The efficacy of spinosad against the western flower thrips, *Frankliniella occidentalis*, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario

Terri Jones,1 Cynthia Scott-Dupree,1* Ron Harris,1 Les Shipp2 and Brenda Harris3

1 Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
2 Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Center, Harrow, Ontario, Canada N0R 1G0
3 Dow AgroSciences Canada Inc, Suite 201—1144 29th Ave NE, Calgary, Alberta, Canada T2E 7P1

Abstract: Insecticides are the most commonly used tactic to control western flower thrips (WFT), *Frankliniella occidentalis* Pergande (Thysanoptera: Thripidae), on greenhouse cucumber. However, WFT has developed resistance to several of the insecticides presently in use. In addition, some of these insecticides adversely affect greenhouse biological control agents used to control WFT, resulting in subsequent pest resurgence. Therefore, there is a need to identify novel insecticides with unique modes of action for use in integrated pest management (IPM) programs to effectively control WFT with minimal impact on associated biological control agents. In laboratory bioassays conducted in 2001, immature and adult WFT and three associated greenhouse biological control agents: *Amblyseius cucumeris* Oudemans (Acarina: Phytoseiidae), *Orius insidiosus* Say (Hemiptera: Anthocoridae) and *Encarsia formosa* Gahan (Hymenoptera: Aphelinidae) were exposed to direct, direct/residual, and residual contact applications of the novel biopesticide, spinosad (Conserve® 120 SC), and the industry standard for whitefly control, endosulfan (Thiodan® 50 WP). In all three types of assay, spinosad was effective against immature and adult WFT life stages. It showed low toxicity to *A. cucumeris*, moderate toxicity to *O. insidiosus* and high toxicity to *E. formosa*. Greenhouse studies involving exposure of immature and adult WFT and adult biological control agents to cucumber leaves sprayed previously with spinosad supported the laboratory data. Spinosad showed low toxicity to *A. cucumeris* exposed to leaves 1 day after treatment (DAT), moderate toxicity to *O. insidiosus* 1 and 8 DAT, and high toxicity to *E. formosa* up to 28 DAT. These data, along with spinosad’s unique mode of action, suggest it would be a valuable reduced-risk control agent for greenhouse cucumber IPM programs.

Keywords: *Frankliniella occidentalis*; *Amblyseius cucumeris*; *Orius insidiosus*; *Encarsia formosa*; biological control agents; greenhouse; cucumbers; integrated pest management; spinosad; impact; efficacy

1 INTRODUCTION

Western flower thrips (WFT), *Frankliniella occidentalis* Pergande (Thysanoptera: Thripidae), is an economic pest of greenhouse cucumber world-wide.1,2 It causes direct (eg scarring and deformation of fruit) and indirect (eg feeding and oviposition on leaves and flowers) damage to cucurbits, resulting in yield loss and decreased market value.3 In addition, WFT is the major vector of tomato spotted wilt virus, a devastating polyphagous tospovirus on tomatoes. Insecticides are commonly used to control WFT.4 However, the pest’s high reproductive potential and short generation time, and the improper use of pesticides, have resulted in the development of insecticide resistance to several major classes of chemical.5 In addition, some of these insecticides have adverse effects, either directly (eg mortality) or indirectly (eg affecting oviposition, longevity and predation), on greenhouse biological control agents, resulting in pest resurgence in the greenhouse.6

Therefore, it is important to use resistance management strategies and to develop new reduced-risk insecticides with unique modes of action that can be used in integrated pest management (IPM)
programs with minimal impact on biological control agents. Spinosad (Dow AgroSciences Canada Inc, Calgary, AB) is a macrocyclic lactone bioinsecticide that has shown promise against WFT. It is a naturally occurring mixture of spinosyns A and D, which is produced by an actinomycete, Saccharopolyspora spinosa Mertz and Yao, under aerobic fermentation conditions. Spinosad has a unique mode of action and low to moderate toxicity to common greenhouse biological control agents, including Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) and Orius insidiosus Say (Hymenoptera: Aphelinidae), suggesting it has potential in an IPM program for WFT on greenhouse cucumbers in Canada.

The objectives of this study were to determine: (1) the effectiveness of spinosad by direct, direct/residual and residual contact for control of larval and adult WFT on greenhouse cucumber leaves, and (2) the impact of spinosad on three different adult greenhouse biological control agents, A cucumeris and O insidiosus associated with WFT control on greenhouse cucumbers, and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) used for greenhouse whitefly, Trialeurodes vaporariorum (Westwood) control.

2 MATERIAL AND METHODS
2.1 Insect rearing
2.1.1 Laboratory studies
In 2001, WFT was obtained from a greenhouse population at Agriculture and Agri-food Canada’s Greenhouse and Processing Crops Research Center in Harrow, ON (GPCRC). The colony was reared on white and yellow pom chrysanthemums (cultivars: Surf and Yellow Favour, respectively) for the green-leaf whitefly, Trialeurodes vaporariorum (Westwood) control.

2.1.2 Greenhouse trials
WFT used in the greenhouse trial were from the original culture. Orius insidiosus, A cucumeris and E formosa were obtained from Global Horticultural Inc (Beamsville, Ontario). WFT and the biological control agents were cultured as described in Section 2.1.1.

2.2 Insecticide treatments
2.2.1 Laboratory studies
Two formulated products were evaluated: (1) spinosad 120 g liter⁻¹ SC (Conserve® 120 SC, Turf and Ornamental Insect Control, Dow AgroSciences Canada Inc, Calgary, AB) applied at the USA rate (SRR), 60 mg AI liter⁻¹; 50 ml formulation liter⁻¹, and at 75% of the recommended rate (S75RR), 45 mg AI liter⁻¹; 38 ml formulation liter⁻¹, and (2) endosulfan 500 g kg⁻¹ WP (Thiodan® 50 WP, Bayer CropScience, Calgary, AB) applied at the recommended rate for whitefly control (ERR), 500 mg AI liter⁻¹; 1.0 g formulation liter⁻¹, and at 3x the recommended rate (E3xRR), 1500 mg liter⁻¹; 3.0 g formulation liter⁻¹. In Canada, endosulfan is registered for whitefly control on greenhouse cucumbers but also has some impact on WFT, and so was considered to be the industry standard for comparison, although WFT appears to be developing resistance to it. Distilled water was used as the control.

2.2.2 Greenhouse trial
Spinosad 120 g liter⁻¹ SC was applied at the recommended rate of 60 mg liter⁻¹. Tap water was used as the control.
2.3 Laboratory bioassays

2.3.1 Direct contact toxicity
Ten to 15 immature WFT (10 replicates; \(n = 145 \)) per treatment were exposed to an 8-ml aliquot of insecticide solution using a Potter spray tower at the GPCRC. Treated insects were transferred to an excised cucumber leaf (\(Cucumis sativus \) cv Bodega) placed upside down on a piece of moistened filter paper and cotton on the bottom of a Petri dish. A screen cover was placed over the dish, which was then wrapped with Parafilm®. Cages were held at 25 ±1°C, 75% RH and 12:12 h light:dark photoperiod and were examined at 24 h and 48 h to assess mortality. Distilled water was used as the control. This procedure also was followed using 13–15 immature (10 replicates; \(n = 145 \)) and 10 adult WFT (10 replicates; \(n = 100 \)) and nine \(O \) insidiosus (10 replicates; \(n = 90 \)) per treatment. The latter were provided with \(E \) kuehniella eggs as a food source.

2.3.2 Residual contact toxicity
Residual contact toxicity of spinosad and endosulfan was determined using a leaf dip bioassay. The petiole of an excised cucumber leaf (\(C. sativus \) cv Bodega) was inserted through the rubber septum of a rose vial filled with 3 ml of distilled water. Each prepared leaf was dipped for 5 s in one of the four insecticide treatments (Section 2.2) and left to dry in a fume hood for ca 1.5 h.

Plastic 20-dram vials with two holes (1 cm diameter) cut into their sides were used for the LD bioassays with 12 immature (15 replicates; \(n = 180 \)) and 9–12 adult (25 replicates; \(n = 240 \)) WFT, 10 \(O \) insidiosus (15 replicates; \(n = 150 \)) and 10–14 \(E \) formosa (15 replicates; \(n = 185 \)) per treatment. One hole had a cork inserted into it, the other had a piece of thrips-proof screening (BioQuip Products Inc, Gardena, CA) over it. Observation of larval WFT and \(E \) formosa was improved by reducing the vial length to 2.5 cm and gluing a clear piece of Plexiglass® over the cut end to seal the chamber. A moistened filter paper disk (Whatman, 42.5 mm diameter) was placed into the lid of each vial. A leaf was then placed upside down over the lid and snapped into the vial.

Using an aspirator, adult WFT or \(O \) insidiosus were gently blown into each vial. \(Orius \) insidiosus were fed \(E \) kuehniella eggs attached to a strip of moistened filter paper and suspended between the vial and the cork. Strips of parasitized whitefly pupae were suspended in a similar manner for \(E \) formosa bioassays and were removed after 24 h. All vials were held at 27 ±1°C, 75% RH and 16:8 h light:dark photoperiod. Mortality was assessed after 24 h and 48 h.

2.3.3 Direct/residual contact toxicity
Direct/residual contact toxicity of spinosad and endosulfan to adult WFT, \(O \) insidiosus and \(A \) cucumeris was determined using the bioassay described in Section 2.3.1. However, instead of applying the insecticides to 10–12 immature (26 replicates; \(n = 300 \)) and 12–15 adult (26 replicates; \(n = 350 \)) WFT, 10 \(O \) insidiosus (15 replicates; \(n = 150 \)) and 10–12 \(A \) cucumeris (15 replicates; \(n = 170 \)) per treatment and then transferring them to a clean leaf, the insects or mites and leaves were sprayed simultaneously.

2.4 Greenhouse trial
The greenhouse trial was conducted in a polyethylene covered greenhouse (7.6 × 7.6 m) at the GPCRC. Cucumbers (\(C. sativus \) cv Bodega) were grown in rockwool slabs, using commercial production practices, until they reached full canopy. Spinosad 120 g liter⁻¹ SC was applied at the recommended rate of 60 mg AI liter⁻¹ (0.50 ml formulation liter⁻¹) using a low pressure/high volume carbon dioxide sprayer (R and D Sprayers Inc, Opelousas, LA) at 276 kPa, to both upper and lower leaf surfaces until runoff. Tap water was applied in a similar fashion as the control.

Plexiglass clip bioassay cages were used to confine immature and adult WFT, and adult \(O \) insidiosus, \(A \) cucumeris and \(E \) formosa to the abaxial surface of treated cucumber leaves. The clip cages were 5 cm diameter × 0.5 cm high with a 3 cm diameter hole on the bottom covered with thrips-proof screening for ventilation. The inner surface of each cage was treated with spinosad at the same rate (60 mg liter⁻¹) and time as the cucumber leaves in the greenhouse and the cages were immediately affixed to the lower leaf surface using padded fold-back clips.

Twenty to 25 WFT larvae and adults were placed in separate bioassay cages affixed to treated leaves 1, 3, 8, 15, 22, 28, 36, 43, 50 and 57 DAT. The same number of \(O \) insidiosus were affixed to leaves in assay cages 1 and 8 DAT; \(A \) cucumeris and \(E \) formosa 1, 8 and 28 DAT. Eight replicates were completed for treatments and control at each residual time. Mortality counts were made after 48 h.

2.5 Data collection and analysis

2.5.1 Laboratory bioassays
Corrections for natural mortality were made using Abbott’s formula. Insects were considered dead if they did not move after being touched with a probe and/or did not respond to light. Data were arcsine transformed before being subjected to an analysis of variance. All mortality means were separated by a least significant difference (LSD) test with actual means shown in tables. Insecticides were ranked: harmless (<25% mortality), slightly harmful (25–50% mortality), moderately harmful (51–75% mortality) and harmful (>75% mortality) according to IOBC guidelines.

2.5.2 Greenhouse trials
Data were treated as described in Section 2.5.1. When significant differences in mortality means among residual ages were found by ANOVA, the means were separated using the Student-Newman-Kuels (SNK) multiple range test.
3 RESULTS AND DISCUSSION
3.1 Laboratory bioassays
After 24 and 48 h, both spinosad treatments were significantly more toxic to immature and adult WFT as direct (Table 1), residual (Table 2) and direct/residual (Table 3) contact applications than the endosulfan treatments. Both spinosad treatments caused >90% mortality of larval and adult WFT after 48 h in all laboratory bioassays. The toxicities of the two spinosad treatments after 24 and 48 h were not significantly different in any of the tests (Tables 1–3) with either larval or adult WFT. A previous contact toxicity study performed on WFT-infested Transvaal daisies (Gerbera jamesonii H Bolus ex Hook f), reported that spinosad 120 g/l SC applied at 50 mg AI l−1 (0.44 ml formulation l−1), 100 mg AI l−1 (0.88 ml formulation l−1) and 200 mg AI l−1 (1.76 ml formulation l−1) caused 94, 98 and 91% mortality, respectively, of adult WFT after 48 h. Another study, using the same rates of spinosad on bean pods, reported that these concentrations would exceed that required to provide >90% WFT mortality in field situations.

Larval and adult WFT were significantly less susceptible to endosulfan than either of the spinosad treatments by direct (Table 1), residual (Table 2) or direct/residual (Table 3) contact. Low toxicity and the fact that there was little or no significant difference between ERR and E3xRR, suggest that this WFT population has developed a high level of resistance to endosulfan. Resistant WFT strains have undoubtedly developed due to the lack of effective alternative pesticides that can be incorporated into management programs.

When applied by direct contact, the toxicity of spinosad and endosulfan to adult *O. insidiosus* (n = 90 per treatment) was not significantly different 24 or 48 h after treatment with exception of the 24 h E3xRR treatment, which caused significantly higher mortality than any of the other treatments (Table 1). All direct contact applications of spinosad and endosulfan were classified as slightly to moderately harmful to adult *O. insidiosus* (n = 90 per treatment; Table 1).

Spinosad and endosulfan were ranked harmful to *O. insidiosus* by direct/residual contact (Table 3). However, as a residual contact treatment, endosulfan was moderately harmful to *O. insidiosus* (n = 150 per treatment), whereas, spinosad was ranked as harmless (Table 2). These data agree with residual studies done by Elzen et al.,7 Miles and Dutton14 and Pietrantonio and Benedict,9 who reported spinosad as harmless to *O. insidiosus*. Moreover, *O. insidiosus* is most active when greenhouse conditions are >25 °C and 77 kPa (ie early morning). Therefore, direct contact toxicity may be minimized if spinosad is not applied under these conditions.

Based on the results of the direct/residual contact bioassay (Table 3), spinosad was ranked harmless to the predatory mite, *A. cucumeris* (n = 170 per treatment), suggesting that it could be applied effectively in the greenhouse without harm to current or future *A. cucumeris* populations. These results are similar to those of Miles and Dutton,14 who reported no detrimental effect on *A. californicus* (McGregor) exposed to spinosad residues (19.2 g AI hl−1) on bean plants. *Encarsia formosa* was a relatively inexpensive biological control agent, so re-introduction is a viable and practical option. It would be important for growers to monitor biological control agent populations after spraying insecticides to reassess biological control programs and make decisions on necessary re-introduction rates.

Orius insidiosus and *E. formosa* were negatively impacted by residual contact applications of endosulfan, with the E3xRR being significantly more toxic than the ERR (Tables 2, 3). These results clearly

Table 1. Direct contact toxicity of different rates of spinosad and endosulfan to larva and adult western flower thrips (WFT) and adults of the biological control agent, *Orius insidiosus*, on cucumbers

<table>
<thead>
<tr>
<th>Treatmentb</th>
<th>Rate (mg l−1)</th>
<th>WFT Larvae</th>
<th>WFT Adults</th>
<th>Orius insidiosus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>48 h</td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>ERR</td>
<td>500</td>
<td>3 (±1.8) a</td>
<td>7 (±3.0) a</td>
<td>2 (±1.1) a</td>
</tr>
<tr>
<td>E3xRR</td>
<td>1500</td>
<td>18 (±6.0) b</td>
<td>13 (±3.3) a</td>
<td>13 (±6.2) b</td>
</tr>
<tr>
<td>S75RR</td>
<td>48</td>
<td>82 (±2.6) c</td>
<td>90 (±2.6) b</td>
<td>100 c</td>
</tr>
<tr>
<td>SRR</td>
<td>60</td>
<td>81 (±2.8) c</td>
<td>97 (±1.8) b</td>
<td>100 c</td>
</tr>
<tr>
<td>P ≤ 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Values in a column followed by the same letter were found not to be significantly different (P ≥ 0.05, least significance difference test). Mortalities were arcsine transformed before ANOVA. Means (±SE) of untransformed data are reported.

b ERR and E3xRR = endosulfan at its recommended and three times its recommended rate; S75RR and SRR = spinosad at 75% and its recommended rate.
Table 2. Residual contact toxicity of different rates of spinosad and endosulfan to western flower thrips (WFT) larvae and adults, and adults of the biological control agents, Orius insidiosus and Encarsia formosa, on cucumbers

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate (mg/liter⁻¹)</th>
<th>WFT Larvae</th>
<th>WFT Adults</th>
<th>Orius insidiosus</th>
<th>Encarsia formosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>48 h</td>
<td>24 h</td>
<td>48 h</td>
<td>24 h</td>
</tr>
<tr>
<td>ERR</td>
<td>500</td>
<td>13 (±2.2) a</td>
<td>18 (±2.2) a</td>
<td>2 (±0.9) a</td>
<td>15 (±3.2) a</td>
</tr>
<tr>
<td>E3xRR</td>
<td>1500</td>
<td>16 (±2.5) a</td>
<td>26 (±2.7) b</td>
<td>3 (±1.4) a</td>
<td>22 (±3.7) a</td>
</tr>
<tr>
<td>S75RR</td>
<td>48</td>
<td>100 b</td>
<td>100 c</td>
<td>100 b</td>
<td>100 b</td>
</tr>
<tr>
<td>SRR</td>
<td>60</td>
<td>100 b</td>
<td>100 c</td>
<td>100 b</td>
<td>100 b</td>
</tr>
<tr>
<td>P ≤ 0.05</td>
<td></td>
<td>F₃,₃₆ = 2341.2</td>
<td>F₃,₃₆ = 303.7</td>
<td>F₃,₉₆ = 1778.0</td>
<td>F₃,₉₆ = 929.1</td>
</tr>
</tbody>
</table>

a Values in a column followed by the same letter were found not to be significantly different (P ≥ 0.05, least significance difference test). Mortalities were arcsine transformed before ANOVA. Means (±SE) of untransformed data are reported.

b ERR and E3xRR = endosulfan at its recommended and three times its recommended rate; S75RR and SRR = spinosad at 75% and its recommended rate.

Table 3. Direct/residual contact toxicity of different rates of spinosad and endosulfan to western flower thrips (WFT) larvae and adults, and adults of the biological control agents, Orius insidiosus and Amblyseius cucumeris, on cucumbers

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate (mg/liter⁻¹)</th>
<th>WFT Larvae</th>
<th>WFT Adults</th>
<th>Orius insidiosus</th>
<th>Amblyseius cucumeris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>48 h</td>
<td>24 h</td>
<td>48 h</td>
<td>24 h</td>
</tr>
<tr>
<td>ERR</td>
<td>500</td>
<td>7 (±1.9) a</td>
<td>15 (±3.3) a</td>
<td>31 (±4.8) a</td>
<td>32 (±5.9) a</td>
</tr>
<tr>
<td>E3xRR</td>
<td>1500</td>
<td>17 (±2.6) b</td>
<td>32 (±6.4) b</td>
<td>47 (±4.3) b</td>
<td>51 (±6.1) b</td>
</tr>
<tr>
<td>S75RR</td>
<td>48</td>
<td>99 (±0.0) c</td>
<td>100 c</td>
<td>100 c</td>
<td>100 c</td>
</tr>
<tr>
<td>SRR</td>
<td>60</td>
<td>98 (±1.0) c</td>
<td>100 c</td>
<td>100 c</td>
<td>100 c</td>
</tr>
<tr>
<td>P ≤ 0.05</td>
<td></td>
<td>F₃,₁₁₅ = 858.7</td>
<td>F₃,₈₄ = 654.1</td>
<td>F₃,₁₀₆ = 203.0</td>
<td>F₃,₁₈₅ = 157.3</td>
</tr>
</tbody>
</table>

a Values in a column followed by the same letter were found not to be significantly different (P ≥ 0.05, least significance difference test). Mortalities were arcsine transformed before ANOVA. Means (±SE) of untransformed data are reported.

b ERR and E3xRR = endosulfan at its recommended and three times its recommended rate; S75RR and SRR = spinosad at 75% and its recommended rate.
demonstrate that spinosad has potential as a safe, effective biopesticide for use in IPM programs that include a biological control component, while endosulfan can have a substantial detrimental effect. Endosulfan will not effectively control resistant WFT and it will be deleterious to the success of biological control programs.

3.2 Greenhouse bioassay

Twenty-eight-DAT spinosad residues were still highly toxic to adult WFT, causing 96% mortality (Table 4). There was no significant difference ($P > 0.05$) in toxicity to either immature or adult WFT from 1 to 28 DAT (Table 4). Residual toxicity was still evident 57 DAT, resulting in 28% mortality of immature and adult WFT. This extended period of residual activity could be related to the rate of photodegradation. When applied to field crops, spinosad is known to undergo relatively rapid photodegradation via photolysis that ultimately affects its residual toxicity.

In a cucumber IPM program, the emphasis is on preventative biological, cultural and physical control, with minimal chemical use. When chemicals are the only option, they must be used in a way to sustain their effectiveness as long as possible. Thus, it is important to apply the chemical only after an established economic threshold level of the pest has been reached. On greenhouse cucumbers this is 3.5 and 4.5 adult WFT per flower during high and low temperatures, respectively. Withholding treatment until WFT populations reach this level will limit the number of insecticide applications, control costs and reduce selection pressure. Accurate timing enables growers to achieve effective WFT control, while causing minimal harm to biological control agents. Spinosad can be applied at the recommended rate for WFT control with minimal or no harm to A. cucumeris. In contrast, O. insidiosus is more susceptible and should not effectively control resistant WFT and it will be deleterious to the success of biological control programs.

Table 4. Persistence of biological activity of spinosad applied to cucumbers at 60 mg liter$^{-1}$ to western flower thrips (WFT) larvae and adults, and to three biological control agents, Amblyseius cucumeris, Orius insidiosus and Encarsia formosa, exposed to 1–57-day foliage residues for 48 h under greenhouse vegetable production conditions

<table>
<thead>
<tr>
<th>Days after treatment</th>
<th>Mortality (%) (±SEM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WFT larvae</td>
</tr>
<tr>
<td>1</td>
<td>100 a</td>
</tr>
<tr>
<td>3</td>
<td>100 a</td>
</tr>
<tr>
<td>8</td>
<td>99 (±0.6) a</td>
</tr>
<tr>
<td>15</td>
<td>99 (±0.6) a</td>
</tr>
<tr>
<td>22</td>
<td>98 (±1.3) a</td>
</tr>
<tr>
<td>28</td>
<td>96 (±3.0) a</td>
</tr>
<tr>
<td>36</td>
<td>78 (±10.2) b</td>
</tr>
<tr>
<td>43</td>
<td>87 (±3.7) b</td>
</tr>
<tr>
<td>50</td>
<td>57 (±8.9) c</td>
</tr>
<tr>
<td>57</td>
<td>28 (±7.0) c</td>
</tr>
</tbody>
</table>

a Values in a column followed by the same letter were found not to be significantly different ($P > 0.05$, Student-Newman-Kuels multiple range test).
Efficacy of spinosad against western flower thrips on cucumbers

not be (re) introduced until at least 8 DAT. Encarsia formosa was susceptible to spinosad until final data collection at 28 DAT. Additional research is required to determine at what point the toxicity of spinosad decreases enough to recommended reintroduction of this biological control agent into greenhouses following the use of this control product.

Although spinosad applied in greenhouse situations appears to be more persistent than in the field, spot treatments are a viable option for isolated WFT outbreaks. This practice has proven less harmful to biological control agents, resulting in less pesticide residue on the crop overall. Biological control agents can be re-introduced into the hot-spots after a re-entry period has been established for a specific pesticide, biological control agent and crop combination. It is important to use spinosad wisely and in conjunction with other control methods to slow resistance development. Rotating it and other insecticides with different modes of action will reduce selection pressure. Robb and Parrella18 suggested rotating pesticides every four to six weeks.

Currently, spinosad is not registered for use on greenhouse vegetable crops in Canada. Registration of biopesticides, such as spinosad, is critical to the development of successful IPM programs. Spinosad’s unique mode of action, high toxicity to WFT and moderate to low toxicity to O insidiosus and A cucumberis, the two biological control agents commonly used to control WFT in greenhouses, makes it an effective and reliable biopesticide for greenhouse vegetable IPM in Canada.

ACKNOWLEDGEMENTS

We thank the Ontario Ministry of Agriculture and Food, Food Systems 2002, Agriculture and Agri-Food Canada—Matching Investment Initiatives, and Dow AgroSciences Canada Inc for their support and financial assistance. We also appreciate the technical expertise and assistance of Kathy Rusk, Melissa Baron, Janisse Bailey and Tillie Welsh.

REFERENCES

2 Jones T, Scott-Dupree C, Harris R, Shipp L and Harris B, Spinosad: an effective bioicide for inclusion in integrated pest management programs for Frankliniella occidentalis