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ABSTRACT

PARETO FRONT HYPERPARAMETER SELECTION FOR SMALL

METABOLOMICS 2× 2 CROSSOVER DESIGNS

Glen Reavie Advisors:

University of Guelph, 2021 Dr. Ayesha Ali

Dr. Lorna Deeth

Using a recently developed stability estimator, stability is leveraged at the cost of

discriminatory power, in order to improve feature selection for small 2 × 2 metabolomics

crossover designs. This is done using Pareto Front Cross-Validation (PFCV) adapted with

an automated hyperparameter selection criteria. PFCV is evaluated for Partial Least Squares

Discriminant Analysis’s (PLSDA) Variable Importance Projections, Significant Multivariate

Correlations, Nearest Shrunken Centroids and the Soft-Threshold PLSDA using a simulation

study and real metabolomics data. Variable importance projections with PFCV provided the

best overall feature selection and is recommended for subject sizes as small as 6. However,

for larger subject sizes, this recommendation was shown to potentially vary depending on

the goals of the practitioner. Overall, the use of PFCV for model selection in small 2 × 2

metabolomics crossover designs is advocated in future research.
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Chapter 1

Introduction

1.1 Overview and Purpose of Thesis

This thesis contributes to the area of multivariate experimental design and feature selec-
tion, with a focus on hyperparameter tuning and feature selection of “omics” data in small
sample size crossover designs. In particular, exploiting Pareto efficiency between stability
and class discrimination in tuning hyperparameters of multivariate methods resulted in more
stable feature selection. While this thesis centers on metabolomics applications, the results
are transferable to other omics settings, such as health monitoring in lipidomics, genomics
and transcriptomics.

The use of crossover designs in metabolomics has more than doubled since 2017, compared
to the previous decade [1]. They reduce costs associated with the number of subjects while
maintaining statistical power [1]. In general, metabolomics crossover designs are used for
two primary reasons: to provide a context for descriptive metabolomics, and to discover
potential biomarkers.

Popularity of crossover designs requires statistical methods to account for the structure of
the experimental design, while being constrained by challenges involved with metabolomics
data. The first constraint is the high costs of acquiring and maintaining subjects (e.g. exotic
animals), and secondly, processing the metabolomics samples. these often lead to small
numbers of subjects. Other constraints include the curse of dimensionality [2] as there are
often more metabolites measured than samples obtained (p >> n), and high multicollinearity
in the data. Altogether, these constraints restrict the appropriate number of statistical
methods, as well as the reproducibility of relevant features from the research.

In practice, Partial Least Squares Discriminant Analysis (PLSDA) has been used to
perform data reduction, while also being able to incorporate experimental structure [3, 4].
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However, there is a lack of simulation studies in the literature providing evidence that in-
corporating experimental structure improves feature selection for various feature selection
methods, such as variable importance projections (VIP), significant multivariate correlations
(SMC), the soft-threshold PLSDA (STPLSDA), and many more.

Even with small subject sizes, methods such as PLSDA use cross-validation (CV) to
select single or multiple hyperparameters their respective feature set. However, in the fields
of metabolomics and chemometrics, opinions on how to conduct CV varies greatly, even in
regards to feature selection. Validation schemes for PLSDA in metabolomics includes the use
of (repeated) nested cross validation/double cross validation as proposed by both [5] and [6].
This same nested CV has been used for hyperparameter selection in very small proteomics
experiments, and has shown to be successful for methods such as nearest shrunken centroids
(NSC) [7]. This is somewhat contrary to the theory proposed for CV, as [8] states that
a single CV is used for model selection while double/nested CV is used to assess model
performance. However, it is currently unknown if nested CV is superior to regular CV
methodology for hyperparameter selection.

The application of nested CV attempts to prevent overfitting through the evaluation
of more models on different training sets compared to a single CV. However, this use of
many trained models in an attempt to prevent overfitting is similarly used in various forms
to assess a methods stability in selecting features. This can be seen in the forms of the
Bolasso derivatives for PLSDA [9, 10], special wrapper algorithms such as stability-based
biomarker selection for small samples [11] and feature selection improvements for LASSO
[12, 13]. However, as [14] has shown, approaches such as these do not actually estimate the
stability of feature selection properly.

When CV loss functions such as misclassification rate (MCR) are used, and subject sizes
are small, it is likely to encounter that several hyperparameters will yield the same MCR as
a consequence of overfitting. In order to select a hyperparameter, heuristics solutions such
as the “Min” rule [15] are commonly used, which chooses the hyperparameter leading to the
most parsimonious model from the set of parameters with the same MCR. Similarly, the
“one-standard error” rule [2] enforces sparsity by selecting the hyperparameter one standard
deviation away from the minimum MCR. While these heuristics can be valuable for certain
applications (e.g. prediction), they may hinder feature selection by selecting irrelevant or
too small of feature sets.

This thesis investigates an alternative heuristic hyperparameter selection technique that
chooses a tuning parameter with less discriminatory power, but higher stability, in attempt
to improve feature selection. This heuristic, which will be referred to as Pareto Front Cross
Validation (PFCV), was originally proposed by [14] by combining their novel stability esti-
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mator with a Pareto front during CV to improve feature selection.

PFCV and [14]’s stability estimator have yet to be evaluated for small subject sizes, and
has not been adapted for use in a simulation study with many replications. Therefore, PFCV
is adapted with Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
[16] for automated hyperparameter selection and studied for improved feature selection.

In addition to evaluating PFCV, feature selection is simultaneously compared between
VIP, SMC, NSC and STPLSDA. In order to investigate this within the context of very small
2 × 2 metabolomics crossover designs, [3, 4]’s incorporation of experimental structure is
investigated under simulation in an attempt to fill missing gaps in the literature. Simulations
will compare PFCV to regular CV for each multivariate method to outline their feature
selection behaviour under various correlation structures and subject sizes. These methods
are then applied to a real metabolomics data set. The purpose of this thesis is to provide
insight into multivariate method and CV recommendations for very small 2×2 metabolomics
crossover designs. As well, given in the literature there is no best practice combinations of
CV and hyperparameter selection techniques in regards to feature selection, this thesis aims
to determine whether PFCV with TOPSIS has potential as a best practice.

To summarize, three general central contributions of this manuscript are:

• Multivariate method and CV recommendations for small 2×2 metabolomics crossover
designs.

• TOPSIS is demonstrated to provide reasonable automated hyperparameter selection
for PFCV under simulation, and eliminating potential human bias in hyperparameter
selection from the Pareto front.

• Illustrating the behaviour of PFCV for small subject sizes compared to traditional
CV approaches, as well as the benefit of accounting for the crossover design structure
through simulation studies.

A map of the research questions of this thesis can be seen in Figure (1.1).
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Figure 1.1: A map of the research questions for the following thesis.

Chapter 2 provides a background on metabolomics, crossover designs, and multivariate
methods used for feature selection. Chapter 3 evaluates PFCV for hyperparameter tuning
across several multivariate feature selection methods, including results from a simulation
study and from a 2× 2 metabolomics crossover design. This work is in preparation for sub-
mission to the BMC Bioinformatics/Nutrition Journal. Chapter 4 summarizes contributions
and ideas for future work surrounding this topic.

1.2 Motivation

Motivation for this thesis is driven by a lipidomics crossover design study on Quaker
Parrots (Myiopsitta monachus) (Figure 1.2). As the study involving Quaker Parrots focuses
solely on standard 2× 2 crossover designs, this type of crossover design will be considered in
this thesis. As parrots are prone to dyslipidemias induced by diet, it is of interest to provide
a descriptive analysis of their respective lipidomes under various diets, and to investigate
whether statins offer treatment for dyslipidemias. Due to the high expense of maintaining
M.monachus colonies and analyzing their blood lipidomics samples, a colony of 12 parrots
are considered.
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Figure 1.2: Example of two, 2 × 2 crossover designs for a study on diet effects of parrot
lipidomes. Vertical arrows indicate sampling time points. Horizontal arrows indicate length
of treatment or washout. Diagonal arrows represent the sequence of treatments a subject
undertakes.

The investigation of NSC is motivated by [7], which found NSC to have the best selection
of biomarkers from a spiked data set for class sizes of 5. PLSDA be used as a control method,
due to its current standard use in metabolomics. Lastly, soft-threshold PLSDA (STPLSDA)
will be considered for comparison, due to its relationships with both NSC and PLSDA.
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Chapter 2

Background

Chapter 2 provides a background of metabolomics in the context of statsistical anal-
ysis, a review of crossover design, and an outline of PLSDA, NSC, STPLSDA, multilevel
decomposition, and stability of feature selection.

Table 2.1: Index notation for Chapter 2
Notations

Samples: i = 1; 2; : : : ; n

Subjects: r = 1; 2; : : : ; nsub

Features: g = 1; 2; : : : ; p

Components: ‘ = 1; 2; : : : ; L

Treatments/Sequences: k = 1; 2; : : : ;K

Sub-models: m = 1; 2; : : : ;M

Observations per subject: s = 1; 2; : : : ; S

Soft-thresholding parameter: �
Period: j ∈ {1; 2}

2.1 Metabolomics

Cells transfer information through the use of various compounds at different biological
levels. This transfer is in order of the genome, epigenome, transcriptome, proteome, and
metabolome/lipidome (lipidome is a part of the metabolome) (Figure 2.1), each requiring
different molecular structures in order to function together as a system [17]. Technologies
analyzing any of these different biological levels have been coined “omics” data due to having
many common attributes, such as having more metabolites measured then samples in a
study.
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Figure 2.1: Description of each domain of omics, table adapted from [18]. Bullet points
describe the biological molecule, analytical equipment used to produce the data, the type of
data and whether the omics domain fluctuates in the environment and over time.

Metabolomics investigates biological compounds known as metabolites that often inter-
act with genes, or are modified by proteins to form pathways that exhibit cellular function.
Panels of metabolites are analyzed using special equipment that determine molecular struc-
ture using light, thereby producing spectral data. Examples of such equipment include mass
spectrometers (MS), nuclear magnetic resonance (NMR), or near/medium infrared spec-
trometers (NIR/MIR). Variants of all of these technologies exist, often in combination with
liquid chromatography (LC) for better substrate separation prior to spectroscopic analysis.

Analytical equipment must be calibrated in order to discover metabolites along various
parts of the light spectrum. This calibration can generate two different kinds of metabolomics
panels. A targeted panel means the analytical equipment is specifically calibrated to accu-
rately search for certain metabolites, often known to be associated with a specific biological
condition or pathway [19]. Non-targeted panels screen for all metabolites in the spectrum(s)
of interest and are often used for metabolite discovery, but generally consist of a large degree
of missing data [19].

From a statistical perspective, the differences among these tiers of omics data is in their
corresponding correlation structures. While genomics data can have simpler correlation
structures, metabolomic correlation structures are not currently well understood [1]. A suite
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of statistical methodology and bioinformatic tools exist that depend on the practitioner’s
question of interest and the corresponding pathway knowledge of each metabolite in the
panel [20]. However, the performance of many of these methods is not well understood,
especially in the context of small sample sizes and repeated measure designs.

2.2 Crossover Designs

Crossover designs involve subjects undergoing sequential treatments in different orders.
After each treatment, the subject undergoes a washout period to return the subject to their
regular biological state before proceeding to the next treatment.

In a 2 × 2 crossover design, only two treatments (A and B) are investigated. Let Xrjk

represent a random variable for a single feature from a 2× 2 crossover design, such that [21]:

Xrjk = �+ �rk + Pj +D(j;k) + C(j�1);k + erjk (2.1)

in which it is assumed that

P1 + P2 = 0

DA +DB = 0

CA + CB = 0:

(2.2)

In equation 2.1, r = 1; 2; : : : ; nsub (the number of subjects), j = {1; 2} (period) and
k = {1; 2} (sequence of treatments), where � is the overall treatment effect,

D(j;k) =

(
DA k = j

DB k 6= j
and C(j�1;k) =

(
CA k = 1; j = 2

CB k = 2; j = 2:
(2.3)

are fixed effects for treatment and carry over effect between treatments, respectively. Pj is
the effect of period a treatment occurs. �rk ∼ N(0; �2

�) is a random effect for the sequence
a subject undergoes and �rjk ∼ N(0; �2

� ) is the residual error. Given Xrjk ∼ N(�jk; �
2
� +�2

� ),
treatment means for each sequence are provided in Table 2.1.
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Table 2.2: Treatments means for each sequence
Sequence Period 1 Period 2

AB �11 = �+ P1 +DA �21 = �+ P2 +DB + CA

BA �12 = �+ P1 +DB �22 = �+ P2 +DA + CB

Using this random variable, various two sample pooled t-tests can be utilized identify
carryover effect and treatment difference [21]. However only when subject sizes in each
sequence are equal can the treatment difference be unbiasedly estimated.

Even multivariate methods can incorporate crossover designs into their analyses. This
is done using the approach introduced in [3] with Principal Component Analysis (PCA) or
PLSDA.

2.3 Multivariate Methods

PLSDA

In metabolomics, PLSDA has generally been considered the method of choice, though not
without criticism [22]. Regardless, PLS is versatile for feature selection in metabolomics with
a suite of filter (threshold based), wrapper (evaluates subsets of observations and covariates),
and embedded feature selection methods (e.g. L1 induced sparsity) [23]. Additionally, PLS is
capable of handling multicollinearity while simultaneously performing dimension reduction.

The PLS algorithm performs dimension reduction on two blocks of data under specific
constraints [24], but can be formed into a regression method as well. Provided i = 1; 2; : : : ; n

samples, g = 1; 2; : : : ; p features, a univariate response ~y (1×n) and design matrix X n× p,
both blocks of data undergo a principle component analysis (PCA) -type decomposition into:

X = T P T

~y = T ~q
; (2.4)

where T is an n×L score matrix, P is the p×L loading matrix, the response loadings are ~q
are L×1. The number of components, ‘ ∈ {1; 2; : : : ; L}, where L = min(n−1; p−1), is chosen
by the practitioner or determined through CV. Traditionally for a univariate response, the
NIPALS/PLS1 algorithm has been used [25], however over a dozen algorithms exist in the
literature (e.g. [26] compares 9 PLS algorithms), each with varying geometric interpretations.
In the case of the traditional NIPALS/PLS1 algorithm, the weight vector (p × L) for each
component is generated using ~w = X~y in which both the response and design matrix undergo
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deflation during each pass of PLS1 (see Algorithm 1).

Algorithm 1: PLS1 Algorithm
Input: X=Mean Centered Design Matrix and ~y=Response
Output: W=Weights, P=X loadings, T=scores

1 for ‘ in 1; 2; : : : ;min(P − 1; N − 1) do
2 ~w‘ = XT ~y

(~yT �~y)

// ~w‘ maximizes Cov(X ~w‘,~y)

3 ~t‘ = X ~w‘

// Generate Scores

4 ~p‘ = Xt~t‘=

(~tT‘ �~t‘)

// Regress Scores on X

5 X = X − ~t‘ · ~pt‘
// Deflate X

6 q =
~tT‘ �~y
~tT‘ �~t‘

// Regress Scores on ~y

7 ~y = ~y − ~t‘q // Deflate ~y

8 Return(W ;P ;T )

[27] shows the PLS maximization lemma can be expressed for a discrimination task as,

arg max
~w‘

cor(~y;X ~w‘)V ar(X ~w‘): (2.5)

With work, [28] showed that the T can span the same subspace as ~Y after rotating X

by the matrix O, such that:

T = XO = XW (P TW )�1: (2.6)

Using (2.6) a regression estimator can be formulated such that:

~̂� = W (P TW )�1~q: (2.7)

The above regression estimator, although originally designed for a continuous response,
has been shown by [27] to be appropriate for classification tasks. In the case of two group
classification situations, ~y contains coded group labels, typically seen as -1 and 1 (0 or 1 can
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work). In the case of balanced class sizes, PLSDA is actually an equivalent classification
boundary as Euclidean distance to centroid (ECD) when using only one component, or
Fisher’s linear discriminant analysis (LDA) when all components are used [29].

Historically, PLSDA models are still often validated using continuous metrics. A very
popular metric is the coefficient of prediction, Q2, or the root mean squared error (RMSE)
[4]. [30] recommends that assessing classification for PLSDA should be done using area under
the receiver operator curve (AUC) or misclassification rate (MCR), as metrics like Q2 are far
more sensitive to error than MCR or AUC. Additionally, it is difficult to identify what values
of Q2 are associated with good discrimination without a test-set. Tuning using continuous
loss functions for PLSDA have been criticized [22] as impractical for a classification method.
Therefore, MCR will be used in this thesis. For a binary response with labels of -1 and
1, balanced class sizes, and similar variances between both classes, a decision boundary of
0 is optimal [30, 29, 31]. As balanced class sizes are common with crossover designs, this
classification boundary will be used for PLSDA methods in this thesis, as well as the PLS1
algorithm.

PLSDA Filter Methods

Two contrasting PLSDA filters are considered in this thesis. Let g = 1; 2; : : : ; p and
R2(~y; t‘) be the coefficient of determination between the scores of each component and the
response vector, then VIPs can be defined as:

V IPg =

vuutp
PL

‘=1R
2(~y; t‘)

w‘

jjw‘jj2PL
‘=1R

2(~y; t‘)
: (2.8)

A threshold for selecting features is done by selecting features with V IPg > 1 [23].

As the name suggests, SMC selects the feature most correlated with the response while
eliminating uninformative features. Specifically, SMC tends to select eliminate more unin-
formative features than VIPs (especially as the noise increases) [32, 33], and therefore will
be used as a contrast. This is done through the creation of an F-statistic using the mean
squared errors:
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SMCg =
MSRegression g

MSResiduals g

=
|| ~̂y~̂bg

jj~̂bg jj2
||2

||~xg − ~̂y~̂bg

jj~̂bg jj2
||2=(n− 2)

∼ F1;n�2:

(2.9)

Here, ~xg is the gth feature vector and ~̂bg is the regression estimator for a single feature g (see
[32] for more details). SMCg works by selecting the gth feature with F1;n�2 > F �1��;1;n�2,
where F �1��;1;n�2 is a critical value from the F-distribution.

Nearest Shrunken Centroids

Originally [34] considered a pooled two sample test statistic between class mean and
the overall mean. Using xgik, with k = 1; 2; : : : ; K classes, g = 1; 2; : : : ; p parameters and
i = 1; 2; : : : ; n samples:

dgk =
�xgk − �xg

sg
q

1
nk

+ 1
n

(2.10)

where,

sg =
1

n−K

KX
k=1

nkX
i=1

(xgi − �xgk)
2 + s0 (2.11)

is the pooled within class variance for the gth parameter with the inclusion of s0, the median
of all sg. This value prevents overly large dig caused by small sg. Let �g be the population
mean and �gk be the population mean within a class, [35] showed that (2.10) is actually
obtained through the L1 constraint optimization problem:

arg min
�g ;�gk

1

2

pX
g=1

KX
k=1

nkX
i=1

(xgi − �g − �gk)
s2
g

+�
KX
k=1

√
nk

pX
g=1

|�gk|
sg

(2.12)

in which xgik ∼ N(�g + �gk; �
2
g) and

PK
k=1 �gk = 0.

12



By utilizing the soft threshold (also obtained by the sub-differential of 2.12), shrinking
class centroids for each parameter to the overall parameter centroid can easily be achieved.
This is seen in,

�x
0

gk = �xg + d
0

gk

sgq
1
nk

+ 1
n

(2.13)

in which d0gk = max(0; |dgk| − �) and � ∈ [0;∞) is a tuning parameter. This soft-threshold
provides a clearer rational for the name Nearest Shrunken Centroids (NSC), as � can be
seen as a value that shrinks class centroids to the overall centroid for parameters with little
contribution to class separation. For parameter g, if all class centroids can be shrunken to
the overall centroid then that parameter is set to zero.

The NSC decision rule for the class of new values of xtestgik is done through the use of the
discrimination score:


k =

pX
g=1

xtestg − �x
0

gk

sg
− 2 log �k (2.14)

where �k is a prior probability that can be set to �̂k = nk

n
and

PK
k=1 �̂k = 1. This classification

rule classifies test samples using:

min
k

k(~x

test); (2.15)

and can be used to create a probability classifier also analogous to Linear Discriminant
Analysis (LDA) with zero correlations:

p̂(~xtest) =
e�

1
2

k(~xtest)PK

k=1 e
� 1

2
mink 
k(~xtest)

: (2.16)

Minimizing misclassification error or maximizing the log-likelihood logy p̂(~x
test) can be

used to tune �. Outside of prediction, NSC has the ability to select variables that do not
pertain to discrimination between classes.
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Soft-Threshold PLSDA

NSC inspired the adaption of PLSDA to create Soft Threshold PLSDA (STPLSDA)
[36]. STPLSDA adopts the soft threshold seen in NSC onto the PLSDA weights in order to
induce sparsity [36]. First, consider that the unshrunken means from (2.14) can be rewritten
in matrix form (assuming a balanced two class discrimination task) as:

pX
g=1

�x1;g − �x2;g

sg + s0

= S�1
NSC( ~�x1 − ~�x2) (2.17)

where S�1
NSC is the pooled class variance with the addition of s0 from (2.11) on the diagonals

and 0 elsewhere.

By scaling the mean centered data analogous to NSC, XNSC = XS�1
NSC , Equation (2.17)

is proportional in classification to the regression estimator of a one component PLSDA model
with two balanced classes [36]. This is evident by recalling that O (from Equation 2.6) is
proportional to 2.17 after considering: ~o1 ∝ ~w1 ∝XNSC · ~y ∝ S�1

NSC( ~�x1 − ~�x2). Therefore:

~̂
�PLS = ~w1

~tT1 · ~y
(~tT1 · ~t1)

∝ S�1
NSC( ~�x1 − ~�x2); (2.18)

which produces an equivalent decision boundary to that of an unshrunken NSC model.
Through the incorporation of soft-thresholding on the PLSDA weights (Algorithm 2):

Algorithm 2: Soft-Thresholding Weights of PLSDA
Input: W=Weight Matrix (‘× p), L= Number of Components, � =Sequence of

Thresholding Parameter � ∈ [0; 1)

Output: W
0
= Shrunken Weights

1 for � in � do
2 for ‘ in 1; 2; : : : ; L do
3 ~w‘= ~w‘

maxjwg;‘j

4 for g in 1; 2; : : : ; p do
5 w

0

g;‘ = max(0; |wg;‘| − �)

6 ~w
0

‘=
~w
0
‘

jj~w0‘jj

7 Return(W
0
)
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[36] showed STPLSDA has the same discriminating boundary as NSC, as ~�STPLSDA ∝
S�1
NSC(~�x

0

1 − ~�x
0

2 ), given that ~�x 0k is a shrunken class mean. Unlike NSC, STPLSDA does not
ignore correlation, which can provide an interesting contrast with NSC in terms of feature
selection.

An overview of the multivariate methods discussed so far can be seen summarized in
Table 2.3.

Table 2.3: Overview of Multivariate Methods.
Methods Dimension Reduction Shrinkage Tuning Parameters

PLSDA+VIP Y N Components
PLSDA+SMC Y N Components

NSC N Y �

STPLSDA Y Y Components+ �

2.4 Multilevel Methodology

Several approaches exist in the literature for repeated measures designs with metabolomics
data [3, 5, 37, 38]. These methods involve proposing an ANOVA/mixed model and decom-
posing the data into a series of matrices using localised mean-centring. Once the design
matrix has been decomposed, multivariate methods are performed on the matrix of choice.

Given s is the number of observations on each subject s = 1; : : : ; S and r = 1; 2; : : : nsub

is the total number of subjects, decomposition of the mean-centered design matrix into
between treatment and within treatment matrices [3, 5, 37] can be done to account for
repeated measures. This is summarized in:

X = Xoff + Xb + Xw

X = 1 · ~mT +

266664
11 · ~mT

1

12 · ~mT
2

...
1nsub

· ~mT
nsub

377775+ Xw

(2.19)

where 1 is (S × 1) and ~mT is a (1 × p) mean vector for each parameter. ~mT
nsub

is the
mean of observations on a given subject, and Xw = X − 1 · ~mT −Xb is a matrix of within
treatment differences, which is often the variation of interest to analyze in a crossover design.
Additionally,
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||X||2 = ||Xoff ||2 + ||Xb||2 + ||Xw||2; (2.20)

where ||X|| = trace(XTX) and provides an estimate of the variation of the matrix. There-
fore, (2.20) can be used to calculate the proportion of variation between and within subjects.

Often Xw is of interest to account for subject differences of crossover designs, therefore
methods such as PLSDA have utilized this matrix [4]. The decision to use Xw has been
recommended if it receives a significant p-value after permutation test on ~y [4, 1] compared
to using regular X. However, given good predictive performance does not equate to better
feature selection [39], a permutation test maybe not guarantee a superior set of selected
features. For this reason, a simulation study comparing feature selection between X and
Xw for multivariate methods using PLSDA and NSC is warranted in the literature. Only
[38] illustrated an improvement in feature selection using Xw through simulation using a
block correlation structure for the [24] formulation of sparse PLSDA.

2.5 Feature Selection Stability Estimation

Recently, work by [14] derived the theoretical properties of stability estimation with
respect to feature selection algorithms. They noted that many of the proposed estimators
did not meet all properties required for a rigorous stability estimator [14]. This was done by
re-framing feature selection stability in terms of selection frequency using:

Z =

266664
z1;1 z1;2 : : : z1;p

z2;1 z2;2 : : : z2;p

...
... . . . ...

zM;1 zM;2 : : : zM;p

377775 : (2.21)

Z is a M × p matrix for m = 1; 2; : : : ;M submodels’ feature selections across g =

1; 2; : : : ; p parameters. Z consists of elements of Bernoulli variables for the gth feature having
a mean �̂g = 1

M

PM
m=1 zm;g and unknown population mean of �g.

Many previous stability estimators required the computation of all pairwise intersections
between feature sets, adding major computational complexity especially for omics data. By
re-framing the feature selection in Z, [14] was able to reduce stability estimation time using
(2.21) from O(M2p)→ O(Mp).
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Using (2.21), [14] derived a stability estimator with all five properties of a true stability
estimator: fully defined, strict monotonicity, bounds, maximum stability and correction for
chance. A fully defined stability estimator �̂ can handle any collection of feature sets in Z

allowing the total number of features selected to vary in each submodel. Strict monotonicity
is required of �̂, where the average pairwise intersection of M submodels’ feature sets is a
linear function of the selection variance for each feature, which can be understood using:

k −
pX
g=1

s2
g =

1

M(M − 1)

MX
m=1

MX
j=1;j 6=1

|sm ∩ sj|
(2.22)

where
s2
g =

M

M − 1
�̂g(1− �̂g)

k =
1

M

MX
m=1

pX
g=1

zm;g : (2.23)

Equations 2.22 and 2.23 illustrate the average variance in a feature selection between
pairwise models feature sets.

Bounds is a crucial requirement of �̂, so the values it produces can be compared across
different methods. Lower and upper bounds provide meaningful interpretation, bringing the
fourth requirement for �̂ to have maximum stability, where the upper bound is achieved if
all feature sets in Z are identical. The final criteria is correction for chance where similarity
between feature sets should be solely the result of the feature selection algorithm and there-
fore each feature has a uniform probability of being selected. Given Ho is the null hypothesis,
this infers that E[�̂|Ho] should equal to a constant or that E[�̂|Ho] = 1− E[�̂jHo]

�
= 0.

With these properties in mind, [14] proposed the following estimator,

�̂(Z) = 1−
1
p

Pp
g=1 sg

�k
p
(1− �k

p
)
: (2.24)

Equation (2.24) holds a lower bound of -1 when M = 2, but asymptotically has a lower
bound of 0 asM →∞. Additionally, �̂ can be shown to follow a standard normal distribution
after standardization:

�̂− �q
v(�̂)

→ N(0; 1) as M →∞ (2.25)

Here, � is the mean of �̂ and v(�̂) is the variance function of �̂. See [14] for equations
of the mean, variance function, confidence intervals and hypothesis tests surrounding this
estimator. Typically, bootstrap can be used to estimate stability as seen in [14, 40], however
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given enough data and many folds, CV can also be used.

2.6 Cross Validation with Repeated Measures

Leave-subject out cross-validation (LsCV) incorporates all subjects’ observations together
to preserve the correlation structure within subjects [41]. LsCV has been shown for root
mean squared error loss to asymptotically estimate the generalization error. Whether this
property holds for folds containing multiple subject observations or for the indicator loss
function (i.e. MCR) has yet to be investigated. It is important to consider in this thesis
that CV for repeated measures is not theoretically well defined in regards to assessing model
prediction.

Regardless, to be consistent with previous research (e.g. [42, 38]), all CV types investi-
gated will be done with all subject observations within the same fold, in order to preserve
the within subject correlation structure from the crossover design.

2.7 Computation

The simulation study in Chapter 3 was performed using the facilities of the Shared
Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca) and
the support of Compute/Calcul Canada (www.computecanada.ca). The pseudo-simulation
study was performed on a University of Guelph server approved to hold the [43] dataset
by the University of Guelph Research Ethics Board - Natural, Physical and Engineering
Sciences (REB-NPES). R statistical software was used for all results produced in this thesis
([44]).
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Chapter 3

Pareto Front Hyperparameter Selection
for Small Metabolomics 2× 2 Crossover
Designs

3.1 Abstract

Introduction: Using a recently developed stability estimator, stability is leveraged
at the cost of discriminatory power, in order to improve feature selection for small 2 × 2

metabolomics crossover designs. This is done using Pareto Front Cross-Validation (PFCV)
adapted with an automated hyperparameter selection criteria. PFCV is evaluated for Partial
Least Squares Discriminant Analysis’s (PLSDA) Variable Importance Projections, Signifi-
cant Multivariate Correlations, Nearest Shrunken Centroids and the Soft-Threshold PLSDA.
Within this comparison study, important missing simulation studies are provided to the liter-
ature. These include evaluating the benefits of adapting multivariate methods for crossover
designs, the effect of the location of informative features in the correlation structure and
the influence of stability with small subject sizes. Simulations are supported with the use
of a real targeted metabolomics 2× 2 crossover design. Results: Variable importance pro-
jections with PFCV provided the best overall feature selection in simulation and on real
data. It was recommended especially for subject sizes as small as 6. However, for larger
subject sizes, this recommendation was shown to potentially vary depending on the goals
of the practitioner. Simulations found that PFCV provides the biggest gains in feature
selection when informative features lie in high correlation clusters. Adapting multivariate
methods for the crossover design provided limited gains in feature selection in simulation
and on real data. Conclusions: Overall, PFCV is recommended in general when fitting
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models for small 2 × 2 metabolomics crossover designs. The results of this paper promote
future studies that provide more elaborate experiments comparing feature selection between
multivariate methods, coupled with PFCV and the effects of adapting multivariate methods
for the crossover design.

3.2 Motivation

The advent of more advanced analytical equipment has provided researchers with the
ability to collect large metabolic profiles of hundreds to thousands of metabolites from a
single biological substrate. Due to the high expenses of processing metabolomics samples
and subject maintenance, metabolomics experiments often have very small sample sizes.
This is why crossover designs have increased in popularity, especially in the field of nutrition
to discriminate diets, as they maintain similar univariate statistical power to parallel designs,
but with half of the subjects [1]. A 2018 review of nutritional metabolomics [45] provides
examples of 21 nutrition metabolomics/lipidomics crossover designs since 2009 alone, many
of which have subject sizes below 20.

Despite small sample sizes, metabolomics experiments still can be analyzed by various
multivariate-supervised learning methods that account for the complex correlation structure
of the data. [7] provides a good comparison of multivariate and univariate methods for
proteomics data with class sizes as small as 5. They found partial least square discriminant
analysis (PLSDA) and t-tests were outperformed by Nearest Shrunken Centroids (NSC) for
biomarker selection on spiked datasets. However, similar research has not been performed
for very small 2× 2 metabolomics crossover designs.

Work by [3, 42] adapted dimension reduction methods to account for the structure of
crossover designs. However there is a lack of simulation studies confirming whether account-
ing for the structure of the crossover design will improve feature selection for various feature
selection methods, such as PLSDA’s variable importance projections (VIP), significant mul-
tivariate correlations (SMC), or soft-threshold PLSDA (STPLSDA).

A common trend seen in the literature for feature selection in omics with small class
sizes is the incorporation of stability. Paraphrasing [14], feature selection stability is an
algorithm’s consistency in features selected on different training sets from the same gener-
ating distribution. This includes investigating feature selection frequencies using Bolasso
derivatives for PLSDA [9, 10], special wrapper algorithms such as stability-based biomarker
selection for small samples [11] and feature selection improvements for LASSO [12, 13]. As
illustrated by [14], algorithms such as these never actually estimate stability. However, one
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commonality between them is the use of cross-validation (CV) to generate different training
sets in order to measure feature selection.

When CV loss functions such as misclassification rate (MCR) are used, and subject sizes
are small, it is far more likely to encounter the curse of the flat tuning curve where several
hyperparameters yield the same MCR. In order to select a hyperparameter, heuristic solu-
tions are often used. A commonly used heuristic solutions includes the “Min” rule [15], which
chooses the most parsimonious model of the set of parameters with the same MCR value.
Similarly, the “one-standard error” rule [2] enforces sparsity by selecting the hyperparame-
ter one standard deviation away from the hyperparameter with the minimum MCR. While
these heuristics can be valuable depending on application (e.g. prediction) they may hinder
feature selection.

The focus of this paper is to investigate an alternative heuristic hyperparameter selec-
tion technique that chooses a tuning parameter with less discriminatory power but higher
stability, in attempt to improve feature selection. This heuristic, which will be referred to
as Pareto Front Cross Validation (PFCV), was originally proposed by [14] which combined
their novel stability estimator and a Pareto front during CV to improve feature selection.

While PFCV and [14]’s stability estimator has yet to be evaluated for small subject sizes,
is also has not been adapted for use in a simulation with many replicates. Therefore, PFCV
is adapted with Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
[16] for automated hyperparameter selection and studied for improved feature selection.

In addition to evaluating PFCV, feature selection is simultaneously compared between
VIP, SMC, NSC and STPLSDA. In order to investigate this within the context of small 2×2

metabolomics crossover designs, [3, 4] incorporation of experimental structure is investigated
under simulation in an attempt to fill missing gaps in the literature. Simulations will compare
PFCV to alternative CV approaches for each multivariate method to outline their feature
selection behaviour under various correlation structures and subject sizes. As well, a real
metabolomics dataset is used to provide support of the results on real data.

To summarize, this paper provides three central contributions: i. Method and CV rec-
ommendations for small 2 × 2 crossover designs; ii. TOPSIS is demonstrated to provide
reasonable automated hyperparameter selection for PFCV under simulation, eliminating the
plausible human bias hyperparameter selection from the Pareto front and; iii. Simulation
studies are provided illustrating the behaviour of PFCV for small subject sizes compared
to traditional CV approaches, as well as the benefits of accounting for the crossover design
structure.
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3.3 Background

Table 3.1: Index notation
Notations

Samples: i = 1; 2; : : : ; n

Subjects: r = 1; 2; : : : ; nsub

Features: g = 1; 2; : : : ; p

Components: ‘ = 1; 2; : : : ; L

Treatments: k = 1; 2; : : : ;K

Sub-models: m = 1; 2; : : : ;M

Objective functions: o = 1; 2; : : : ; O

Non-dominant solutions: c = 1; 2; : : : ; C

Observations per subject: s = 1; 2; : : : ; S

Soft-thresholding parameter: �

3.3.1 Multivariate Methods

Partial Least Square Discriminant Analysis

The PLS algorithm performs dimension reduction on two blocks of data and can be used
to form a regression model to discriminate groups [25]. Suppose there are i = 1; 2; : : : n

samples and g = 1; 2; : : : ; p feature, in the case of a univariate response vector ~y (1 × n)
and the mean-centered design matrix X (n × p), both blocks of data undergo a principal
components analysis (PCA) type decomposition into:

X = T P T

~y = T ~q
(3.1)

where T is an n× L score matrix P is the p× L loading matrix, and the response loadings
~q are L × 1. The number of components ‘ ∈ {1; 2; : : : ; L}, where L = min(n − 1; p − 1), is
chosen by the practitioner or determined through CV. The scores, T = X ~w, are generated
using weights, which are found for the first component as ~w = X~y. Weights for subsequent
components, W (p× L), are found using the PLS1 algorithm [26], where ~y and X undergo
deflation during each iteration.

These weights are used as the target of the optimization problem of PLS, which in the
context of discrimination is:
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arg max
~w‘

cor(~y;X ~w‘)V ar(X ~w‘): (3.2)

A regression estimator, ~̂�, can be derived for PLS by making a projection matrix out of
the weights and X-loadings:

~̂� = W (P TW )�1~q (3.3)

[28].

In the case of two group classification, ~y, contains group labels, typically coded as -1
and 1. The discriminatory boundary of 0 for PLSDA was used as it has been shown to be
appropriate for two class problems [31].

Two common criteria for variable selection using the PLS model are variable importance
projections (VIPs) and significant multivariate correlations (SMC). Let g = 1; 2; : : : ; p and
R2(~y; t‘) be the coefficient of determination between the scores of each component and the
response vector. VIPs can then be defined as:

V IPg =

vuutp
PL

‘=1R
2(~y; t‘)

w‘

jjw‘jj2PL
‘=1R

2(~y; t‘)
: (3.4)

Often a threshold for selecting features is done by selecting features with V IPg > 1 [23].

As the name suggests, SMC selects the features most correlated with the response while
eliminating non-informative features. SMC tends to select less irrelevant variables than VIPs
(especially as the noise increases) [32, 33], and therefore will be used as a contrast. This is
done through the creation of an F-statistic using the mean squared errors:

SMCg =
MSRegressiong

MSResidualsg

=
|| ~̂y~̂bg

jj~̂bg jj2
||2

||~xg − ~̂y~̂bg

jj~̂bg jj2
||2=(n− 2)

∼ F1;n�2:

(3.5)

Here, ~xg is the gth feature vector and ~̂bg is the regression estimator for a single feature g
(see [32] for more details). SMCg works by selecting the gth feature with F1;n�2 > F �1��;1;n�2,
where F �1��;1;n�2 is a critical value from the F-distribution.
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Nearest Shrunken Centroids

NSC [34] is a penalized classifier that ignores the correlation among variables in order
to enhance prediction, originally proposed for use on microarray data. This was done by
incorporating soft-thresholding into a pooled two sample test statistic between class mean
and the overall mean. Let xgik be data from g = 1; 2; : : : ; p parameters, k = 1; 2; : : : ; K

classes and, i = 1; 2; : : : ; n samples. With nk samples in each class, a class mean �xgk and a
overall mean for the gth feature being �xg, the test statistic can be defined as:

dgk =
�xgk − �xg

sg
q

1
nk

+ 1
n

(3.6)

where,

sg =
1

n−K

KX
k=1

nkX
i=1

(xgik − �xgk)
2 + s0 (3.7)

is the pooled within class variance for the gth parameter with the inclusion of s0, the median
of all sg. This value prevents overly large dgk caused by small sg. Later, [35] showed that
(3.6) can be obtained through the L1 constraint optimization problem:

arg min
�g ;�gk

1

2

pX
g=1

KX
k=1

nkX
i=1

(xgi − �g − �gk)
s2
g

+�
KX
k=1

√
nk

pX
g=1

|�gk|
sg

:

(3.8)

Let �g be the population mean of the gth feature and the population class mean for the
gth feature be �gk. The solution to (3.8) results in a soft threshold on class centroids for each
parameter to the overall parameter centroid per:

�x
0

gk = �xg + d
0

gk

sgq
1
nk

+ 1
n

(3.9)

in which d
0

gk = max(0; |dgk| − �) and � ∈ [0;∞) is a tuning parameter. The NSC decision
rule for the class of a new sample vector ~xtest = (xtest1 ; xtest2 ; : : : xtestp ) is done through the use
of the discrimination score:
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k =

pX
g=1

xtestg − �x
0

gk

sg
− 2 log �k (3.10)

where �k is a prior probability that can be set to �̂k = nk

n
and

PK
k=1 �̂k = 1. This classification

rule classifies test samples using:

min
k

k(~x

test); (3.11)

and can be used to create a probability classifier analogous to Linear Discriminant Analysis
(LDA) that ignores correlation:

p̂(~xtest) =
e�

1
2

k(~xtest)PK

k=1 e
� 1

2
mink 
k(~xtest)

: (3.12)

Minimization of the misclassification error or maximization the mean log-likelihood (taking
the log of 3.12) can be used to tune �.

Soft-Threshold PLSDA

NSC inspired the adaption of PLSDA to create Soft Threshold PLSDA (STPLSDA) [36].
STPLSDA adopts the soft threshold used in NSC onto the PLSDA weights in order to induce
sparsity [36]. This is shown more clearly in Algorithm 3.
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Algorithm 3: Soft-Thresholding Weights of PLSDA
Input: W=Weight Matrix (‘× p), L= Number of Components, � =Sequence of

Thresholding Parameter � ∈ [0; 1)

Output: W
0
= Shrunken Weights

1 for � in � do
2 for ‘ in 1; 2; : : : ; L do
3 ~w‘= ~w‘

maxjwg;‘j

4 for g in 1; 2; : : : ; p do
5 w

0

g;‘ = max(0; |wg;‘| − �)

6 ~w
0

‘=
~w
0
‘

jj~w0‘jj

7 Return(W
0
)

[36] showed that a one component STPLSDA model and NSC model have the same
discriminatory boundary for balanced class sizes. This provides an interesting contrast to
NSC, given that STPLSDA does not ignore correlation and crossover designs often have
balanced classes.

3.3.2 Multilevel Adaptation

The adaptation of multivariate methods to account for the structure of crossover designs
is done by decomposing the data into a series of matrices using localised mean-centring.
Once the design matrices have been decomposed, multivariate methods are performed on
the matrix of choice.

Let the number of observations on each subject be s = 1; : : : ; S with r = 1; 2; : : : ; nsub

total number of subjects. Decomposition of the mean-centered design matrix X into an
offset term Xoff , between treatment Xb and within treatment matrices Xw [3, 5, 37] can
be done to account for repeated measures. This is summarized in:

X = Xoff + Xb + Xw

X = 1 · ~mT +

266664
11 · ~mT

1

12 · ~mT
2

...
1nsub

· ~mT
nsub

377775+ Xw

(3.13)

where 1 is S × 1 vector of 1’s and ~mT is a (1× p) mean vector for each parameter. ~mT
nsub

is
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the mean of observations on a given subject. Xw = X − 1 · ~mT −Xb is a matrix of within
treatment differences, which is often the variation of interest to analyze in a crossover design
to account for subject differences. This approach has been used for methods such as PCA
and PLSDA [3, 4].

The use of Xw with NSC or STPLSDA has yet to be investigated in the literature. Since
NSC and STPLSDA with one component form the same classification boundary, NSC utilize
Xw for classification.

3.3.3 Feature Selection Stability Estimation

Recently, work by [14] derived the theoretical properties of stability estimation in regards
to feature selection algorithms. [14] notes that many of the near dozen proposed estimators
did not meet all properties required for a rigorous stability estimator, and instead they
provided a new way to define stability through selection frequency, formed into the matrix:

Z =

266664
z1;1 z1;2 : : : z1;p

z2;1 z2;2 : : : z2;p

...
... . . . ...

zM;1 zM;2 : : : zM;p

377775 (3.14)

.

Z is a M × p matrix for m = 1; 2; : : : ;M submodels’ feature selections across g =

1; 2; : : : ; p parameters. Z consists of elements of Bernoulli variables for a feature selection of
the gth feature having a mean �̂g = 1

M

PM
m=1 zm;g and unknown population mean of �g.

Using (3.14), [14] derived a stability estimator that possesses all five properties of a true
stability estimator (see [14] for more information):

�̂(Z) = 1−
1
p

Pp
g=1 sg

�k
p
(1− �k

p
)
; (3.15)

where
s2
g =

M

M − 1
�̂g(1− �̂g)

k =
1

M

MX
m=1

pX
g=1

zm;g : (3.16)

(3.15) holds a lower bound of -1 when M = 2 but asymptotically has a lower bound of 0
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as M → ∞. Generally when estimating stability, [14] recommended at least 100 bootstrap
samples.

3.3.4 Bootstrap Zero Estimator

In order to account for feature selection stability with very small sample sizes, bootstrap
cross validation (BCV) will be used as it provides more submodels to estimate stability than
leave-subject out cross-validation (LsCV) ([46]). In the case of repeated measures, the BCV
zero estimator involves re-sampling subjects, with all of their respective observations, B
times and fitting each model and corresponding tuning parameter to each of the nb samples,
for b = 1; 2; : : : B. All observations taken on a subject are kept together to conserve the
correlation structure of the repeated measures data.

For a binary classification task, the training data can be defined as
Lnsub

= {( ~X1; Y1); ( ~X2; Y2); : : : ; ( ~Xnsub
; Ynsub

)} (for r = 1; 2; : : : ; nsub), with a bootstrap sam-
ple obtained from the training data as Lbnsub

, where the observations of individual r from
the training in the dataset has a (1 − 1

nsub
)nsub chance in appearing in Lbnsub

. Letting I be
an indicator function, the proportion of times a subject’s observations appears in a single
bootstrap sample can be defined as Pr = 1

nsub

Pnsub

r=1 I(~xb
r;~y

b
r)=(~xr;~yr). Thus the bootstrap zero

estimator as described in [47] has the validation set Lbv involving all {v : ~Xr; Yr ∈ Lnsub

\Lbnsub
}. Therefore, the bootstrap zero estimator of the misclassification rate is:

^MCR0 =

PB
b=1

Pnsub

r=1 Iyr 6=ŷrIP b
r =0PB

b=1

Pnsub

r=1 IP b
r =0

: (3.17)

3.3.5 Pareto Front Cross Validation

[14] discussed the ability to generate a Pareto Front between the tuning criteria and
the estimated stability for each tuning parameter. Using the Pareto front for LASSO (under
large sample sizes), some out of bag log-likelihood could be traded for higher stability without
any loss of MCR. A similar approach will be taken in this paper by trading some MCR for
stability. It is important to note that even for small subject sizes, the general guideline of
B = 100 can be met, considering even with only nsub = 6 there are

�
2nsub�1
nsub

�
= 462 possible

distinct bootstrap samples [48].
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Pareto Fronts

Pareto fronts are made through the use of multi-objective functions, which is when max-
imizing one function results in the minimization of another. Mathematically this problem is
defined as:

min
~u
F (~u) = (f1(~u); f2(~u); : : : ; fo(~u))

subject to ~u ∈ F
(3.18)

where o = 1; 2; : : : ; O is the number of objective functions f(~u), ~u is the decision vector and
F is the feasible region. A dominated decision vector ~u� ∈ F exists iff fi(~u

�) < fi(~u);∀i ∈
{1; 2; : : : ; o}, also phrased as ~u� ≺ ~u. A weakly dominant decision vector occurs for fi(~u�) ≤
fi(~u) (symbolized with �). The decision vector ~u� is Pareto optimal if no other decision
vector ~u exists such that fi(~u) ≤ fi(~u

�);∀i ∈ {1; 2; : : : ; o} and fi(~u) < fi(~u
�) for at least one

i ∈ {1; 2; : : : ; o}.
Intuitively, a Pareto front can be thought of as the set of solutions that out-compete

other points in at least one objective function at the cost of being worse in another, also
referred to as the set of non-dominant solutions. Mathematically, it can be defined as
P = {~c : ~c� � ~u; ∀~c� ∈ A}, where A is the set of possible non-dominant solutions for
each objective function. An example of a Pareto front can be seen in Figure 3.1.
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Figure 3.1: A sample Pareto front for NSC generated using 100 bootstrap sample from 6
randomly sampled subjects from the [43] dataset. The red line indicates the set of non-
dominant solutions making up the Pareto front.

The Pareto front provides a set of possible hyperparameters to choose from after CV is
performed. This can make hyperparameter selection more clear to the practitioner, especially
in the case of a flat tuning curve as there are multiple criteria to choose from.

TOPSIS Decision Criteria

In the case of a simulation with thousands of replicates, manual hyperparameter selection
from the Pareto front is not practical and can introduce bias from the researcher. Therefore,
TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) can be used
for automated hyperparameter selection [16]. TOPSIS selects the hyperparameter that is
closest to the positive ideal solution (e.g. a stability of 1 and 0 MCR) and farthest from
the negative ideal solution for each objective function (e.g. 0 stability and 1 MCR) across
objective functions in the Pareto front [16]. The Pareto front, P is compromised of a C ×O
matrix, where C is the number of non-dominated solutions and O is the number of objective
functions on which feature selection is based. Let an element of P be pc;o, therefore TOPSIS
can be defined using the following steps:

1. Normalize elements in P, such that pc;o are on the same scale.
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2. Weight each element of P, such that vc;o = pc;o × wo

3. DetermineA+
o , the set of worst solutions for each decision criteria ~Po, A+

o = {Maxc(vc;o)} =

{(v+;1); (v+;2); : : : (v+;O)}.

4. DetermineA�o , the set of ideal solutions for each decision criteria ~Pc, A�o = {Minc(vc;o)} =

{(v�;1); (v�;2); : : : (v�;O)}.

5. Compute Vc+, the Euclidean distance for each vc;o and v+;o.

6. Compute Vc�, the Euclidean distance for each vc;o and v�;o.

7. Compute OPc = Vc�
Vc++Vc�

.

The largest OPc is the recommended solution by TOPSIS, and in the case of CV, each OPc
is associated with a specific tuning parameter. It must be noted that weighting is subjective
and in the case of this paper, each decision criteria will take an equal weight wo = wo0 = 0:5

as there is no preference for stability over MCR for choosing a non-dominant solution.

3.3.6 Study Notation

To investigate the benefit of PFCV, each multivariate method used will be compared
after being fit using LsCV, BCV, and PFCV. PFCV will utilize BCV in order to obtain
M = 100 submodels as seen in [14]. Terminology for the 14 “fitting algorithms” (combinations
of multivariate methods, feature selection method and CV type) are seen in Table 3.2.
The term fitting algorithm will be used to these combinations during the remainder of this
paper. Acronyms in Table 3.2 associated with each fitting algorithm followed a pattern of
multivariate method, CV type and feature selection approach with respective tuning criteria.
For methods, P ≡ PLSDA, N ≡ NSC and S ≡ STPLSDA. CV type had L ≡ LsCV, B ≡
BCV and F ≡ PFCV. For tuning criteria, MV ≡ VIP + MCR, MS ≡ SMC + MCR, MC ≡
MCR, ML ≡ tuning using mean log-likelihood and COR ≡ [38] tuning criteria 2.
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Table 3.2: Acronyms associated with each fitting algorithm. For methods, P ≡ PLSDA, N
≡ NSC and S ≡ STPLSDA. CV type had L ≡ LsCV, B ≡ BCV and F ≡ PFCV. For tuning
criteria, MV ≡ VIP + MCR, MS ≡ SMC + MCR, MC ≡ MCR, ML ≡ tuning using mean
log-likelihood and COR ≡ [38] tuning criteria 2. Min stands for minimum, Max stands for
maximum. NLMC’s p̂val;r is the predicted probability from Equation 3.12 on the validation
set was inspired by what was done using the test set in [34]. S-COR is adapted from [38] for
STPLSDA and has a dash for CV type as the full training data is used instead of CV.
Fitting Algorithm Method CV Type Tuning Criteria Feature Selection

PLMV PLSDA LsCV Min MCR + Min Rule VIP
PLMS PLSDA LsCV Min MCR + Min Rule SMC (� = 0:1)
PBMV PLSDA BCV Min MCR + Min Rule VIP
PBMS PLSDA BCV Min MCR + Min Rule SMC (� = 0:1)
PFMV PLSDA PFCV Min MCR VIP
PFMS PLSDA PFCV Min MCR SMC (� = 0:1)
NLML NSC LsCV Max Mean Log-Likelihood Soft-Threshold
NLMC NSC LsCV Min MCR with Max 1

nsub

Pnsub

r=1 (p̂val;r − 0:5) Soft-Threshold
NBMC NSC BCV Min MCR + Min Rule Soft-Threshold
NFMC NSC PFCV Min MCR Soft-Threshold
SLMC STPLSDA LsCV Min MCR + Min Rule Soft-Threshold
SBMC STPLSDA BCV Min MCR + Min Rule Soft-Threshold
SFMC STPLSDA PFCV Min MCR Soft-Threshold
S-COR STPLSDA - Max Equation (3.2) with ‘ = 1 ([38]) Soft-Threshold

All fitting algorithms seen in Table 3.2 will be utilized for both the simulation and
pseudo-simulation studies. Evaluation of feature selection criteria was done using area under
the receiver operator curve (feature selection AUC), false positive rate and false negative
rates. An AUC of 1 indicates perfect separation between informative and non-informative
feature sets. Medians of each feature selection criteria were obtained as some tuning criteria
produced skewed distributions of results. Descriptions of false positive and negative rates in
regards to feature selection are shown in Table 3.3.

Table 3.3: Explanation of Feature Selection Criteria
Informative Non-informative

Selected True Positive False Positive
Not Selected False Negative True Negative

The pls [49], pamr [50] and plsVarSel [51] packages were used for model training. Model
validation using LsCV, BCV and PFCV were written using in house code.

It is important to note that some median feature selection AUCs below 0.5 were observed
during the simulation study for the lowest subject size (nsub = 6). However, these are the
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result of very small feature sets that included only noise variables, something attributable
to the higher variances imposed combined low subject sizes.

3.4 Design of Simulation

Simulation studies will be conducted for three central reasons: i. to illustrate whether
there is a direct benefit to using X and Xw with the proposed fitting algorithms; ii. to
investigate PFCV for small subject sizes on varying correlation structures. iii. to determine
whether TOPSIS can select a hyperparameter that leads to improved feature selection. These
simulations are done within the context small 2× 2 metabolomics crossover designs, to fill a
literature gap surrounding simulation studies on designs of this nature.

Two correlation structures are considered, a block correlation and a nested block corre-
lation. The block correlation is used as a simpler structure, and to investigate the general
performance of each method when relevant and non-relevant variables exist in high corre-
lation clusters. As well, this less complicated correlation structure can be use to illustrate
whether TOPSIS can select a hyperparameter that in fact improves feature selection. The
nested block correlation [52] is used to see how methods select informative variables when
their locations vary within the correlation structure. As well, this provide evidence of how
PFCV improves feature selection regarding of the location of these informative variables.
This is something not yet shown in the literature for the fitting algorithms used in this
study. Additionally, it is of interest to examine if PFCV can improve feature selection of a
fitting algorithm when the location of informative variables in the correlation structure is
unfavourable for a given method.

In order to generate data from a repeated measures design (like a 2×2 crossover design),
the model from [38] will be used. Consider a random variable, ~Xrk generated from multiple
observations on a single subject such that

~Xrk = ~�k + ~�r + ~�rk; (3.19)

where r = 1; : : : ; nsub is the number of subjects, k = 1; : : : ; K is the treatment group, and
g = 1 : : : ; p are the features. Under this model, ~�k is the mean vector for each feature in class
k. Subjects sizes investigated were nsub ∈ {6; 12; 20}. In 3.19, the random effect per subject
is given by ~�r ∼ N(~0;��) and the error term is given by ~�rk ∼ N(~0;��). For the block
diagonal and nested block structures, homogeneous block correlations are used for �� and
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�� with �2 on the diagonals and ��2 on the off-diagonals. For both correlation structures,
the number of features was set to p = 200, of which 40 were set as informative variables
(discriminate groups) and 160 as non-informative variables.

The values of �2
� and �2

� were represented as a signal-to-noise ratio (SNR) with �2
�=�

2
� .

SNRs were set as 0.5, 1 and 2, corresponding to {�� = 2:5, �� = 5}, {�� = 2:5, �� = 2:5}
and {�� = 5, �� = 2:5}. � was set to 0.8. Although these values of variances were rather
high, they were chosen to evaluate PFCV behaviour under high noise. Prior to simulation,
PCA was used to investigate if the use of Xw showed better group separation compared to
X for each scenario. This is illustrated in Figure (3.2). PLSDA score plots were not used in
Figure (3.2) as they are known to show class separation when none exists [4].

Figure 3.2: a) PCA score plots using 3 components on X for 100 simulated subjects using
Equation 3.19, pooled from each class. b) PCA score plots using 3 components on Xw for
100 simulated subjects using Equation 3.19, pooled from each class. For both a) and b), a
block diagonal correlation was used consisting of ten blocks of 20 features (p = 200) with
�2

� = 5, �2
� = 2:5 and � = 0:8. Blue and Orange indicates scores of the two treatment groups.

Clustering among classes is seen in a) through the use of Xw, but not in b) using X.

For the block diagonal correlation, informative features were decided through group sep-
aration using ~�k for k = 1; 2, with

~�1 = (2; 2; 2; : : :| {z }
�40

; 0; 0; 0; : : :| {z }
�160

)

~�2 = (1; 1; 1; : : :| {z }
�40

; 0; 0; 0; : : :| {z }
�160

):
(3.20)

Each block was made using 20 features, therefore 10 blocks in total. Visualization of the
block diagonal correlation can be seen in Figure 3.3.
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