Importance of Industry Driven Research

December 7th, 2011
Bioeconomy Research Highlights Day & Expo
Craig Crawford, President & CEO
Overview

• Background
 – Automotive Roadmap
 – Bioproduct Targets
 – Examples of Research Commercialization

• Ontario BioAuto Council
 – Membership
 – Approach
 – Strategies for Enhancing Customer Value
 – Examples Applied Research

• Why Is Industry Driven Research Important
Biopolymer Roadmap - Auto Sector

Possible Polymers Derived from Plants

Plants → starch → cellulose → glucose xylose → lactic acid → ethanol → EO → EG → isosorbide → 1,3-PDO → 1,4-BDO → succinic acid

Plants → hemi-cellulose → lignin → ligno phenol → fatty acid → methyl ester → glycerin → sebacic acid

Plants → oil → PHA → PLA → PE → PP → PET → PEIT → PTT → PBT → PBS → PA → PUR
Toyota’s Bio-material Targets

Expectations for Technical Innovations

Toyota’s Vision

Establishment of technology for 20wt% usage of Eco-Plastics & recycled plastics by 2015

Polymers for Automotive Parts

Primary Target: Interior Parts
Commercialization of Soy-Based Foam

- Applications: seat cushion, seat back
- Soy content: 12% polyol replacement
- Implemented: August, 2007
- Soy foam usage: 2.2 Million pounds per year
- Extensive media coverage and interest
Diffusion Across Vehicle Platforms

- Ford Mustang
- Ford Expedition
- Lincoln Navigator
- Ford Escape
- Mercury Mariner
- Mazda Tribute
- Ford Fusion
- Mercury Milan
- Lincoln MKZ
- Ford Crown Victoria
- Mercury Grand Marquis
- Ford Focus
- Lincoln MKS
- Ford Taurus
- Ford Flex
- Lincoln MKT
- Ford Edge
- Lincoln MKX
- Ford Explorer
- Ford Fiesta
- Ford F-150
- Ford F-250/350
- Ford Ranger
Current Bio-Polyamide (PA) Producers

<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkema</td>
<td>France</td>
<td>Rilsan PA11 and PA12</td>
</tr>
<tr>
<td>BASF</td>
<td>Germany</td>
<td>Ultramid S Balance</td>
</tr>
<tr>
<td>DSM</td>
<td>Netherlands</td>
<td>EcoPaxx</td>
</tr>
<tr>
<td>DuPont</td>
<td>USA</td>
<td>Zytel RS</td>
</tr>
<tr>
<td>EMS-Grivory</td>
<td>Switzerland</td>
<td>Grilamid</td>
</tr>
<tr>
<td>Evonik</td>
<td>Germany</td>
<td>Vestamid Terra</td>
</tr>
<tr>
<td>Rhodia</td>
<td>France</td>
<td>Technyl eXten</td>
</tr>
</tbody>
</table>
Potential PA Applications

- Coolant circuit car engine
Ontario BioAuto Council

Board of Directors:

- Chrysler Canada (J. Mann)
- Automobile Parts Manufacturers Association
- Magna Interiors and Exteriors
- Woodbridge Group
- Canadian General Tower
- Husky Injection Molding
- AUTO21 Network Centres of Excellence
- Ontario Centres of Excellence
- Sustainable Chemistry Alliance
- Tembec / Greenfield Ethanol
- Ontario Agri-Food Technologies
- PSA Composites
- Woodrill Ltd.

Members (examples):

- Toyota Tsusho Canada
- DuPont Canada
- Cargill (US)
- Dow Automotive (US)
- DSM (Netherlands)
- BASF (Germany)
- Braskem (Brazil)
- Innventia (Sweden)
- Merquinsa North America
- Bayer Material Science
- Valle Foam
- Carpenter Company
- CCC Plastics
- National Research Council
- FP Innovations
- Exova (formerly Bodycote)
- University of Waterloo, WatCAR
- University of Toronto, Centre for Biocomposites and Biomaterials Processing
- Enterprise Saskatchewan
- Alberta Innovates – Bio Solutions
- Linnaeus Plant Sciences
- BioteCanada
- Deloitte
Approach

- Focus on new product development
 - Source of new jobs and wealth creation

- Enhanced customer value - use biomass and emerging technologies (biotechnology, green chemistry & engineering, material science, advanced manufacturing) to:
 - Control raw material costs
 - Improve product and processing performance
 - Enhance social and environmental responsibility (brand strength)

- Open innovation systems - establish global partnerships and supply chains
 - Companies
 - Clusters
 - Universities
 - Government labs, research institutes, networks
Strategies for Enhancing Customer Value

• Cost control/predictability/availability
 – Lower cost biochemicals/resins (e.g. succinic acid, isobutanol, soy-based polyols, etc)
 – Inexpensive plastic fillers (e.g. wood, wheat straw, oat hulls)
 – New plastic processing equipment (e.g. more rapid prototyping, faster processing times, greater parts integration, reduction in processing steps, etc)

• Performance (light weight, enhanced durability, etc)
 – High performance composites (using advanced micro-fibre, nano crystalline cellulose, carbon fibre technologies)
 – New 3-D structures (e.g. composite sandwiched structures)

• Environmental and social responsibility
 – New biochemical platforms and additive packages with reduced toxicity and GHG emissions
 – Closed loop material systems (enhanced recycling, energy recovery)
Target Automotive Parts for Bio-Transformation - Today

- Seat Cushions (5%)
- Structural Foam (20%)
- Carpet Backing (20%)
- Elastomers (10%)
- Coverstock Foam (5%)
- Acoustical Products (10%)

- Sunshade (20%)
- Under the Hood (15%)
- Headrest (25%)
- Headliner (20%)
- Armrest (25%)

- Energy Management (18%)
Magna Loadfloor Construction

- Layered sandwich composite process
- Material
 - Soy polyol to replace up to 50% of fossil fuel based polyol
- Material Suppliers
 - Dow
 - Bayer
- Process
 - Fabricate a glass/honeycomb/glass sandwich
 - Spray urethane (contains the Soy Polyol) on both sides
 - Place in tool, close press and cure
 - Removed finished composite part

Ontario BioAuto Council
Coated Fabric Applications

- Door Inserts
- Map Pockets
- Headrests
- Seating – A, B, C Surfaces
- Armrests
Importance of Advanced Manufacturing

We need to integrate biopolymers, natural fibers, and bio-based additives with advances in manufacturing technology. Example: Magna Global Composites Centre.
Importance of Market Development

ELAPSED TIME FROM COMMERCIAL PLANT TO ANNUAL SALES OF 300 MILLION lb

Years

Plastics source: McKinsey

<table>
<thead>
<tr>
<th>Commodity</th>
<th>PLA</th>
<th>PVC</th>
<th>PS</th>
<th>LDPE</th>
<th>PUR</th>
<th>HDPE</th>
<th>PP</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>40</td>
<td>30</td>
<td>19</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 NA sales volume (billion lb)</td>
<td>15.8</td>
<td>6.0</td>
<td>7.8</td>
<td>4.4</td>
<td>17.7</td>
<td>17.8</td>
<td>7.6</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Industry-Driven Multi-Sector Research

Need to form industry-driven, multi-sector, centres of excellence to develop technology platforms that will facilitate more rapid aggregation of market demand. Example: ArboraNano Network (nanocellulose crystals)
Summary & Conclusions

- Strong interest by the automotive sector in using bio-based materials, IF they can demonstrate customer value:
 - Reduced material costs
 - Enhanced product performance (e.g. light weighting)
 - Real, verifiable, benefits for human health and the environment.

- Ontario, through the Ontario BioAuto Council, has commercialized a number of applications in the automotive and consumer products sector that demonstrate some of these benefits

- Advances in biotechnology, green chemistry, and material science need to be integrated with innovations in advanced manufacturing

- Industry-driven, multi-sector partnerships are needed to help coordinate public and private research research efforts and drive market demand.
Ontario BioAuto Council
100 Stone Road West, Suite 205
Guelph ON N1G 5L3

Office: 519-827-1118
Web: www.bioautocouncil.com