run at 150 volts and 80 microamps for 45 minutes. Gels were then visualized under ultraviolet illumination (Genegenus, Syngene, Frederick). Positive and negative controls were included for each run. Positive controls were developed from the existing isolate collection by taking positive samples from a pilot round of multiplex PCR testing, repeating the PCR reaction using only the single target primer set and confirmation of PCR specificity through sequencing of the PCR product and comparison with sequences from the National Centre for Biotechnology Information GenBank database (http://www.ncbi.nlm.nih.gov/genbank/). These isolates were then used as positive controls. Negative controls consisted of PCR-grade water in place of DNA template.

Statistical Analysis

Categorical comparisons were performed using chi-squared test. Continuous data were assessed using one-way analysis of variance (ANOVA). A P value of <0.05 was considered significant.
4.4 Results

All isolates possessed lasB and sadB, 74 (90%) possessed pelA and 74 (90%) possessed rhlA. Seventy (84%) isolates possessed all four genes, while nine (11%) possessed three (either lasB, sadB, pelA or lasB, sadB or rhlA) and four (5%) two (lasB and sadB). All thirty-two (100%) isolates that were classified as biofilm producers contained all four genes. There was an association between the presence of pelA and rhlA and biofilm production (table 2). There was also an association between the presence of rhlA and pelA and quantity of biofilm production, as determined by OD570 (both P<0.001). Analysis of lasB and sadB was not performed since these genes were present in all isolates.
4.5 Discussion

The four studied biofilm-associated genes were common in this group of *P. aeruginosa* otic isolates and all four genes were present in all isolates documented to produce biofilm. While this does not prove that these genes, either individually or in combination, are critical for biofilm formation, these data and the known functions of these genes suggest that they play at least some role in biofilm formation. However, all four genes were present in 84% of the total isolates, including those not noted to produce biofilm *in vitro*. These results highlight that factors other than presence of these genes must play a role in determining whether biofilm is produced (at least *in vitro*). This could include variable expression of genes, the presence of non-functional genes and the presence of other genes that initiate or repress biofilm formation.

Both *sadB* and *lasB* were present in all isolates, complicating any assessment of their role in biofilm formation. Clearly, they are not the sole drivers of biofilm formation, since they were present in non-biofilm forming isolates. They may still be of importance (or required) for biofilm formation in combination with other factors. Previous studies have reported that bacteria with a mutation of the *sadB* gene were unable to form a biofilm and also had defects in swimming motility. This indicates that the presence of *sadB* may not equal a functioning gene, as this gene was present in non-biofilm forming isolates in this study, or that *sadB* could be a critical initial step in biofilm formation but other steps involved are missing in the non-biofilm forming isolates in our study. This could also be the case for *lasB* as it was present in all isolates studied.

There was a positive association between the presence of both *pelA* and *rhlA* and biofilm production, indicating that biofilm formation was more likely and more abundant when those genes were present. Transcription of *pel* genes is known to be activated by the *las* QS system. In all isolates in this study *lasB* was present: even isolates that were negative for the presence of *pelA*. This suggests that other genes must play a role in *pelA* activation and transcription. Las
mutants have been documented to have a 60% reduction in adhered biofilm formation indicating that las quorum sensing mutants are defective in biofilm formation. The results of this study support that concept that a lasB gene may need to be present for biofilm production to occur. However, gene expression was not studied therefore no comment can be made on whether a fully functioning lasB gene is required for biofilm formation. A possible role for pel in the initial attachment process of bacteria has also been previously suggested, indicating that this gene must be present for biofilm formation to occur. Results from this study would also support this due to the association between the presence of pelA and biofilm production. However, as with the other genes, these were found in non-biofilm producers and are not a sole indicator of biofilm formation.

There was also an association between the presence of rhlA and pelA and biofilm OD570 indicating that biofilm production was greater when these genes were present. An increase in thickness of a biofilm has previously been shown to occur after activation of both the las and rhl quorum sensing systems. The results of this study also suggest this may be the case for rhlA.

As with any study, consideration must be given to the study population. The isolates in this study were obtained from the external ear canal of dogs with clinical signs of otitis externa. Results from this study highlight gene presence in P. aeruginosa isolates from canine ears and isolates from other regions of the body could be different. Some of these isolates were obtained after treatment and some prior to treatment. Treatment may have played a role in selecting for antimicrobial resistance, which, in turn, could have affected phenotypic variation within isolates. An in vivo study would be needed to determine treatment effect on gene presence or expression. Additionally, PCR-based studies such as this simply look for the presence of a gene, not expression of that gene. It is possible that positive PCR results could have been obtained for isolates that were unable to express the gene or that had alterations in the gene sequence that
prevented expression of the target protein. Another limitation of the study is that the microtitre plate assay is an *in vitro* test and therefore does not fully reflect *in vivo* biofilm formation. Biofilm formation is also undoubtedly multifactorial and complex, and this study only assessed four genes. Presumably, there are other genes that may play important roles that were not assessed.

Regardless, this study highlights the potential role of specific genes in biofilm formation. Future research should include investigation into other genes known to play a role in biofilm development. Investigation into how genes are expressed within biofilms would also be of value. If genes that allow biofilm to form can be identified, this could lead to the development of compounds or medications targeting these genes. Biofilm-embedded bacteria require higher MICs for certain antimicrobials, so developing tests that will determine whether an isolate can form a biofilm is also important for therapy. If gene expression within an isolate can be documented via a test, clinicians will have a better understanding of whether that isolate is capable of biofilm formation and they will be able to select the appropriate dose and antimicrobial for treatment.
4.6 Tables

<table>
<thead>
<tr>
<th>Gene of Interest</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Product Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sadB</td>
<td>GAAAAAAGGTGCTGGAAGCGG</td>
<td>GCCTTTTCGGTAGTCGTTCGTTTC</td>
<td>106</td>
</tr>
<tr>
<td>pelA</td>
<td>GCCATGTGTGCGCCTAAAAA</td>
<td>TGGGTGAAGGATGTTACGG</td>
<td>268</td>
</tr>
<tr>
<td>rhlA</td>
<td>CAAGGACGACGAGTGGAAAAA</td>
<td>TCTTCCGAGGTCAGGGGTTC</td>
<td>673</td>
</tr>
<tr>
<td>lasB</td>
<td>AGCCATCACCGAGTCAAGGG</td>
<td>TGCCCGCGCATATAGAACTCG</td>
<td>872</td>
</tr>
</tbody>
</table>

Table 1: Forward and Reverse Primers and product length for four genes of interest used for PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Biofilm producers (n=32)</th>
<th>Non biofilm producers (n=50)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sadB</td>
<td>32 (100%)</td>
<td>50 (100%)</td>
<td>ND</td>
</tr>
<tr>
<td>rhlA</td>
<td>32 (100%)</td>
<td>42 (84%)</td>
<td>0.017</td>
</tr>
<tr>
<td>pelA</td>
<td>32 (100%)</td>
<td>42 (84%)</td>
<td>0.017</td>
</tr>
<tr>
<td>lasB</td>
<td>32 (100%)</td>
<td>50 (100%)</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: Not done

Table 2: Prevalence of the presence of biofilm-associated genes in biofilm forming and non-biofilm forming canine otic isolates of *Pseudomonas aeruginosa*
4.7 References

CHAPTER 5: General Discussion and Conclusions

5.1 General Discussion and Conclusions

Biofilms are colonies of bacteria that are shielded from environmental stresses, the host immune response and antimicrobial therapy due to the presence of a carbohydrate based EPS matrix.\(^1\) Biofilms have been identified in the human literature as being responsible for chronic infections including those in wounds, on surgical implants and in the lungs of patients with cystic fibrosis.\(^2-4\) Research has showed that production of biofilm is likely an important virulence factor for certain bacterial species as biofilm-embedded bacteria are less susceptible to antimicrobial therapy than their planktonic counterparts.\(^5-6\) In the veterinary literature there is less data regarding biofilm formation and antimicrobial resistance although biofilms have been documented for certain species and conditions.\(^7-9\) Information regarding biofilm formation for \textit{Pseudomonas aeruginosa} is limited and there are currently no reports documenting biofilm forming ability or antimicrobial susceptibility for \textit{P. aeruginosa} isolates obtained from the external ear canal of canines.

The first study illustrates that biofilm production by canine otic isolates of \textit{P. aeruginosa} is possible, although there is variability in the degree of \textit{in vitro} biofilm production. The ability of an isolate to produce biofilm could be an important virulence factor for \textit{P. aeruginosa}, assisting in establishing infections and evading the system and antimicrobials. While many \textit{Pseudomonas} isolates produced biofilm \textit{in vitro}, sixty per cent produced no quantifiable biofilm. Time, \textit{in vivo} factors and genetics could play a role in biofilm formation but these were not evaluated in this study. A more thorough knowledge of biofilm formation is required to understand the pathology of biofilm-associated infections to allow treatment protocols to be designed.

Previous studies have documented that minimum inhibitory concentrations (MICs) for antimicrobials are higher for biofilm-embedded bacteria, as was the case in this study.\(^10\)
Therefore, the ability to form biofilm may be an important virulence factor for some isolates of *P. aeruginosa* and play an important role in the pathogenesis of disease and establishment of chronic, recurrent and refractory infections. This also indicates limitations in interpretation of typical culture and susceptibility results when biofilms may be involved, as testing performed with planktonic bacteria may not accurately represent the likelihood of response to treatment. Previously, certain antimicrobials have been shown to actually induce biofilm formation or induce production of biofilm matrix components.\(^{11-12}\) This fact was not exclusively studied with this research but may be playing a role in the higher minimum inhibitory concentrations in biofilm-embedded bacteria. Topical therapy is most commonly used to treat canine otitis externa. Populations of *Pseudomonas aeruginosa* that are resistant to a specific antimicrobial *in vitro* have been shown to be destroyed by this same antimicrobial when used topically. This is due to the much higher concentrations of antimicrobials that can be reached during topical application.\(^{13-14}\) Further study is needed to determine the role of biofilm in otitis externa and the choice to use topical or systemic therapy.

The second study documents that Triz-EDTA® use can impact the susceptibility of biofilm-embedded *P. aeruginosa* to certain antimicrobials. The clinical impact of this finding was not investigated but the ability to reduce bacterial MICs suggests that Triz-EDTA® could be a useful adjunctive treatment. The mechanism of this effect is unclear but may relate to creation of pores in bacterial membranes which aid in antimicrobial penetration.\(^{15-16}\) However, a significant effect was only shown for neomycin and gentamicin, and the reason for a lack of impact on enrofloxacin and polymixin B is also unclear. Both aminoglycoside and fluoroquinolones (enrofloxacin) bind to structures within the bacterial cell, therefore it is unlikely that just drug penetration accounted for the difference of the MIC of enrofloxacin’s MIC should have also been lowered.\(^{17-18}\) It could be that this difference is related to statistical power. However, a remarkable
finding was the increase in biofilm MIC with added Triz-EDTA® in 64.5% of isolates with enrofloxacin. Some of these isolates showed a four-fold or higher difference suggesting that this increase may be due to the presence of the Triz-EDTA®, through some unknown but potentially clinically important mechanism.

Results from this study are in disagreement with data previously documented in the literature. Earlier studies show that the addition of Triz-EDTA® for otitis externa that was previously unresponsive to enrofloxacin and found to be resistant to enrofloxacin on bacterial culture, lead to resolution of the otitis. The discrepancy with this study was that the bacteria were never defined as planktonic or biofilm-embedded, whereas the current study was looking at purely biofilm-embedded bacteria. These results may highlight differences pertaining to the study populations.

Minimum inhibitory concentration, not minimum bactericidal concentration was measured in this study. Previous studies have documented a decrease in the minimum bactericidal concentration for specific antimicrobials for Pseudomonas with the addition of Triz-EDTA®. How relevant this difference is, is unknown, although this may mean that a small number of bacteria within the biofilm are not completely eradicated after antimicrobial therapy. Whether this could lead to establishment of a new infection or biofilm is unclear and would need further study. Future research could also include the use of other compounds or medications to decrease MICs for antimicrobials against Pseudomonas or the use of other topicals that could act synergistically with Triz-EDTA®.

One concern with both these studies is whether this method of in vitro susceptibility testing can approximate an in vivo biofilm. Several assays are available to determine the antimicrobial minimum inhibitory concentration for bacterial biofilms. There is currently no consensus within the literature as to which test is the most accurate. The microtitre plate
assay is widely used but obviously does not reflect the complex microenvironment present within the external ear in cases of otitis externa. Biofilm formation has been documented within the middle ear cavity of chinchillas in vivo. This supports the idea that biofilms could potentially form in the external ear canal. However, conditions within the external ear canal during inflammation, including excessive cerumen production, inflammation and host response, will change the microenvironment and potentially change the production of biofilm and its components. In order to determine whether these factors play a role, an in vivo study would need to be undertaken.

Results of the third study show that all isolates documented to produce biofilm possessed all four genes being studied. We know that all have been previously documented to contribute to biofilm formation. All isolates, those forming biofilms and those non-biofilm forming isolates, possessed lasB and sadB, 74 (90%) possessed pelA and 74 (90%) possessed rhlA. The fact that some of the non-biofilm forming isolates still had all four genes present suggests that other factors play a role in biofilm formation independent of the presence of these genes. These results may also suggest that a gene may be responsible for the initial biofilm development, but other factors are required for biofilm production. Future studies looking at expression of these genes would be required to substantiate their role in biofilm production.

There was a positive association between the presence of pelA and rhlA and biofilm production. Las mutants have been documented to have a 60% reduction in adhered biofilm formation indicating that las quorum sensing mutants are defective in biofilm formation. The results of this study support the concept that a lasB gene must be present for biofilm production to occur. However, gene expression was not studied therefore no comment can be made on whether a fully functioning lasB gene is required for biofilm formation. A role for pel in the initial attachment of bacteria to a surface has also been suggested. Results from this study
would also support this due to the association between the presence of *pelA* and biofilm production.

There was also an association between the presence of *rhlA* and *pelA* and biofilm OD570 indicating that biofilm production was greater when these genes were present. An increase in thickness of a biofilm has previously been shown to occur after activation of both the *las* and *rhlA* quorum sensing systems. Results of the current study support that biofilm thickness may be increased when *lasB* is present.

In summary, we can conclude the following:

1. Biofilm production by otic isolates of *Pseudomonas aeruginosa* is common with variability in the amount of biofilm produced.
2. The minimum inhibitory concentration of biofilm-embedded bacteria is higher for enrofloxacin, gentamicin, neomycin and polymyxin B when compared to their planktonic counterparts *in vitro*.
3. The addition of Triz-EDTA® will lower the minimum inhibitory concentration of biofilm-embedded bacteria for gentamicin and neomycin, *in vitro*.
4. Genetics likely play a role in biofilm development and production and *sadB, pelA, lasB* and *rhlA* maybe some of the important gene contributing to biofilm formation.

These results are highly relevant due to emergence of bacterial biofilms in veterinary medicine and the inherent difficulties in treating such infections. Documenting that biofilm formation is common among *Pseudomonas aeruginosa* otic isolates and that biofilm formation increases the MICs of certain antimicrobials, may impact treatment choices in chronic cases of otitis externa where biofilm formation is suspected. This data may also fuel future research into compounds
that can disrupt biofilms to enable lower MICs to be targeted with therapy and bypass the inherent defense mechanisms of biofilms. By evaluating and identifying genes that are present in biofilm forming isolates we can then further research gene expression in biofilms. This research may also enable therapies to be manufactured that target gene expression to prevent biofilm formation. In vivo studies are needed to determine the full extent of biofilm formation and appropriate treatment, however, understanding the basis of biofilm formation and susceptibility to antimicrobials is key to determine ways to eradicate bacterial biofilms.
5.2 References

Appendix 1: Diagram of External ear canal

Appendix 2: Biofilm Formation

Appendix 3: Examples of PCR