Coelotanypus scapularis, photo © Steve Marshall, University of Guelph

CONTENTS

Editorial...3
A brief biography of Mary Frances Smith Sublette, June 22, 1927 - June 9, 2007..4
Kaare Aagaard 60 years...5
Sepp has turned 80!...7
Reports from the 16th international chironomid symposium in Funchal, Madeira, July 25-28, 2006...............8
The 8th European subfossil chironomid workshop, Reykjavik 7-8th May, 2007..10
News from chironomid research in India...13
Current research...16
Short communications...42
New books...43
Regional representatives 2007...49
Current bibliography..52

Editors

Torbjørn EKREM, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Peter H. LANGTON, 5 Kylebeg Avenue, Mountsandel, Coleraine, Co. Londonderry, Northern Ireland, BT52 1 JN, Northern Ireland

Current Bibliography

Odwin HOFFRICHTER, Institut für Biologie I, Albert-Ludwigs-Universität Freiburg, Hauptstrasse 1, D-79104, Germany

Treasurer

Trond ANDERSEN, Natural History Collections, Bergen Museum, University of Bergen, Muséplass 3, NO-5007 Bergen, Norway

CHIRONOMUS Newsletter on Chironomidae Research (ISSN 0172-1941) is published yearly in October. Submission deadline for contributions is July 1.

Contributions to *CHIRONOMUS Newsletter on Chironomidae Research* should be submitted per e-mail to: Torbjørn Ekrem: Torbjorn.Ekrem@vm.ntnu.no or Peter H. Langton: PHLangton@kylebegave.fsnet.co.uk. Please use the following formatting: Text in 12 point Times New Roman, first page must include title, name, address and email address of all authors. Headings should be bold faced. Cite relevant references in parentheses without comma between name and year [ex. (Langton 1991)]. List all references alphabetically in the format of the *Current Bibliography* at the end of the manuscript. Tables can be included directly in the text. Text should preferably be submitted as MS Word or rtf files. All figures should be supplied separately as tiff or jpg files.

Would you like to see your picture on the front page? Please send us your favourite midge photograph or drawing (Torbjorn.Ekrem@vm.ntnu.no).
Dear colleagues

What is the future for Chironomidae taxonomy? Grand projects to document all life on earth have emerged over the last couple of years. The Encyclopedia of Life (www.eol.org) aims to provide a free online resource to high quality information on all organisms while the Barcode of Life Initiative (www.dnabarcodes.org) takes advantage of molecular characters to catalogue, identify and discover biodiversity. Both these scientific endeavours have received substantial funding and aim to be unique resources for information on biodiversity and biology – but both are dependent on expert taxonomic knowledge to be successful. The taxonomic impediment was formally recognised by the parties of the Convention on Biological Diversity as early as 1998 with the establishment of the Global Taxonomy Initiative (www.cbd.int/gti). Although some countries have initialised research programmes to meet the demand for more taxonomist in the future (e.g. the PEET program in USA), the world has so far not seen substantial increase in the number of professional taxonomists. So, who will provide the taxonomic knowledge needed for success in initiatives like BOLI and EoL? Well, for the so called charismatic mega-fauna the information needed is more or less readily available. For the truly diverse groups such as insects, however, there are substantial holes in the taxonomic knowledge. Unless more nations take documentation and description of biodiversity more seriously and develop appropriate research programs in taxonomy, we will be unable to document life on earth fast enough to properly detect the diversity loss caused by anthropogenic environmental change.

Knowledge of chironomid diversity and taxonomy is relatively advanced compared to some other insect groups, but the number of active Chironomidae taxonomists is on a steady decline. This, despite the fact that knowledge of chironomid taxonomy and distribution has numerous uses, and perhaps is more important than ever given the increased interest in documenting past and recent climate change. Chironomid taxonomists should become better at recruiting new students and assure that committed individuals are allowed further development and work in chironomid taxonomy. To do so, we should take advantage of our extensive network and create international projects that include joint field work, workshops, courses and increased student mobility – all attractive elements for graduate students as well as senior researchers. If we are successful, chironomid taxonomy will have a bright future in modern biodiversity and environmental science. Please use the CHIRONOMUS Newsletter on Chironomidae Research, the Chironomid Home Page (insects.ummz.lsa.umich.edu/~ethanbr/chiro/) and the chironomid mailing list (Chironomidae@lists.vm.ntnu.no) to spread your news on ongoing research projects and requests for cooperation.

In this number we present current research articles on subfossil chironomids from 18 lakes in Finland, chironomid communities in Lake Baikal, chironomids new to France, chironomids from the Yucatan peninsula in Mexico and behavioural observations of an arctic chironomid species in addition to news, short communication and the Current Bibliography. We hope you find it interesting reading!

Torbjørn Ekrem Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Norway. Email: Torbjorn.Ekrem@vm.ntnu.no
Mary Frances was born in East Texas to Pleas and Arkie Odelphia (Arkadelphia) Wilbanks Smith. Her heritage can be traced back to the original Plymouth colony in present day Massachusetts. When Mary was a preschool child, the Smiths moved to the high plains in West Texas, where the vistas of prairie beauty fostered a love of wildflowers that remained deeply ingrained for Mary’s lifetime. Her other enduring passion was needlework, beginning as a young girl when her paternal grandmother gave her a box of threads and showed her how to do simple stitches.

Her mother, who was orphaned as a child, struggled to become a school teacher; she impressed upon her four daughters the necessity of a good education. Mary and her sisters went to college, and Mary herself was later instrumental in establishing educational goals in several young persons, including her own four children, who between them hold 11 college degrees. Mary received her bachelor’s degree in 1948 from Texas Tech in Lubbock. She entered intending to pursue journalism, until she took a biology course with Dr. Harold Hefley. She found it so fascinating that the professor set up a microscope for her in his lab. As she later confided, “those beautifully colored slides” motivated her switch to a biology major. When Mary was a junior, Dr. Hefley arranged for her to get a scholarship to the Rocky Mountain Biological Laboratory at Crested Butte, CO. The student body and faculty, while small, were cosmopolitan. For the first time Mary realized she had a distinct regional accent, and she was teased rather unmercifully about it, an anecdote she loved to tell in later years.

Upon completion of her baccalaureate, Mary was persuaded by Dr. Hefley to turn down an assistantship she was offered; he arranged a counteroffer from his alma mater, the University of Oklahoma, where she eventually (after taking time off for beginning family) received her Master’s degree in Zoology in 1955. Meanwhile, Dr. Hefley had moved to the University of Arkansas and was thesis advisor to James (Jim) Sublette. Dr. Hefley likewise steered Jim toward OU, arranging a doctoral fellowship for him there. As Jim was leaving for Norman, Dr. Hefley said to him, “There is a nice girl at OU who was a former student of mine at Texas Tech. You should look her up.” Thanks to Dr. Hefley, Jim and Mary’s lives became inextricably intertwined; they were married on June 24, 1950.

Mary is survived by Jim, four married children, and eight grandchildren. Their children are Ned, a classical guitarist and ethnomusicologist, author of a major book on the history of Cuban music; Elizabeth, an assistant professor and researcher in biochemistry and psychiatry at Columbia University; Mark, a former physician who now owns arts galleries in Tucson and Santa Fe; and Amy, currently a Ph.D. student at Arizona State University.

In addition to her accomplishments as wife, mother, and grandmother, Mary always worked together with Jim on his studies in chironomid taxonomy, co-authoring several publications as well as a monograph of the Fishes of New Mexico. She has been honored by having one genus and several species of midges dedicated to her, as well as joint dedications with Jim. A Festschrift dedicated to Mary and Jim was published in the Journal of the Kansas Entomological Society in 1998. Mary’s interest in flowers found expression in a botanical guide she co-authored, “Roadside Flowers of New Mexico.” Mary was also a published poet, with many of her poems mentioning her beloved prairie flowers. Perhaps her most inspired heritage, however, is the collection of embroidery she created. An event which changed her life was a summer with Jim at Bergen, Norway in 1981, where she was inspired by a small freehand embroidery she saw there. Afterward, Mary began experimenting with original designs on various linen fabrics and high-quality embroidery threads. Mary’s breathtaking “needle paintings,” as they became known, depict biologically correct wildflowers, insects, and fish, in a naïve style of large central figures in brilliant colors, often on a solid embroidered backdrop. Mary never allowed
her works to be sold, insisting they were a legacy for her children and grandchildren.

Mary took joy in her husband and their family to the last moment of her life. Her diligence in Zoology and artistic creativity gave added beauty and meaning to the world. I think Mary’s goals in life were well satisfied.

James E. Siblette
Scottsdale, AZ

KAARE AAGAARD 60 YEARS

Professor Kaare Aagaard has celebrated his 60 years anniversary this year, and we would like to take this opportunity to congratulate him and recapitulate some of his academic life and scientific accomplishments.

Kaare was born in Trondheim on January 13th, 1947 and went to school in the same town. Just before he started gymnasium (high school) in 1963 he collected his first butterfly, and in the following years he became increasingly interested in all kinds of insects: Butterflies, dragonflies, thrips, bugs, earwigs and beetles were all collected and identified. This general interest in various insect groups went on as Kaare started his studies at the University of Trondheim a couple of years later, and he published several papers in the Norwegian Journal of Entomology on all these groups. He actually also started working on several graduate works on thrips, aphids and bugs before he tried to encourage a friend to start working on our fascinating group, the chironomids. His friend remained unimpressed, but Kaare managed to convince himself that non-biting midges was the way forward and graduated in 1973 with a cand. real degree on the Tanypodinae of the lake Målsjøen including a study of morphological changes caused by nematode parasitism (Aagaard 1974, 1978).

After his graduation, Kaare continued working with Chironomidae and spent 3 months with Ernst Josef Fittkau in Plön. The major focus was still directed towards the subfamily Tanypodinae, but at the Max Planck Institute Kaare developed taxonomic expertise in other chironomid taxa as well. This knowledge undoubtedly has been useful in the many freshwater mapping and monitoring projects Kaare has been part of. About 35 scientific journal papers and book chapters has Kaare’s name on them, and he has contributed to more than 100 scientific reports, some of which are referenced below.

Over the years, Kaare has focused his research on various aspects of both freshwater ecology and conservation biology. He has been an advisor on numerous boards and also Norway’s representative in the European Council’s Bern Convention on the conservation of European wildlife and natural habitats. Kaare has also been a key player in the development of the Norwegian red lists. He has been curator of entomology both in Trondheim and in Tromsø, an advisor in the Norwegian Directorate for Wildlife, and head of Trondheim division of “Økoforsk” the predecessor of the Norwegian Institute for Nature Research where he later spent almost 15 years as a scientist and administrative leader. Kaare is currently curator and head of department at the Section of Natural History, Museum of Natural History and Archaeology in Trondheim.

We congratulate Kaare with his anniversary and wish him all the best for the years to come.

Torbjørn Ekrem

Selected publications on Chironomidae

SEPP HAS TURNED 80!

Professor Dr. Ernst Josef Fittkau turned 80 this year and celebrated his birthday the 22nd of July. We would like to congratulate him on this anniversary and wish him all the best on the way to 90!

Much has already been written on Sepp’s numerous accomplishments over the years (Anonymous 1992, Spies 2002), and we do not wish to repeat what others have done so well before us. However, Fittkau continued his involvement in Chironomidae research also after his 75 years anniversary, and has been involved in several scientific publications (see below). Angela Sanseverino, his last PhD student so far, graduated in 2006.

Prof. Fittkau has truly moved chironomid research forward, but he has also been active and well noticed in many broader fields like zoology, taxonomy, biology and limnology. If we were to elaborate on his contributions to the scientific community in all fields, we would fill many pages – pages from an impressively rich life, both professionally and socially. We would like to especially mention the latter here. His professional achievements are recognized all over the world, but his personal commitment, affectionate and charming being has been a privilege especially for those of us who have been lucky enough to spend some time with Sepp. Fittkau was and is always in the most sincere way open and interested to get to know new people from different cultures. With his first welcome “Grüss Sie”, “Freue mich”, “Nice to meet you” or “Muito prazer” he includes us in his world rich in experience and fascinating stories. What a privilege it is to listen to stories from his time in the Amazon, about his trips into the rainforest, his experiences and friendships with the native population and his excursions on so many streams with the canoe. Or to be entertained by stories from his work in Schlitz, his field work along the River Fulda, his time in Plön, the building of the current Zoologische Staatssammlung in Munich, and of all the interesting scientists he knew: Thienemann, Illies, Müller, Sioli, Brundin and many, many others.

Fittkau is an inspiration to us all, in particular to those of us who are just starting our career. We have all had the privilege of sharing parts of our lives with Sepp and have appreciated and enjoyed his encouragement and support. Even in his hardest times, Sepp found kind and heartening words for others. His generosity became part of our lives, our work and also helped us make important personal decisions. For this we would like to thank him from the bottom of our heart and wish him a joyful time together with his family and friends.

References

Ernst Josef Fittkau’s publications after 2001

REPORTS FROM THE 16TH INTERNATIONAL CHIRONOMID SYMPOSIUM IN FUNCHAL, MADEIRA, JULY 25-28, 2006

It is probably safe to say that the 16th International Chironomid Symposium in Funchal was a great success. *CHIRONOMUS Newsletter* has received a few detailed reports and thoughts on the conference. Thanks to all of the contributors.

The 16th International Chironomid Symposium, Funchal, Madeira, 25-28th July, 2006

My memories of the conference are of the excellent organisation including the social program of events organised by Samantha Hughes and her team that really added to the conference. I will discuss these later to do them justice, but first I will review my initial impressions of the conference as I was told to mention the fact that we did go there to do some work!

The symposium was held at the Caza da Luz Museum where we eagerly arrived on Tuesday morning to hear the Thiemann Honorary Lecture given by Ian Walker on “Chironomids: the past, present and the future.” This lecture provided a personal insight into how chironomids can be used as indicators of past environmental change. The topic offered a good introduction for the Palaeolimnology session that followed on various aspects of using chironomids as indicators of past climate and ecological change. Examples were provided by Donna Francis illustrating climate change in the Arctic, Stephan Engels in Finnish Lapland, Aaron Potito in Sierra Nevada, California and Barbara Lang in England. Steve Brooks and Thora Hrafnsdottir presented evidence of ecological change in Scotland and Iceland. After lunch there were two sessions on the use of chironomids in Toxicology and Biomonitoring. Len Farrington compared and studied the significance of Chironomidae emergence in Pennsylvania. There was a poster session after these presentations which provided a good opportunity to present your work to a diverse audience. Topics included the use of chironomids in palaeolimnology, ecology, taxonomic studies and DNA barcoding. The first day drew to a close with a Madeira de Honra and welcome reception kindly hosted by the Mayor of Funchal in the ornate surroundings of the Town hall.

The theme of Wednesday’s presentations provided an interesting perspective into the ecology and taxonomy, morphology and systematics of chironomids. Oliver Heiri provided an in depth study into the distribution of Chironomidae from surface sediments in Switzerland. An exciting new development was the DNA barcoding of Chironomidae discussed...
by Torbjørn Ekrem. This technique has the potential to be a useful tool for taxonomy and freshwater biomonitoring. After lunch there was a session on Physiology and Physiological Responses that provided remarkable insights into experimental approaches. Examples included determining the respiration rates and distribution of midges in British Columbian lakes (Klaus Brodersen) and the respiration rate and temperature of cold stenotherms (Valeria Lencioni). The second poster session followed these presentations which provided another opportunity to gain further insight into the various aspects of chironomid research currently undertaken.

The symposium banquet was held on Wednesday night at Quinta Magnólia generously offered by the government of Madeira. The outdoor banquet certainly lived up to its surroundings which were set in a beautiful garden. The scenic landscape was matched by the presentation of the food which was lavishly decorated.

On Thursday the final session was on Biogeography and Biodiversity. The presentations given by Susan Gresens and Declan Murray discussed the occurrence and diversity of chironomids in various habitats and locations from as far apart as Minnesota and the Azores/Madeira. The final poster session that followed these presentations offered a last chance to discuss the various projects with the different authors. There was a debate after lunch which included an open forum discussing the various methods of accessing different databases and how to make these more accessible. Peter Cranston gave a demonstration of his new identification key and he generously provided copies to interested parties.

The conference drew to a close with a cocktail party and informal talks on Thursday evening at the Caza da Luz Museum. The first talk was given by Miguel Sequeira from the Department of Biology at the University of Madeira on “Madeira plant diversity and vegetation types.” The second talk was given by Frank Zino on “The rediscovery of Zino’s Petrel Pterodroma madeira” which was thought to be extinct on the island. These talks provided a wonderful background to the flora and fauna of the island that many of us hoped to enjoy the next day on various fieldtrips.

The fieldtrips on Friday included a Levada trek, a mountain hike and a boat trip to the Desertas Islands, a nature reserve situated south-east of Madeira. I chose the Levada trek guided by Miguel Sequeira following the Serra do Faial Levada through the Laurissilva forest which is a world heritage site. It was amazing to see the irrigation canals (levadas) built by the first settlers to transport water to inaccessible farmland. The oldest levadas were built about 400 years ago (though not the section we went on) to transport water from the wetter north of the island to the drier southern part. This walk provided the perfect opportunity for collecting midges and as we got into the forest more nets came out. The scenery along the route was spectacular particularly as we walked further into the forest and stopped at several view points. The day ended well with dinner at a sea front restaurant for many of us.

The last day was dedicated to a taxonomy workshop held at the University of Madeira where we could bring our problem taxa to be identified. This was a very useful aspect of the trip as there were many people available to help and discuss our problems with. We were taken to a traditional restaurant for lunch where we had the local delicacy espetada (skewered beef). The next day seemed to come too soon as it was time to go home after a great week on the island. I would like to thank Samantha and the organising committee for arranging an excellent conference and their wonderful hospitality.

Wing Wai Sung, Department of Geography, Loughborough University.

A mediterranean view of the Madeira symposium …

Coming from Barcelona …flying to Madeira Island. The objective was to participate in my first “International Chironomid Symposium”. When I arrived, my first feeling was that all the delegates know each other, obviously a confirmation that the “world of chironomidology” is small. In a few days the entire group created a friendly atmosphere, and all new people were kindly received. It was a familiar meeting, where all the participants shared their work on Chironomidae, focusing on different aspects: paleo, ecology, taxonomy, genetics and biogeography. For me, one of the best things was to get to know the most important chironomidologists that write the taxonomic keys that we use in our identifications, and it was a privilege to participate in the workshop, sharing our doubts with students and experts.

Apart from the professional exchanges, we had the opportunity to discover a fantastic island in a Macaronesian world, searching for Clunio during our free-time, trekking in the deep green of Madeira and eating typical Portuguese food. A
nice experience sharing the words, doubts, questions of our research that are difficult to understand for non-chironomidologists. Thank you!

Tura Puntí, Department of ecology, University of Barcelona, Spain.

Madeira Symposium Memories
When I recall the Madeira Symposium I can't find any bad feelings about it. The Symposium was very well organised and took place in a nicely warm Madeira climate, which I really enjoyed. In my eyes, the best thing was that there came together people interested in chironomids (including the greatest specialists) from all over the world and since there were not too many people, in contrast to most international conferences, it was possible to meet everyone and have a talk with them. For me it was the best conference I have ever attended and I hope that I will be able to do so the next time as well.

Vit Syrovatka, Institute of Botany & Zoology, Masaryk University.

The Madeira Symposium
From my first contribution to Chironomid Symposia I can review this symposium with just two words “great experience”. I can only guess, like most of the students present there I presume, how much effort has gone into preparing it. It was a high quality symposium on both practical and scientific sides. The scientific themes were very diverse including all aspects of chironomid research, highly rewarding for PhD students who spend the major part of their research working on one topic. Such symposiums allow us to see the diversity of chironomidology research: taxonomy, ecology, paleolimnology, biodiversity and genetics. The other positive element was the human scale of the symposium, making it easy to meet and chat with all the scientists and also to assist at all the oral presentations.

Not only did the symposium act as a centre for the exchange of ideas at an international level, I can say also that it’s a great opportunity to meet scientists from all over the world and to weave a web of contacts for further collaboration which is very helpful for us PhD students to prepare post-doc projects for subsequent collaborations.

Alain Maasri, Université Paul Cézanne – IMEP Marseille.

The Madeira Symposium
I enjoyed many aspects of the Madeira Symposium; strolling along the sea front, sipping Madeira in the old-world elegance of the Town Hall, the delicious food at the Symposium dinner and, of course, the stimulating talks. But the ‘best bit’ was the enthusiasm and friendliness of the delegates. Students and experienced researchers were eager to discuss their research, share experiences and offer advice. Their enthusiasm extended beyond narrow research topics with palaeolimnologists interested in modern ecology and distribution data and modern ecologists examining the fossil assemblages. This stimulating atmosphere of mutual interest and co-operation was exemplified by the workshop where discussions ranged from identification of problem taxa to fieldwork logistics. I would like to thank everyone that offered advice or sent research material, particularly Peter Langton for sending copies of his pupae identification key. I hope I can share my research at a future Symposium.

Angela Self, Department of Entomology, Natural History Museum, London.

THE 8TH EUROPEAN SUBFOSSIL CHIRONOMID WORKSHOP, REYKJAVÍK
7-8TH MAY 2007

Since first meeting in Helsinki in 1997, European subfossil chironomid workers have held workshops every year or two to discuss progress and problems. More recently, many of these meetings have been attended by our North American colleagues (or ‘dead headers’), adding greatly to the discussions. This was the first time we had met as a community on ‘neutral territory’, i.e. the middle of the North Atlantic. Iceland is an exceptional place to visit, as was demonstrated on an introductory field visit for the majority of those attending the workshop. Our hosts, Jón Olafsson and Thora Hrafnisdóttir took us on a tour around the SW peninsula, noting the geothermal
geology, wildlife (fulmars, kittiwakes, and gannets for the bad birdwatchers) and a splendid crater lake of pH 2. At the end of the fieldtrip we were treated to a well earned soak in the Blue Lagoon to prepare us for the discussions over the next two days.

Palaeoenvironmental reconstructions from analyses of subfossil head capsules are now well established in mainstream and specialist literature, and are often incorporated as key proxies in scientific debates at the forefront of research agendas. However, as with any technique there is a need to constantly discuss progress and problems, and these workshops provide the ideal vehicle with which to undertake this. The discussion did not shirk from debating key, sometimes controversial issues, and while much of the questioning/debating was critical, it was most certainly inclusive, fair and good-humoured. Workshops should be a focus on discussion and debate, and this one succeeded admirably. The theme of the workshop was on the Cricotopus/Orthocladius dilemma, and whether we can split these genera successfully within our subfossil taxonomy. It has been traditional within these workshops to always devote a large chunk of time to taxonomic debates, and while this workshop was no different (we all recognise that taxonomy underpins our environmental reconstructions) we also managed to debate equally important aspects of our research, especially those related to the numerical techniques we use and ecological complexity within palaeoecology.

The workshop presentations were focused around 3 main themes: environmental reconstructions (mainly climate based), ecological functioning, and taxonomy. The reconstruction talks focused on a range of sites and timescales. Records from the last 1-2 millennia were discussed by Naomi Holmes, Yarrow Axford, Elizabeth Thomas (all Icelandic sites) and Nicholas Rolland (a site in Nanavut, Canada), whereas David Porinchu considered records covering the last 150 years from western USA. The Arctic was a key theme of this meeting, perhaps no surprise as this workshop followed the Arctic workshop, held in Skaftafell, SW Iceland, two days previously, and presentations from Gaute Velle, Donna Francis, Isabelle Larocque and Marie-Claude Fortin all discussed work from projects they are currently working on in this region. It was not all Arctic science though, as Craig Woodward showed us his ‘Diptera down-under’, discussing his research on New Zealand sub-fossil chironomids as indicators for long-term environmental change. Many of the subfossil sequences presented were analysed in terms of quantitative temperature reconstructions. Steve Brooks assessed how reliable these chironomid-inferred temperature reconstructions are in terms of the late-glacial and Holocene in NW Europe. The main consensus was that late-glacial records seemed to agree well although some regional differences exist, whereas there is far less agreement between Holocene temperature reconstructions. This is thought to be
mainly due to the range of lake developmental pathways that exist, for example changing pH throughout the Holocene will also influence chironomid communities. Discussion focused on whether we are actually at the limit of what we can achieve regarding the magnitude of error estimates for Holocene thermal changes, and that 1-2 °C errors were actually quite good when we consider the complex ecological functioning underlying chironomid response to environmental change. These points withstanding, there are clearly some Holocene temperature reconstructions that appear to work well and show good agreement with other (quantitative) proxy evidence.

The workshop highlighted the need to improve our understanding of the role of chironomids in ecological functioning, as well as generating autecological data. Klaus Brodersen illustrated this point succinctly by presenting new data on Corynocera ambigua ecology. He combined oxygen respiration experiments on the larvae with stable isotope data in order to try to understand the ecological mechanisms through which this taxon is governed. The results suggested that these processes are complex, and Klaus noted that while we now have good data for this taxon, we still have many other taxa for which we require experimental data. Other talks relating to ecological functioning focused on the role of macrophytes and chironomid communities in the UK (Peter Langdon), lake-climate interactions (Wing Wai Sung), and analyses of the chironomid community structure in Icelandic lakes (Thora Hrafnsdóttir). Discussion focused on the ecodynamics of Lake Myvatn (led by Árni Einarsson) and an understanding of ecological scaling and complexity in palaeoecology (led by Gaute Velle and Klaus Brodersen), where the challenge of validating and interpreting the results of inference models was discussed. One conclusion was that when using inference models, taxon optima can change depending on what other environmental factors change, as well as what other taxa are present; or in other words palaeoecological simplicity may need to be considered more carefully in the face of ecological complexity.

Taxonomic discussions did, as usual, form the brunt of much of the discussion, and were led by (in no particular order) Jón Ólafsson, Thora Hrafnsdóttir, Ian Walker and Oliver Heiri. New taxonomic guides have recently been produced, including Larocque and Rolland (2006), Brooks et al. (2007), and a Provisional Interactive key to Larval Chironomidae by Pete Cranston (available on CD from the author at: pscranson@ucdavis.edu), which stimulated much debate. This was an important discussion, for both new and more experienced chironomid palaeoecologists, and a number of key points were identified as important to consider:

- Taxonomy provides a unique and stable name for every taxon and it underlies studies in ecology, palaeoecology, biogeography etc. Results (e.g. reconstructions) are dependent upon the correct use of taxonomy, i.e. correct identifications. We want as high a resolution in our taxonomic data as possible, however, we should be conservative in our identifications, and to guard against over-splitting.
- Correct taxonomy is especially important in terms of retrieving the correct ecological information about chironomid taxa from the literature.
- Consistent taxonomy is important for training set data and core data in order to obtain sound reconstructions.
- The term ‘morphotype’ or ‘type’ is used to refer to a taxon with a particular morphology, but there may be more than one species included and these are indistinguishable based on subfossil features.
- At present much of the fossil taxonomy is based on fossil examples, not reared/living larvae. Ways to link the larvae to the adults would be through rearing and DNA methods.
- In future identification guides we could add photos of reared larvae next to photos of fossil larvae. There are few reared specimens in collections, so these may not be representative of the species (thus we have little or no information on intra-specific variation). Also, the photos of fossil larvae are still needed because these are more representative of what palaeoecologists see under the microscope.
- In our publications it is important to cite the key used or the description of a taxon, so others can refer to this in the future as well as to prevent misconception in the future. We should also take photographs, and record (publish if possible) ‘odd’ specimens found.

One important topic of debate, and the workshop theme, was the possibility of differentiating Cricotopus/Orthocladius/Paratrichocladius (led by Oliver Heiri). It is impossible to do this at the generic level if we cannot make a species-level diagnosis (on fossil material), but some species
(or at least morphotypes) are distinctive. Numerous morphotypes that can be consistently distinguished are described in the new taxonomic guide by Brooks et al. (2007). The guide provides an essential standard for our community at the present time. One problem is that different instars may falsely appear to be different morphotypes (e.g. for Pseudodiamesa) and it is essential to keep an eye out for this. The “dilemma” is that we must choose between potentially committing “type II” errors (in which we do not recognise differences that actually exist) and “type I” errors (in which we see differences that do not actually exist). Some suggestions as how to proceed included:

1. Test existing datasets at high taxonomic resolution. Send resulting ideas, pictures, etc amongst our community.
2. Check the literature for ecological notes regarding different taxa.
3. Check for co-existence with other taxa – a source of clues regarding the ecology of morphotypes.
4. Check trophic optima vs. temperature optima.
5. Test model performance at different taxonomic resolutions. This will save time if splitting does not add information. Note that lumping may yield more precise but less accurate models. Splitting may be less worthwhile for transfer-function based reconstructions, but could be very useful for palaeoecology (studies of diversity, palaeogeography, etc.).

Overall this was an excellent meeting, and as a research group we got to grips with many of the key issues that affect our discipline, much of which is reported above. Warm thanks go to Jón Ólafsson and Thora Hrafnsdóttir who organised the workshop, the Institute of Freshwater Fisheries, where the meeting was held, and to Hilmar Malmquist who organised an excellent reception at the Natural History Museum of Kopavogur where we sampled such delicacies as dried fish and rotting shark (hakarl) washed down with shots of brennivín (translation: Black Death). Delicious.

References

Peter Langdon, University of Southampton, UK.
Naomi Holmes, University of Exeter in Cornwall, UK.
Stefán Már Stefánsson, Natural History Museum of Kopavogur, Iceland.
Elísabet Hannesdóttir, Institute of Freshwater Fisheries, Iceland.
Yarrow Axford, University of Buffalo, USA.

NEWS FROM CHIRONOMID RESEARCH IN INDIA

University of Burdwan

The research project, TAXONOMY OF DIPTERA under the aegis of the “All India Coordinated project on Insect Taxonomy” funded by the Ministry of Environment & Forests, Govt. of India under Prof. P.K. Chaudhuri & Dr. A. Mazumdar implemented in 2002 is in progress. Assistance in the form of material and literature is solicited for its successful execution.

Prof. Xinhua Wang of University of Nankai (China) paid a short visit to our laboratory in 2005. During his visit Prof. P.K. Chaudhuri and I chalked out a plan to prepare a “Directory of chironomids of the Oriental Region” in collaboration with Prof. Wang. The directory awaits publication in Zootaxa soon. The list contains 948 species of 142 genera in 6 subfamilies of chironomids of the Oriental Region, including oriental China and Japan.

Professor Arshad Ali, University of Florida, IFAS, Apopka came to our laboratory to work with us in July, 2006. During his short stay, a program was designed to study the ecology and intraspecific relationship of the species of Glyptotendipes Kieffer.
Doctoral degree in 2007.

Dr. Uttaran Majumdar
Email: uttaran_majumdar@yahoo.com

Supervisor: Dr. A. Mazumdar, Department of Zoology, University of Burdwan, Burdwan 713 104, India; Email: abhijitau@rediffmail.com

Title of the thesis: “Systematics and biology of the subfamily Chironominae (Diptera: Chironomidae) of eastern India”.

Summary of the Ph.D. thesis:
The thesis contains 77 species of 12 genera in the two tribes Chironomini (10 genera) and Tanytarsini (02 genera). Of the 77 species, Chironomus mayri, Einfeldia arcuta, Glyptotendipes (Phytophagostypotendipes) crassispinus, G. (P.). fumilatus, G. (P.) sinusus, Microtendipes semicylis, Paratendipes brevirusticus, Cladotanytarsus dividens, and Parapsectra firmistyla are described as new to science and 33 species reported earlier are revised. The life cycle of 9 species are reared in the field and the laboratory and the immature stages are also described with the relevant illustrations. A brief study of habitats, food and feeding habits, construction of larval residences, silk spinning of the larvae, life cycles, emergence and sex ratios of several species are presented in the thesis. Behaviour of the larvae and pupae of the new species are also included in the thesis.

Adjudicators:
1. Dr. Martin BERG
 Associate Professor
 Department of Biology
 Loyola University of Chicago, 6525 N
 Chicago, IL 60626, USA.

2. Dr. J.KALITA
 Professor of Zoology
 Gauhati University, Guwahati 781014, India.

3. Dr. P.HALDAR
 Professor of Zoology
 Visva Bharati, Santiniketon, India.

4. Dr. A. Mazumdar (Supervisor)
 Department of Zoology
 University of Burdwan
 Burdwan 713 104, India

M.Phil. thesis:
Ms. Soumi Nandi
Supervisor: Dr. A. Mazumdar, Department of Zoology, University of Burdwan, Burdwan, 713 104, India.

Title of thesis: “Study of morphology and polytene chromosomes of Glyptotendipes barbipes (Staeger) from India (Diptera: Chironomidae)”.

Summary of the M. Phil thesis:
Morphology of all life stages of Glyptotendipes barbipes (Staeger) is revised using recent terminology and taxonomy. The material used was based on laboratory rearing of larvae. The dissertation also includes descriptions of the polyploid chromosomes of the salivary gland of the fourth instar larva of Glyptotendipes barbipes. In general these are noted to possess 2n=8 with three metacentric and one acrocentric chromosomes which through comparative studies are reported to vary in different populations.

Chironomus research at University of Pune
M.Phil. thesis 2003
Mr. Anand A. Babrekar

Supervisor: Dr. B. B. Nath, Department of Zoology, University of Pune, Pune, India.

Title of thesis: “Study of photobehaviour in Chironomus ramosus Chaudhuri et al.”.

Summary of the M. Phil thesis:
The ontogeny of photosensitivity in a holometabolous insect midge Chironomus ramosus was studied. Extracellular electrical activity was recorded from larval and adult photoreceptor organs. We found a progressive increase in photosensitivity, as the development proceeds from larva to adult stage. This is a first report of its kind where developmental profile of photosensitivity in any insect has been described from an ecological context. Chironomid midges have been chosen for this study since developmental stages show ecological transitions. Aquatic bottom dwelling tubicolous larvae metamorphose to a transient pupal stage and subsequently, eclose to terrestrial low-flying adult midges. Unlike larvae, adults were found to be positively phototactic.

We have fabricated special devices and designed novel assays to study photobehavioural responses in different developmental stages. We have also formulated phototactic index (P.I.) for quantitative analysis of photobehaviour. Moreover, the study aimed at finding whether response to intensity and wavelength of light varies in different developmental stages. Interestingly, our study showed a developmental shift in photobehavioural response during
metamorphosis. Early and late larval instars showed a variable pattern of photoresponse under shorter and longer wavelengths of the visible spectrum and the findings have been correlated to their ecological transitions from pelagic to benthic life style. Similarly, P.I. values shifted from positive to negative and vice-versa throughout the life-cycle of Chironomus. Behavioral data has been corroborated with ERG data (collaborative work with Dr. Gauri Kulkarni, Biophysics Unit, Dept. of Physics, University of Pune). Our electrophysiological data link sensitivity of developmental stage specific photoreceptor organs of larvae and adults to its ecological adaptations.

Chironomus larvae are known to be pests and adults are known for creating a nuisance in human habitats. Adult midges are also medically known for allergic reactions to humans. Therefore, we believe that our findings will help in designing a ‘light-trap’ as an effective pest control strategy based on developmental stage specific photosensitivity.

Anand A. Babrekar received Prof. V.C. Shah best poster presentation award for the paper entitled “Structural & functional analysis of photoreceptor cells of Chironomus ramosus” at the XXVII All India Cell Biology Conference & International Symposium, Jan 7-10, 2004 at Pune, India.

New Chironomidologists in India

Dr. Niladri HAZRA
Department of Zoology
Balurghat College (North Bengal University)
Balurghat, India.

Mr. Nirmalaya DAS
Department of Zoology
Kalimpong College (North Bengal University)
Kalimpong, India.
Area of research: Systematics and Biology of Orthocladiid midges of the Himalayas of West Bengal, India.

Dr. T. MIDYA, Professor
Department of Zoology
Presidency College
Calcutta 700 073
Area of research: Polytene chromosomes of the Chironomid midges.

Dr. S. CHATTOPADHYAY
Department of Entomology
Faculty of Forestry
B.A.University, Ranchi, Jharkhand.
Area of research: Biology and Ethology of Chironomids.

Dr. G. K. SAHA
Department of Zoology
University of Calcutta
34 Ballyganj Circular Road, Calcutta 700 019.
Area of research: Behaviour and Limnology of Chironomids

Abhijit Mazumdar, Department of Zoology,
University of Burdwan, Burdwan, 713 104, India.
abhijitau@rediffmail.com

Abhijit Mazumdar, Department of Zoology,
University of Burdwan, Burdwan, 713 104, India.
abhijitau@rediffmail.com
SUBFOSSIL CHIRONOMIDS FROM 18 LAKES IN SOUTHERN AND NORTHERN FINLAND

Tomi P. Luoto

Department of Geology, P.O. Box 64, FIN-00014 University of Helsinki, Finland,
E-mail: tomi.luoto@helsinki.fi

Introduction

Midge and especially chironomid (Diptera: Chironomidae) larvae provide an excellent data source of environmental conditions in aquatic ecosystems, particularly in lakes and ponds, where they live abundantly in the bottom of littoral and pelagic zones. Chironomids are a very diverse midge family, for example Paasivirta (2007) lists over 750 species in Finland. Some species are ecologically sensitive, living only in certain types of waters. Their chitinous head capsules preserve in lake sediments as subfossil remains and have been used to interpret past environmental changes in lakes, e.g. changes in temperature, water depth, salinity, productivity, hypolimnetic oxygen and pH (Walker 2001). Subfossil chironomid analysis has also been used in contemporary ecological studies, as the chironomid assemblage in the topmost sediment layer, if not disturbed, is considered to represent the present chironomid fauna and sampling of the surface sediment is fairly easy and effective. The major disadvantage in subfossil chironomid analysis is the difficulty in identification, because it is often impossible to identify to species or even genus level. However, for example Olander et al. (1999), Larocque et al. (2001) and Nyman et al. (2005) have gathered important information on distribution of chironomids in northern Fennoscandia based on surface sediment samples. Although these studies have led to highly developed chironomid-based palaeotemperature inference models, they are restricted to subarctic regions and do not cover the southern areas of Fennoscandia.

The aim of the present study is to provide data on the distribution of chironomids in southern and northern Finland and to examine whether faunal patterns in distribution exist between these regions. Therefore, 18 lakes in Finland, 11 situated in the southernmost part of the state and 7 in the northernmost part, were studied for their subfossil chironomid fauna. This study presents preliminary results from a wider investigation of chironomid distribution in Finland.

The study area

The 18 lakes were chosen to represent different lake types in southern (60°13’ to 60°26’ N) and northern Finland (69°40’ to 69°53’ N) (Figure 1). Catchment vegetation of the lakes spans from boreal coniferous forests in the south to tundra vegetation in north. The mean annual air temperature varies between 4.5 (south, Helsinki-Vantaa airport) and -2.0 °C (north, Kevo research station), and the mean annual precipitation from 649 mm to 395 mm, respectively. The altitude of the lakes varies from 15 to 404 m a.s.l. and altitude corrected mean July air temperatures were calculated for individual lakes (Laaksonen 1976) (Table 1). The range in mean July air temperature varies from 16.8 in south to 11.0 °C in north. All northern lakes were oligotrophic and their surface areas varied from ca. 20 to 90 ha., whereas southern lakes varied more in their trophic status and were generally smaller (Table 1).
Figure 2. Location of the study sites. Lakes A-C are located in boreal forests, lakes D-E in mountain birch woodland and F in subarctic tundra.

<table>
<thead>
<tr>
<th>Lake</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Altitude (m a.s.l.)</th>
<th>Mean T Jul (°C)</th>
<th>Area (ha)</th>
<th>Trophic status</th>
<th>Vegetation zones*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varadjavri</td>
<td>69.53</td>
<td>26.31</td>
<td>404.0</td>
<td>11.01</td>
<td>28.5</td>
<td>oligotrophic</td>
<td>Ba</td>
</tr>
<tr>
<td>Vadaid Ravdojavri</td>
<td>69.40</td>
<td>27.13</td>
<td>301.0</td>
<td>11.59</td>
<td>92.2</td>
<td>oligotrophic</td>
<td>MBW</td>
</tr>
<tr>
<td>Gaskkus Cieskuljavri</td>
<td>69.43</td>
<td>27.07</td>
<td>282.6</td>
<td>11.70</td>
<td>15.0</td>
<td>oligotrophic</td>
<td>MBW</td>
</tr>
<tr>
<td>Ravdojavri</td>
<td>69.40</td>
<td>27.12</td>
<td>275.8</td>
<td>11.74</td>
<td>62.3</td>
<td>oligotrophic</td>
<td>MBW</td>
</tr>
<tr>
<td>Vuolimus Cieskuljavri</td>
<td>69.44</td>
<td>27.05</td>
<td>269.4</td>
<td>11.77</td>
<td>45.7</td>
<td>oligotrophic</td>
<td>MBW</td>
</tr>
<tr>
<td>Sirrajavri</td>
<td>69.45</td>
<td>26.53</td>
<td>208.0</td>
<td>12.12</td>
<td>18.2</td>
<td>oligotrophic</td>
<td>MBW</td>
</tr>
<tr>
<td>Vuoskojavri</td>
<td>69.44</td>
<td>26.56</td>
<td>145.0</td>
<td>12.48</td>
<td>19.2</td>
<td>oligotrophic</td>
<td>MBW</td>
</tr>
<tr>
<td>Pleni Majaslampa</td>
<td>60.19</td>
<td>24.35</td>
<td>97.3</td>
<td>16.35</td>
<td>1.1</td>
<td>oligotrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Iso Majaslampa</td>
<td>60.19</td>
<td>24.35</td>
<td>92.7</td>
<td>16.37</td>
<td>6.3</td>
<td>oligotrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Iso Lehmalampa</td>
<td>60.20</td>
<td>24.36</td>
<td>91.7</td>
<td>16.38</td>
<td>5.1</td>
<td>oligotrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Kalatoin</td>
<td>60.20</td>
<td>24.37</td>
<td>89.5</td>
<td>16.39</td>
<td>0.9</td>
<td>dystrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Hauklampa</td>
<td>60.18</td>
<td>24.36</td>
<td>75.7</td>
<td>16.47</td>
<td>2.7</td>
<td>oligotrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Tuhkuri</td>
<td>60.20</td>
<td>24.38</td>
<td>73.7</td>
<td>16.48</td>
<td>13.7</td>
<td>oligotrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Jousjärvi</td>
<td>60.20</td>
<td>25.11</td>
<td>37.3</td>
<td>16.69</td>
<td>0.5</td>
<td>dystrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Tuusulanjärvi</td>
<td>60.26</td>
<td>25.03</td>
<td>37.8</td>
<td>16.69</td>
<td>600.0</td>
<td>eutrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Trollträsket</td>
<td>60.20</td>
<td>25.09</td>
<td>24.0</td>
<td>16.77</td>
<td>1.3</td>
<td>mesotrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Hampträsk</td>
<td>60.17</td>
<td>25.15</td>
<td>20.3</td>
<td>16.79</td>
<td>3.8</td>
<td>mesotrophic</td>
<td>SPB</td>
</tr>
<tr>
<td>Kangaslampa</td>
<td>60.13</td>
<td>25.08</td>
<td>14.6</td>
<td>16.82</td>
<td>1.4</td>
<td>eutrophic</td>
<td>SPB</td>
</tr>
</tbody>
</table>

*Ba = barren tundra, MBW = mountain birch woodland, SPB = spruce, pine and birch forest.
Materials and methods

The surface sediment samples were obtained with a Limnos gravity corer between February and April in 2005. The sediment samples for subfossil chironomid analysis were prepared using standard methods described in Hofmann (1986) and Walker (2001). A minimum of 100 chironomid head capsules were identified from each sample. The identification was based mainly on Wiederholm (1983). Heiri et al. (2004) was used to identify the Tanytarsini, Sæther (1975, 1976) and Walker et al. (1992) for some of the Orthocladiinae and Rieradevall & Brooks (2001) for the Tanypodinae larvae. The WWW Field Guide to subfossil Midges (Walker 2007) was also very helpful. The nomenclature follows the above mentioned literature.

Detrended correspondence analysis (DCA) was performed using the program CANOCO, version 4.52 (ter Braak 2003) to explore patterns in the distribution of the chironomid taxa in Finland. The DCA was run with detrending by segments, square-root-transformation of species abundances and down weighting of rare species. DCA is an indirect ordination method that summarizes the variation of the species assemblages along the DCA axes.

Results and discussion

From the sediments of the 18 lakes, a total of 2310 chironomid head capsules were counted and identified to genus or species level. In all, 66 taxa were identified; 40 Chironominae (23 Chironomini, 16 Tanytarsini, 1 Pseudochironomini), 22 Orthocladiinae, 3 Tanypodinae and 1 Diamesinae. The most common chironomid taxa (Figure 2, Table 2) were Tanytarsus undif. (mean abundance in the lakes 7.8%) and Psectrocladius sordidellus type (7.7%). Ablabesmyia monilis type (6.8%), Monopsectrocladius calcaratus type (6.4%) and Procladius (6.3%) were also common. Monopsectrocladius calcaratus type, Ablabesmyia monilis type, Dicrotendipes pulsus type, Tanytarsus undif. and Procladius occurred in 17 lakes (Table 2) while none of the taxa occurred in all lakes. The most evenly distributed taxa in the lakes, with high effective number of occurrences (Hill’s N2), were Ablabesmyia monilis type (13.1), Dicrotendipes pulsus type, Tanytarsus undif. and Procladius occurred in 17 lakes (Table 2) while none of the taxa occurred in all lakes. The most evenly distributed taxa in the lakes, with high effective number of occurrences (Hill’s N2), were Ablabesmyia monilis type (13.1), Dicrotendipes pulsus type (11.7) and Psectrocladius sordidellus type (11.0) (Table 2).

Table 2. Chironomid occurrences, Hill’s N2 diversity index, maximum and mean percentages and calculated optimum temperatures based on the 18 study lakes.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Occurrences</th>
<th>Hill's N2</th>
<th>Maximum</th>
<th>Mean</th>
<th>Opt. temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micropsectra radialis type</td>
<td>1</td>
<td>1.0</td>
<td>4.1</td>
<td>0.2</td>
<td>11.01</td>
</tr>
<tr>
<td>Hydrobaenus pilipes type</td>
<td>2</td>
<td>2.0</td>
<td>0.7</td>
<td>0.1</td>
<td>11.37</td>
</tr>
<tr>
<td>Heterotrissocladius brundini type</td>
<td>6</td>
<td>3.6</td>
<td>10.8</td>
<td>1.4</td>
<td>11.42</td>
</tr>
<tr>
<td>Tanytarsus lugens type</td>
<td>10</td>
<td>7.2</td>
<td>10.1</td>
<td>2.5</td>
<td>11.6</td>
</tr>
<tr>
<td>Thienemannimyia</td>
<td>5</td>
<td>4.6</td>
<td>1.4</td>
<td>0.2</td>
<td>11.68</td>
</tr>
<tr>
<td>Sergentia coracina type</td>
<td>7</td>
<td>5.9</td>
<td>8.4</td>
<td>2.0</td>
<td>11.69</td>
</tr>
<tr>
<td>Zahatschia tatrica type</td>
<td>4</td>
<td>3.0</td>
<td>3.5</td>
<td>0.4</td>
<td>11.75</td>
</tr>
<tr>
<td>Heterotrissocladius grimshawi type</td>
<td>5</td>
<td>4.0</td>
<td>5.2</td>
<td>1.0</td>
<td>11.90</td>
</tr>
<tr>
<td>Parakiefferiella nigra type</td>
<td>2</td>
<td>1.5</td>
<td>2.6</td>
<td>0.2</td>
<td>11.90</td>
</tr>
<tr>
<td>Cricotopus pulchripes type</td>
<td>6</td>
<td>4.9</td>
<td>4.7</td>
<td>1.0</td>
<td>11.93</td>
</tr>
<tr>
<td>Micropsectra insignilobus type</td>
<td>9</td>
<td>4.2</td>
<td>19.8</td>
<td>3.2</td>
<td>11.97</td>
</tr>
<tr>
<td>Protanytus</td>
<td>1</td>
<td>1.0</td>
<td>2.6</td>
<td>0.1</td>
<td>12.12</td>
</tr>
<tr>
<td>Corynocera ambigua</td>
<td>7</td>
<td>4.0</td>
<td>15.4</td>
<td>2.3</td>
<td>12.29</td>
</tr>
<tr>
<td>Stempellinella</td>
<td>1</td>
<td>1.0</td>
<td>0.7</td>
<td>0.0</td>
<td>12.48</td>
</tr>
<tr>
<td>Cricotopus (I.) sp.</td>
<td>4</td>
<td>2.5</td>
<td>5.0</td>
<td>0.5</td>
<td>12.53</td>
</tr>
<tr>
<td>Occurrences</td>
<td>Hill's N2</td>
<td>Maximum</td>
<td>Mean</td>
<td>Opt. temp. (°C)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Constempellina brevicosta</td>
<td>5</td>
<td>2.3</td>
<td>5.1</td>
<td>0.5</td>
<td>12.85</td>
</tr>
<tr>
<td>Paratanytarsus austriacus type</td>
<td>2</td>
<td>1.4</td>
<td>3.6</td>
<td>0.2</td>
<td>13.14</td>
</tr>
<tr>
<td>Paratanytarsus undif.</td>
<td>14</td>
<td>8.7</td>
<td>16.2</td>
<td>4.1</td>
<td>13.25</td>
</tr>
<tr>
<td>Micropsectra bidentata type</td>
<td>7</td>
<td>4.0</td>
<td>4.3</td>
<td>0.5</td>
<td>13.52</td>
</tr>
<tr>
<td>Monopsectrocladius calcaratus type</td>
<td>13</td>
<td>6.2</td>
<td>36.8</td>
<td>6.4</td>
<td>13.55</td>
</tr>
<tr>
<td>Microtendipes pedellus type</td>
<td>13</td>
<td>7.9</td>
<td>7.9</td>
<td>2.2</td>
<td>13.68</td>
</tr>
<tr>
<td>Paratanytarsus penicillatus type</td>
<td>8</td>
<td>6.5</td>
<td>5.0</td>
<td>1.2</td>
<td>13.81</td>
</tr>
<tr>
<td>Cricotopus (I.) sylvestris type</td>
<td>15</td>
<td>9.6</td>
<td>5.8</td>
<td>1.4</td>
<td>14.06</td>
</tr>
<tr>
<td>Pagastiella oraphila</td>
<td>8</td>
<td>6.0</td>
<td>2.7</td>
<td>0.5</td>
<td>14.13</td>
</tr>
<tr>
<td>Heterotrissocladius marcidus type</td>
<td>6</td>
<td>3.8</td>
<td>6.8</td>
<td>0.9</td>
<td>14.14</td>
</tr>
<tr>
<td>Paracladopelma</td>
<td>2</td>
<td>2.0</td>
<td>0.9</td>
<td>0.1</td>
<td>14.31</td>
</tr>
<tr>
<td>Cricotopus undif.</td>
<td>10</td>
<td>7.7</td>
<td>5.4</td>
<td>1.3</td>
<td>14.46</td>
</tr>
<tr>
<td>Psectrocladius sordidellus type</td>
<td>17</td>
<td>11.0</td>
<td>26.0</td>
<td>7.7</td>
<td>14.71</td>
</tr>
<tr>
<td>Cladotanytarsus mancus type</td>
<td>9</td>
<td>4.3</td>
<td>11.3</td>
<td>1.5</td>
<td>14.77</td>
</tr>
<tr>
<td>Phaenopsectra flavipes type</td>
<td>7</td>
<td>6.2</td>
<td>1.9</td>
<td>0.5</td>
<td>14.87</td>
</tr>
<tr>
<td>Zalutschia zalutschicola</td>
<td>10</td>
<td>7.9</td>
<td>6.0</td>
<td>1.9</td>
<td>14.87</td>
</tr>
<tr>
<td>Ablabesmyia monilis type</td>
<td>17</td>
<td>13.1</td>
<td>15.6</td>
<td>6.8</td>
<td>14.95</td>
</tr>
<tr>
<td>Dicrotendipes pulsus type</td>
<td>17</td>
<td>11.7</td>
<td>12.1</td>
<td>3.9</td>
<td>14.96</td>
</tr>
<tr>
<td>Heterotanytarsus apicalis type</td>
<td>6</td>
<td>3.7</td>
<td>9.9</td>
<td>1.6</td>
<td>15.22</td>
</tr>
<tr>
<td>Psectrocladius (Mesopsectrocladius)</td>
<td>4</td>
<td>2.9</td>
<td>2.6</td>
<td>0.3</td>
<td>15.27</td>
</tr>
<tr>
<td>Cryptochironomus</td>
<td>2</td>
<td>1.8</td>
<td>1.6</td>
<td>0.1</td>
<td>15.37</td>
</tr>
<tr>
<td>Polypedilum nubeculosum type</td>
<td>12</td>
<td>9.5</td>
<td>3.1</td>
<td>1.0</td>
<td>15.63</td>
</tr>
<tr>
<td>Tanytarsus undif.</td>
<td>17</td>
<td>7.4</td>
<td>41.9</td>
<td>7.8</td>
<td>15.64</td>
</tr>
<tr>
<td>Procladius type</td>
<td>17</td>
<td>6.4</td>
<td>38.6</td>
<td>6.3</td>
<td>15.67</td>
</tr>
<tr>
<td>Psectrocladius (Allopsectrocladius)</td>
<td>12</td>
<td>4.3</td>
<td>25.0</td>
<td>3.5</td>
<td>15.74</td>
</tr>
<tr>
<td>Cladopelma viridulum type</td>
<td>13</td>
<td>6.5</td>
<td>7.7</td>
<td>1.3</td>
<td>15.91</td>
</tr>
<tr>
<td>Pseudochironomus prasinatus type</td>
<td>5</td>
<td>4.2</td>
<td>2.9</td>
<td>0.5</td>
<td>16.06</td>
</tr>
<tr>
<td>Tanytarsus pallidicornis type</td>
<td>13</td>
<td>7.3</td>
<td>12.4</td>
<td>3.0</td>
<td>16.07</td>
</tr>
<tr>
<td>Tanytarsus chinensis type</td>
<td>6</td>
<td>2.7</td>
<td>7.3</td>
<td>0.7</td>
<td>16.31</td>
</tr>
<tr>
<td>Chironomus anthracinus type</td>
<td>11</td>
<td>6.5</td>
<td>13.6</td>
<td>2.9</td>
<td>16.31</td>
</tr>
<tr>
<td>Limnophyes</td>
<td>6</td>
<td>3.6</td>
<td>8.7</td>
<td>1.3</td>
<td>16.34</td>
</tr>
<tr>
<td>Paratendipes albimanus type</td>
<td>1</td>
<td>1.0</td>
<td>5.8</td>
<td>0.3</td>
<td>16.39</td>
</tr>
<tr>
<td>Corynoneura lobata type</td>
<td>5</td>
<td>1.6</td>
<td>29.7</td>
<td>2.1</td>
<td>16.39</td>
</tr>
<tr>
<td>Chironomus plumosus type</td>
<td>11</td>
<td>3.9</td>
<td>19.7</td>
<td>2.5</td>
<td>16.41</td>
</tr>
<tr>
<td>Lauterborniella agrayloides type</td>
<td>5</td>
<td>4.6</td>
<td>2.3</td>
<td>0.4</td>
<td>16.54</td>
</tr>
<tr>
<td>Corynoneura scutellata type</td>
<td>5</td>
<td>3.0</td>
<td>5.8</td>
<td>0.6</td>
<td>16.56</td>
</tr>
<tr>
<td>Nanocephalus (N.) rectinervis type</td>
<td>4</td>
<td>3.0</td>
<td>3.0</td>
<td>0.4</td>
<td>16.56</td>
</tr>
</tbody>
</table>
Several chironomid taxa occurred mainly in the northern lakes, whereas many were found only from southern sites (Figure 2). Some taxa, e.g. *Psectrocladius sordidellus* type and *Ablabesmyia monilis* type were found abundantly in both northern and southern lakes (Figure 2). *Micropsectra radialis* type occurred only in Várddoaijávri (Figure 2, Table 2), which is the coldest of the lakes, located in the subarctic tundra of the northernmost Finland. Also *Heterotrissocladius brundii* type and *Paratanytarsus* undif., were at their highest abundance in Várddoaijávri. *Paratanytarsus* undif. occurred also in all mountain birch woodland lakes and in some boreal forest lakes. A clear northern distribution with preference to mountain birch woodland lakes (Table 1), was observed for *Tanytarsus lugens* type, *Thienemannimyia*, *Sergentia coracina* type, *Zalutschia tatrica* type, *Heterotrissocladius grimshawi* type, *Parakiefferiella nigra*, *Cricotopus pulchripes* type, *Micropsectra insignilobus* type, *Protanypus*, *Corynoneura ambigua*, *Cricotopus (I.)* sp., *Constempellina brevicosta* and *Paratanytarsus austriacus* type. A southern distribution was observed for many taxa (Figure 2). *Polypedilum sordens* type, *Rheotanytarsus*, *Orthocladius* sp., *Endochironomus impar* type, *Tanytarsus mendax* type, *Nanocladius (N.) rectinervis* type, *Corynoneura scutellata* type, *Lauterborniella agrayloides* type, *Corynoneura lobata* type, *Paratendipes albimanus* type, *Limnophyes*, *Tanytarsus chinyensis* type, *T. pallidicornis* type, *Pseudochironomus prasinatus* type, *Cladopelma viridulum* type and *Psectrocladius (Allopsectrocladius)* occurred mainly in southern lakes, which are situated in the boreal forest vegetation zone. *Glyptotendipes pallens* type, *Einfeldia pagana* type, *Endochironomus albipennis* type, *Microchironomus tener* type and *Chironomus plumosus* type also had southern occurrences, and they showed further preference for nutrient rich lakes (Figure 2, Table 1). Also *Chironomus anthracinus* type and *Procladius* had their maximum abundances in southern, nutrient-rich lakes. The general results of the distribution of chironomids in the present study seem to agree with other studies (e.g. Brodersen and Quinlan 2006; Brooks 2006).

<table>
<thead>
<tr>
<th>Occurrences</th>
<th>Hill's N2</th>
<th>Maximum</th>
<th>Mean</th>
<th>Opt. temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanytarsus mendax type</td>
<td>7</td>
<td>6.4</td>
<td>6.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Microchironomus tener type</td>
<td>1</td>
<td>1.0</td>
<td>11.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Endochironomus impar type</td>
<td>2</td>
<td>1.9</td>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Endochironomus albipennis type</td>
<td>3</td>
<td>2.4</td>
<td>3.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Orthocladius sp.</td>
<td>3</td>
<td>2.7</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Einfeldia pagana type</td>
<td>3</td>
<td>2.5</td>
<td>6.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Rheotanytarsus</td>
<td>5</td>
<td>3.6</td>
<td>4.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Polypedilum sordens type</td>
<td>3</td>
<td>1.9</td>
<td>3.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Mesocricotopus thienemannii</td>
<td>1</td>
<td>1.0</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Glyptotendipes pallens type</td>
<td>4</td>
<td>2.3</td>
<td>10.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Omisus caledonicus</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Parachironomus varus type</td>
<td>1</td>
<td>1.0</td>
<td>3.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Endochironomus tendens type</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Kiefferidus tendipediformis type</td>
<td>1</td>
<td>1.0</td>
<td>1.7</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Figure 3. Distribution of the most common Chironomidae. The taxa are ordered based on their optimum temperatures from the coldest (left) to the warmest (right) and the lakes are ordered based on their mean July air temperatures from the coldest (top) to the warmest (bottom).

The DCA ordination diagram (Figure 3) indicates that the samples (i.e. lakes) are clearly clustered into several groups according to their chironomid fauna. The scores for the southern and northern lakes are distinctly different from each other; the southern lakes having low or intermediate values for DCA axis 1 and northern lakes having high values. The northern lakes had very similar scores along both DCA axes suggesting that their chironomid assemblages were very similar. There was also clustering among the southern lakes. The meso-eutrophic southern lakes had rather low
values along both DCA axis and the most eutrophic lake (Tuusulanjärvi) had distinctly low values for both axes. The dystrophic, macrophyte-rich lakes had highest scores for the DCA axis 2 values and low axis 1 values and the oligotrophic southern lakes had scores in the center of the ordination diagram.

According to the current results, it appears that the occurrences of some chironomid taxa are restricted to either southern or northern lakes and some were found in both regions (Figure 2). This suggests that faunal patterns exist in distribution of chironomids in Finland. It is possible that climatic factors are behind this geographical distribution of chironomids, since climate differs considerably between southern and northern Finland (Table 1) and temperature is known to affect the occurrence of chironomids (Brooks 2006). Because such differences in distribution were found, optimum temperatures, based on lake specific July air temperatures (meanTJul) were calculated for each taxon (Table 2) and the chironomids were grouped to cold, intermediate and warm water inhabitants (Figure 2). However, it is likely that many other chemical, physical or ecological factors besides climate affect their distribution and are influencing these faunal patterns. For example the northern lakes in the present study were much larger than the southern ones and this may be one contributing factor causing the differences in northern and southern chironomid assemblages. Olander et al. (1999) found the organic content of the sediment (measured as loss on ignition: LOI) and lake water temperature to be the key factors and Nyman et al. (2005) showed that LOI, total organic carbon (TOC), pH and lake specific July air temperature were the most significant factors affecting chironomid distributions in western Finnish Lapland. Larocque et al. (2001) concluded that mean July air temperature, LOI and maximum lake depth were the most important environmental variables in subarctic northern Sweden. The present study provided data only on chironomids in southern and northern lakes and therefore presents no information on distribution in the geographical region in between. For more detailed information on distribution patterns of chironomids more research is needed from a wider spatial range.

Conclusions

The southern lakes were generally dissimilar in their chironomid assemblages compared to northern lakes, and furthermore showed some clear faunal patterns. Chironomid assemblages were similar within the 5 oligotrophic lakes, 2 dystrophic lakes and 4 meso-eutrophic lakes (Figure 3). It is probable that the limnological diversity in lake ecosystems in southern Finland, e.g. variation in the trophic status, water color and macrophyte-cover, provided suitable habitats for different chironomid taxa, resulting in different faunal assemblages in certain types of lakes and that similar conditions does not exist in northern Finland.

Acknowledgements

This study was funded by the Finnish Entomological Society, the Nordenskiöld Foundation, the Walter and Lisi Wahl’s fund, the Finnish Graduate School in Geology and the Ephippium project (The Academy of Finland, grant no. 1107062). Liisa Nevalainen, Seija Kultti, Susanna Kihlman and the Kevo research station staff are appreciated for the assistance with the field work. Liisa Nevalainen is also thanked for her comments on the manuscript and Kati Ojanen for her remarks on the text. Valuable comments of an anonymous reviewer are acknowledged.
References

Chironomid communities in the littoral zone on the western coast of the southern Baikal basin (structure, distribution, seasonal dynamics)

Lyubov Kravtsova

Limnological Institute SD RAS, Ulan-Batorskaya, 3, Irkutsk, 664033, Russia
E-mail: lk@lin.irk.ru

Abstract
The spatial distribution of chironomid communities in the littoral zone (0-20 m) of the western coast of the southern Baikal basin is investigated. The fauna is composed of 16 species and forms of chironomid larvae, comprising 10 communities. It has been found that the communities are characterized by rather poor species diversity; Shannon’s index varies from 0.7 to 2.1 bit. Their distribution is affected by hydro-lithodynamic conditions, type of bottom sediments and macrophyte development. The peak of maximal biomass of chironomid larvae on the facies of non-rounded rock debris near Berezovy Cape is recorded in spring.

Introduction
The fauna of Baikalian Chironomidae is diverse; according to our and references data (Linevich 1981, Kozhova et al., 2000, etc.), it includes 166 species and forms of Chironomidae larvae from 5 subfamilies Tanypodinae (11), Prodiamesinae (2), Diamesinae (10), Orthocladiinae (59), Chironominae (84). The species diversity of Chironomidae larvae effects the structure of their communities. At present, Chironomidae distribution and diversity at different Baikalian biotops is known. In open Baikal, chironomid larvae are most abundant and rich in species on rocky ground at 0 to 5 m depth (Shapovalova 1969, Samburova 1982, Kravtsova 2005). In deeper water (more 20 m) they are few in species and only occasionally encountered (Linevich 1981, Kozhova and Kravtsova 1998). The structure of Chironomidae communities found out on the base of species domination principle by biomass is poorly studied. The number of publications on Baikal chironomid communities and their structural peculiarities is extremely limited (Kravtsova and Yerbayeva 1990, Kravtsova 1991, Kravtsova et al. 1999). Chironomidae play a considerable role in water bodies functioning (Lang 2000, Crozet et al. 2001, Scrimgeour et al. 2001, Verneaux and Verneaux, 2002, Brodersen and Anderson 2002, etc.), but papers concerning α-diversity of Chironomidae communities are either not numerous (Pastukhova 1983). Studies of structural organization of communities of Chironomidae plays an important role from the point of view of interspecies interactions, especially in population of water bodies bottom with a complex geological and geomorphological structure, in particular, on Lake Baikal. This work focuses on the structure of chironomid communities, their distribution and seasonal dynamics in the littoral zone of the western coast of the Southern Baikal basin.

Materials and Methods
Research material for this study consisted of 67 quantitative benthos samples with Chironomidae collected in Bolshye Koty Bay, 18 km northeast of the Angara River outflow of the lake, in September 1988. Division into bottom underwater complexes (BUCs): beach (B), shallow water terrace (SWT), underwater slope (US) and underwater canyon (UC) was based on physical-geographical and geomorphological characteristics of the bottom. Subdivision into facies was according to predominant type of bottom deposits. The samples were collected at 0-20 m depth along transects perpendicular to the shoreline. The benthos was sampled by divers using 0.09 m2 frames, repeated three times. Boulders were placed in bags and lifted on board where animals and plants were picked or washed off into a basin.

Seasonal dynamics of the chironomid communities were studied from 155 quantitative benthos samples, collected near Berezovy Cape. From August 2000 until August 2001, samples were taken from a 0.1 m2 count frame 5-10 times by divers at site N 1 (3 m depth, facies on non-rounded rock debris, total bottom area under study 60 m2). All samples were filtered through...
sieves of mill-gauze № 35 and fixed with 4% formalin.

‘Communities’ were defined as populations of different species co-existing in space and time (Begon et al. 1996). The “dominance approach” to the definition was used (Vorobjov 1949). Sub-dominant species of each community were diagnosed using the density index \sqrt{PB} (Brotskaya and Zenkevich 1939), modified by Konstantinov (1986): where P is the frequency of a given species in samples belonging to the community (in %), and B is percentage of a species biomass in the total biomass of the community. Communities were designated by their dominant species, which usually had the highest density index. Species with density index values higher then ten percent were treated as sub-dominant, and species with less than 10% called secondary. When only a single sample was dominated by a set of species, this sample was designated a “coenotic assemblage”. This was typical when sampling took place at the edge of a community. Coenotic assemblages represented by one sample were not examined further, because it is not known if dominance in these cases was due to random fluctuation or not. The community structure characterization was based on: Shannon’s species diversity index $H = \sum n_i / N \log_2 (n_i / N)$; Simpson dominance index $c = \Sigma (n_i/N)^2$; equitability by Pielou $e = H/logS$, where n_i is the estimate of importance (biomass, mg m$^{-2}$) of each of species in the community, N is the sum of n_i, S is species number (Odum 1971).

Results

Sixteen species and forms of chironomid larvae comprising 10 communities were recorded (Table 1, 2). Chironomid communities are rather poor in species number varying from 3 to 13, the fraction of dominating species makes from 40% to 87% of total biomass. Shannon’s index varies from 0.7 to 2.1 bit. In Bol’shiye Koty Bay, the communities of Chironomidae studied occur on facies of gravel, pebble, brick, boulders, non-grained rock debris, silt, mixed silt and pure sand, and near Berezovy Cape – on the facies of non-rounded rock debris. On biotops relatively homogenous by bottom sediments composition, species number in the major part of communities is not great, and Shannon’s index, respectively, is not high (see Table 2). In widely distributed Chironomidae communities (Bol’shiye Koty Bay), the concentration of domination of one species is high, and the equitability is low, whereas in spatially localized communities (Berezovy Cape), the concentration of domination of one species is low, and the equitability is high. As a rule, locally distributed communities are formed by species with similar requirements to the environment, and their contribution in total biomass is approximately equal.

Table 1. Characteristics of chironomid communities in Bolshye Koty Bay, Southern Baikal (September, 1988)

<table>
<thead>
<tr>
<th>Communities</th>
<th>Number of taxa</th>
<th>B±m, mg m$^{-2}$</th>
<th>%</th>
<th>H, bit</th>
<th>C</th>
<th>e</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthocladius gr. thienemanni</td>
<td>6</td>
<td>28±9</td>
<td>52</td>
<td>1.9</td>
<td>0.35</td>
<td>0.72</td>
<td>4</td>
</tr>
<tr>
<td>Orthocladius gr. olivaceus</td>
<td>4</td>
<td>10±5</td>
<td>68</td>
<td>1.4</td>
<td>0.50</td>
<td>0.70</td>
<td>5</td>
</tr>
<tr>
<td>Orthocladius frigidus</td>
<td>6</td>
<td>12±11</td>
<td>40</td>
<td>2.1</td>
<td>0.27</td>
<td>0.82</td>
<td>3</td>
</tr>
<tr>
<td>Cricotopus bicinctus</td>
<td>6</td>
<td>183±176</td>
<td>84</td>
<td>0.9</td>
<td>0.71</td>
<td>0.37</td>
<td>2</td>
</tr>
<tr>
<td>Paratanytarsus baicalensis</td>
<td>6</td>
<td>13±3</td>
<td>82</td>
<td>1.1</td>
<td>0.67</td>
<td>0.42</td>
<td>11</td>
</tr>
<tr>
<td>Sergentia baicalensis</td>
<td>13</td>
<td>93±22</td>
<td>87</td>
<td>0.9</td>
<td>0.76</td>
<td>0.24</td>
<td>28</td>
</tr>
<tr>
<td>Sergentia nebulaosa</td>
<td>3</td>
<td>68±41</td>
<td>83</td>
<td>0.7</td>
<td>0.72</td>
<td>0.44</td>
<td>2</td>
</tr>
<tr>
<td>Sergentia sp.</td>
<td>5</td>
<td>130±56</td>
<td>85</td>
<td>0.8</td>
<td>0.74</td>
<td>0.33</td>
<td>5</td>
</tr>
</tbody>
</table>

Note. B±m - mean community biomass; m – mistake of averages; % - part of dominant species in total community biomass; parameters: H – Shannon’s species diversity, C - dominance by Simpson, e - equitability by Pielou; n – number of samples.
Table 2. Characteristics of three chironomid communities at the experimental site near Berezovy Cape (Southern Baikal, 2000-2001)

<table>
<thead>
<tr>
<th>Date</th>
<th>Communities</th>
<th>Orthocladius nitidoscutellatus</th>
<th>Paratanytarsus baicalensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>B+m, mg m^-2</td>
</tr>
<tr>
<td>29.08.00</td>
<td></td>
<td>7</td>
<td>6.7±2.0</td>
</tr>
<tr>
<td>19.09.00</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>02.11.00</td>
<td></td>
<td>3</td>
<td>1.1±0.3</td>
</tr>
<tr>
<td>21.12.00</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29.01.01</td>
<td>Orthocladius sp.</td>
<td>4</td>
<td>36.3±16.9</td>
</tr>
<tr>
<td>27.01.01</td>
<td></td>
<td>3</td>
<td>94.5±20.1</td>
</tr>
<tr>
<td>27.03.01</td>
<td></td>
<td>4</td>
<td>153.7±31.8</td>
</tr>
<tr>
<td>10.04.01</td>
<td></td>
<td>3</td>
<td>23.5±4.8</td>
</tr>
<tr>
<td>31.05.01</td>
<td></td>
<td>4</td>
<td>609.1±148.2</td>
</tr>
<tr>
<td>03.07.01</td>
<td></td>
<td>4</td>
<td>27.4±1.9</td>
</tr>
<tr>
<td>27.08.01</td>
<td></td>
<td>3</td>
<td>94.5±20.1</td>
</tr>
<tr>
<td>27.01.01</td>
<td></td>
<td>3</td>
<td>94.5±20.1</td>
</tr>
<tr>
<td>27.03.01</td>
<td></td>
<td>4</td>
<td>153.7±31.8</td>
</tr>
<tr>
<td>10.04.01</td>
<td></td>
<td>3</td>
<td>23.5±4.8</td>
</tr>
<tr>
<td>31.05.01</td>
<td></td>
<td>4</td>
<td>609.1±148.2</td>
</tr>
<tr>
<td>03.07.01</td>
<td></td>
<td>4</td>
<td>27.4±1.9</td>
</tr>
<tr>
<td>30.07.01</td>
<td></td>
<td>4</td>
<td>29.4±7.3</td>
</tr>
<tr>
<td>27.08.01</td>
<td></td>
<td>3</td>
<td>3.7±0.6</td>
</tr>
</tbody>
</table>

Table 2 continued

<table>
<thead>
<tr>
<th>Date</th>
<th>Communities</th>
<th>Orthocladius sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>29.08.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19.09.00</td>
<td>5</td>
<td>12.6±2.5</td>
</tr>
<tr>
<td>02.11.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21.12.00</td>
<td>3</td>
<td>5.4±1.4</td>
</tr>
<tr>
<td>29.01.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27.02.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27.03.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.04.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.05.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>03.07.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30.07.01</td>
<td>4</td>
<td>15.5±5.2</td>
</tr>
<tr>
<td>27.08.01</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. N – number of taxa in community; B+m - mean community biomass; m – mistake of averages; % - part of dominant species in total community biomass; parameters: H – Shannon’s species diversity, C - dominance by Simpson, e - equitability by Pielou; n – number of samples.

Seasonal dynamics of chironomid larvae biomass near Berezovy Cape is shown in Figure 1. Maximal Chironomidae larvae biomass is registered in spring, and minimal one – in autumn. In spring, large elder (age groups III- IV) larvae dominate in Lake Baikal. By autumn, imago of major part of species fly out, and Chironomidae populations become rarefied. At that time, small younger larvae (age groups I and II) of new generations widely occur.

Discussion
The structure of the communities in some taxocenes, chironomids in particular, differs from that of zoobenthos as a whole.

![Figure 1. Seasonal dynamics of chironomid larvae biomass near Berezovy Cape (Southern Baikal, 2000-2001)](image-url)
The species diversity of chironomid communities, assessed according to Shannon’s index is much lower, but it exhibits higher dominance concentration indices, according to Simpson, and equitability, according to Pielou, compared to macroinvertebrate communities (Kravtsova et al. 2004). Despite this, the spatial distribution of chironomid communities is governed by the same regularities as the zoobenthos.

Spatial fauna and flora distribution is determined by the character of bottom sediments formed under different sedimentation conditions. The inhabitants of the bottom at 0-1.5 m depth (BUC B) are rather scanty due to intense hydrodynamic activity and wave breaking, where the rates of near-bottom flows reach 5 m/s sometimes (Karabanov and Kulishenko 1990). We can see algal associations Didymosphenia geminata, Tetrasperropolis sp.+ D. geminata with chironomid communities Orthocladius gr. thienemanni, O. gr. olivaceus.

Below 1.5 m, according to hydro- and lithodynamical situations there appear to be two zones different in vegetation composition and community diversity. In the first zone, the bottom consists of coarse-grained material (gravel, pebble, brick, boulders, non-grained rock debris); near-bottom currents are strong and waves break there. There are associations of algae D. geminata, Tetrasperropolis sp. + D. geminata, Draparnaldioides baicalensis, D. pumila. All the chironomidae communities (Table 1) are found in this area. Nearer to the external edge of SWT (to the bend line in US at 4-5 m depth) algal associations characteristic of the second zone appear.

In the second zone (depth 8-20 m), bottom sediments are fine-grained (silt, mixed silt and pure sand). Lithodynamics are determined by decrease in strength of hydrodynamical processes and increase in gravitation ones, by sediment transit and accumulation (BUCs US, UC). The velocities of near-bottom currents are less than 0.6 sm/s (Slugina et al. 1995). The algal association Cladophora compacta, C. floccosa, C. karsanovii, Myriophyllum spicatum, Fontinalis sp. and Stratontostoc verrucosum is widespread. Draparnaldioides associations are absent. Communities of Chironomidae Sergentia sp., S. baicalensis, S. nebulosa, Paratanytarsus baicalensis inhabit this zone.

In general, the distribution of chironomid communities at the site studied is patchy. Belt distribution is observed in communities dominated by chironomids of the genus Orthocladius (BUCs B, SWT). Analogous

regularities are observed in the shallow zone on the eastern side of southern Lake Baikal. Associations occur of the algae Ulothrix zonata, Tetraspora cylindrica var. bullosa, D. pilosa, as well as chironomid communities indicated in Table 1. They are characterized by similar structure. Thus, morphological heterogeneity of bottom, and variability of environmental factors determine the "mosaic" distribution of macro-invertebrates communities in the shallows of Lake Baikal. This is also typical in shallow marine ecosystems (Kusakin et al. 1974).

Chironomid larval biomass varies with the biology of species forming the communities. It seems most likely that the flight time of the species is different.

We found that a fairly small area of bottom near Berezovy Cape is inhabited by three chironomid larval communities existing on relatively homogeneous bottom sediments: Orthocladius nitidoscutellatus, Orthocladius sp., Paratanytarsus baicalensis. An O. nitidoscutellatus community becomes abundant in spring but by autumn its biomass is reduced by one order, while the occurrence of the communities with P. baicalensis and Orthocladius sp. grows. All communities considered have characteristics similar to the chironomid communities inhabiting Bolshye Koty Bay, and also the waters near the east coast of the southern Baikal basin in the region of Utulik-Khara-Murin Rivers (Kravtsova 1991).

Conclusions

Spatial distribution of chironomid communities depends upon hydro-lithodynamic conditions of their habitat, type of bottom sediments and macrophyte development. The community structure of the chironomids is significantly simpler than in Baikal zoobenthic communities in general. Communities are characterized by higher indices of Simpson dominance and Pielou equitability. Seasonal dynamics of chironomid larvae biomass are defined by the life cycles of the species.

Acknowledgements

The author is deeply grateful to the Head of the Laboratory of Aquatic organisms LIN SB RAS, Dr. O.A.Timoshkin for the organization of regular surveying of the benthos biocenoses at the experimental site near Berezovy Cape. Thanks are also offered to the divers I. Khanaev, I. Parfeevets, A. Kupchinsky, K. Ivanov, V.
Votyakov and post-graduate student A. Blokhina for their assistance in sampling, and also to all researchers participating in the expeditions. Special thanks are addressed to M.A. Makarchenko for identifying chironomid pupae and imagos. An early version of this manuscript was reviewed by G.W. Coulter and the author is grateful for his constructive guidance.

References

Lang, C. 2000. Response of oligochaete (Tubificidae and Lumbriculidae) and Diptera Chironomidae communities to the decrease of phosphorous concentrations in Lake Geneva (Little Lake) – *Annls de Limnologie - International Journ. of Limnology* 36(1): 13-20

DIAHELIOTAXIS AND OMBROPHOBIA IN AN ANTHOPHILOUS HIGH ARCTIC MIDGE, Smittia velutina (Lundbeck, 1898) (Chironomidae)

Peter G. Kevan

Records of Chironomidae as flower visitors are few (Larson et al. 2001), and explanations of their anthophilous activities even fewer. In the Arctic, several species are known as flower visitors and nectariphages (McApline, 1965; Oliver, 1968; Hocking, 1968; Kevan, 1970; 1973; Larson et al. 2001), but none so abundant and conspicuous as Smittia velutina.

Smittia velutina is a common, early emerging species of Chironomidae in the High Arctic (Danks 1981). It seems to be parthenogenetic. Males are so far not recorded and females I kept in vials oviposited on the inside walls. One of the interesting features of this insect is its anthophily, or flower visiting habits. Oliver (1968) also recorded this species (of only two Chironomidae in the High Arctic) as nectariphagous. Large numbers can be found on the first summer blooms of Saxifraga oppositifolia L. (Saxifragaceae) and of Salix arctica Pall. (Salicaceae). I found them with their mouthparts at the nectaries of flowers of both species of plants, and few on a few others (Kevan 1970). My observations were almost exclusively from staminate catkins S. arctica, but both McApline (1965) and Hocking (1968) recorded them from pistillate catkins.

During my studies in insect and flower relations in the Canadian High Arctic (Kevan 1970; 1972; 1973), I was able to collect large numbers of S. velutina from flowers and made the following discoveries. All findings reported herein are from Hazen Camp, Ellesmere Island, Nunavut (89° 49' N., 71° 18' W).

Between 31 May and 23 July, 1967 I collected 337 females from flowers. They were dissected to examine their gut contents and the state of their ovarian development (Harlow 1956). Almost all had guts distended with clear, syrupy liquid. None had ingested pollen grains. Two thirds (65%) of those dissected had well developed ovaries, with ovarioles at Stage 3 of development. Ten percent had ovaries at Stage 2, and 16% at Stage 4. Those with Stage 1 and spent ovaries numbered only 3 and 4% respectively.

Oliver (1968) noted that 9 of the species he studied emerged with ovaries almost mature (Stage 3) or mature. He did not report on S. velutina, but indicated that in the species he studies that ovarian maturation from almost to fully mature (Stage 4) takes about 3 days. Given the duration of anthophily I recorded, with a peak from 1 to 15 June, I postulate that the cohorts of midges I observed in the flowers were constantly changing. That idea was strengthened by observations on the daily pattern of abundances of S. velutina on the flowers of S. oppositifolia.

From combined observations from 1966 and 1968, I determined that about 64% of the midges were in flowers on the insolated sides of clumps of S. oppositifolia (Figure 1). That observation suggests strongly that the insects were continually...
changing their orientation and following the warmth of the sun (i.e. were exhibiting diapheliotaxis). I did not make precise measurements of the shapes of the clumps of flowers, nor of the insolated proportion of the clumps from which the observation came. Thus, a complete statistical analysis can not be made to test the hypothesis implied in the above. I leave that to someone else.

Figure 1. The percentage of the observed population of Smittia velutina within fully insolated flowers of Saxifraga oppositifolia throughout a composite day of 24 hours of sunshine (Data summarized from summers 1966 to 1968 at Hazen Camp, Ellesmere Island, Nunavut)

In respect of the benefits of arctic insects’ basking in flowers, the most studies have been made on temperature regimes in the diapheliotropic flowers of Dryas integrifolia (Vahl.) (Rosaceae) and Papaver radicatum Rottb. (Papaveraceae) (Hocking and Sharplin, 1965; Kevan 1975). Those studies indicate two-fold benefits, one to the insects (warmth and protection) and the other to the plants (pollinator attraction, increased speed of pollen tube growth following pollination, more rapid fertilization of the ovules and growth of the seeds and fruits). Although S. oppositifolia is not diapheliotropic, its flowers become warmed by insolation. Figure 2 shows the amount of warmth (temperature above ambient air in the vicinity of the flowers) within its flowers according to the angle of insolation. Small insects, such as S. velutina, would assume the temperature of the environment within the flowers in which they rested. Thus, the two-fold benefit of insessional warming of the flowers of S. oppositifolia would be the same as for D. integrifolia and P. radicatum, but for shorter durations. The insects could extend the duration of their benefit by circumnavigating the clumps and so remaining insolated and warm. Using the same approach as in Kevan (1975) one can calculate roughly that the adult midges might gain as much as 25% more heat units by this behaviour. Such thermally advantageous circumnavigation (Kevan 1989) is known for mosquito larvae in tundra ponds (Haufe, 1957), woolly bear caterpillars on hummocks of vegetation (Kevan et al. 1981; Kukal et al. 1988) and diapheliotropic flowers (Kevan 1975).

Figure 2. Top: Temperature within and at the bases of the flowers of Saxifraga oppositifolia (where Smittia velutina was observed feeding on nectar) above ambient air temperature with respect to the direction of the sun on a still sunny day at solar noon. Flowers at S (0°) were open directly to incoming insolation, at N (180°) open directly away from the sun, Z is for temperatures of flowers open directly to the Zenith.

Bottom: Temperature within and at the base of flowers of Saxifraga oppositifolia (where Smittia velutina was observed feeding on nectar) above
ambient air temperature with respect to the direction of the sun as they were tipped from facing directly into the sun (90° equivalent to 0° in the left-hand graph) to a position so that the sun’s rays glanced across the top of the open flowers.

Although rain is uncommon around Lake Hazen, from 22 to 24 June, 1966 light rains fell and observations on the insects in S. oppositifolia were made. At each observation between 104 and 127 midges were counted. Close inspection revealed that S. velutina used the flowers as umbrellas. Only one hour after the rain had started, many flowers were empty, but 65% of the midges had taken refuge beneath the flowers. Thirteen hours later, 80% of the midges associated with the flowers were underneath them. Thus, the midges were exhibiting avoidance of rain, or ombrophobia. After the rain ceased and the sun had shone, the midges slowly resumed their positions in the flowers, so that after 14 hours of sunshine 89% of the midges were within the corollas, and only 11% still beneath them.

Acknowledgements: I am grateful to the late Professor Brian Hocking who encouraged my research by providing funds from his research grants. The Canadian Defence Research Board helped through allowing use of Hazen Camp and providing logistic support. I thank Marianna Horn for kindly helping me with preparation of the figures. Torbjørn Ekrem and Elisabeth Stur pushed me to write this short article; thank you.

References

Kevan, P.G., Jensen, T.S. and Shorthouse, J.D. 1981. Body temperatures and behavioural thermoregulation of high Arctic woolly-bear caterpillars and pupae (Gynaephora rossii, Lymantriidae: Lepidoptera) and the importance of sunshine. – Arctic and Alpine Research 14: 125-136.

CHIRONOMIDS OF THE YUCATÁN PENINSULA
Evgenia M. Vinogradova and H. Wolfgang Riss

Department of Limnology, Institute for Evolution and Biodiversity, University of Muenster
Email: vinogradova@uni-muenster.de, riss@uni-muenster.de

Introduction
One of the many areas of the globe, where the chironomid fauna has practically not been studied yet, is the Yucatán peninsula. It is vast and mostly plain lowland marking the southern border of the Mexican Gulf. The geological history of Yucatán is linked in many ways with that of the Caribbean and Central America (Iturralde-Vinent and MacPhee 1999). In biogeographical terms, Yucatán belongs to the Neotropical region and the Caribbean subregion (Morone 2006). Occurrence of endemisms seems to justify a subdivision in three more areas (Espadas et al. 2003). To date, studies of chironomid communities in Central America concentrated mainly on the mountainous reaches along the cordillera ridges and volcano foothills (e.g. Coffman et al. 1992; Watson and Heyn 1992; Sublette and Sasa 1994).

The study presented here is part of a major research project. Its purpose is to estimate the importance of climatic and geogene factors for the taxonomic composition of chironomid communities in lakes of the peninsula. A preliminary overview on the chironomid diversity in this region is given in this article.

Sampling sites and methods
18 lowland lakes, differing in basin morphometry, anthropogenous impact, and chemical properties, were studied in the lowland (up to 150 m a.s.l.) of Yucatán. The lake basins are embedded in limestone and gypsum karst and scattered across a NE-SW precipitation gradient from 600 to 1900 mm a⁻¹. Some of the lakes communicate hydrologically with the coastline through a diffuse net of canals. Immature chironomids were sampled from the sediment surface layer at maximum lake depth (SMD) and in the littoral from surface drift and various firm substrates. Adults were caught with an insect net from emerging plants and in a light trap after sunset. So far, larval head capsules, given in individuals per gram dry sediment (g⁻¹), and male adults were analyzed. Littoral samples await processing. Environmental predictors include 31 parameters for lake morphometry, lithology, physico-chemical analyses, littoral morphology, hinterland use, and anthropogenic disturbance.

First results and considerations
To date, 84 taxa (mainly morpho-species) out of 48 chironomid genera have been identified on the basis of head capsules from SMD and adult males from all 18 lakes (Tab. 1). Eight genera belonged to the Tanypodinae, only two genera to the Orthocladiinae, and the majority, i.e. 38, to the Chironominae (29 Chironomini, 9 Tanytarsini). The dominant taxa that occurred in all lakes were Cladopelma lateralis and Tanytarsus species (this genus probably comprises a greater number of morpho-species than separated here). Further on, Chironomus, Goeldichironomus, Polypedilum, Cladotanytarsus, Labrundinia, Natarsia, Procladius were present in more than 70% of the lakes. The most abundant genera, reaching abundances of 4 to 10 g⁻¹, were Labrundinia, Natarsia, Cladopelma, Microtendipes, Xenochironomus, Cladotanytarsus, and Tanytarsus. Mean taxa number from SMD was 14.4, whereat greatest diversity was found in Lake Yaxha (20) and Gravel Pond (19), lowest in Honey Camp Lagoon (7) and Lake Chichancanab (9). Median total abundance of head capsules from SMD was 53.5 g⁻¹. Density was exceptionally high in Punta Laguna (1033 g⁻¹), moderate in Honey Camp Lagoon (174 g⁻¹), Cenote (172 g⁻¹) and extremely low, however, in Lake Izabal (0.81 g⁻¹).

The slope of the species-area relationship indicated that about 50 to 60 % of the estimated chironomid diversity of Yucatán lowland lakes was covered by the list above. For most of the taxa, marked out as morpho-species, no taxonomic descriptions exist. The number of taxa is expected to rise further when data from littoral immatures and all adults are included. However, a certain drawback is the fact that explicit combinations of the metamorphic stages can be attained only under reserve.
Relatively low SMD head capsule abundance in Yucatán lakes, in comparison to temperate lakes, may have several reasons: 1) The lakes studied, like most shallow lakes of the (Sub-)Tropics, are holomictic and thus sedimentation is disturbed by turbulence, which causes head capsules to disaggregate more likely. 2) Sedimentation rates are increased owing to both inflow of allochthonous inorganic suspended matter from affluents, mainly during the rain periods, and/or high autochthonous production conditioned by lake morphometry and/or anthropogenic alterations. 3) Durability of the sediment may be reduced due to precipitation and redilution processes of the geogene gypsum. Consequently, time-consuming analysis of low-density material did not help promoting the taxonomic gain.

A view on numerical attributes revealed that both, number of taxa and equitability (evenness) of the communities tended to decrease towards higher latitudes, at which SMD abundances, however, increased significantly with the probability of drought events occurring. Number of taxa was highest in eutrophic conditions. Correspondence analyses showed that the most important environmental predictors, besides trophic state of the lakes and mean annual precipitation, were concentration of gypsum (CaSO₄) and salinity (predominantly NaCl), the latter occurring in lakes subject to aperiodical seawater infiltration. Surprisingly, morphometric properties, such as littoral formation, lake surface area, and average lake depth were of subordinate explanatory value for the community structure.

Expectations of finding a high ratio of species versus genera were supported by assumptions from biogeography and evolutionary history. Central America is a relatively young land bridge, which gave way to a radiation from both Americas (Bănescu 1995). Colonization of aquatic habitats and ecological niching in process is assumed to be reflected in a relatively great taxonomic depth (Coffman et al. 1992).

The biogeographic position of chironomids of the Yucatán peninsula can be determined with some certainty. Studies of taxa assemblages, including descriptions of new species, exist for Costa Rica (Coffman et al. 1992; Watson and Heyn 1992; Andersen 1996; Epler 1996a, b), Nicaragua (Palomaki 1987; Ráudez Reyes 2004), Guatemala (Sublette and Sasa 1994), and Mexico (Epler 1987; Contreras-Ramos and Andersen 1999; Andersen et al. 2000, Andersen and Mendes 2002; Kyerematen and Andersen 2002). Other works (e.g. Borkent 1984; Spies and Reiss 1996; Mendes et al. 2004) refer to entire Central America and beyond.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Stage</th>
<th>Taxon</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablabesmyia sp.</td>
<td>l</td>
<td>Nilothauma sp.</td>
<td>l</td>
</tr>
<tr>
<td>Ablabesmyia cinctipes</td>
<td>a</td>
<td>Oukaurella c.f. simulatrix</td>
<td>a</td>
</tr>
<tr>
<td>Coelotanypus sp.1</td>
<td>l</td>
<td>Paracladopelma sp.</td>
<td>l</td>
</tr>
<tr>
<td>Coelotanypus sp.2</td>
<td>l</td>
<td>Paralauterborniella sp.</td>
<td>l</td>
</tr>
<tr>
<td>Fittkaumiya sp.</td>
<td>l</td>
<td>Paratendipes sp.l</td>
<td>l</td>
</tr>
<tr>
<td>Labrundinia sp.</td>
<td>l</td>
<td>Paratendipes c.f. subaequalis</td>
<td>l</td>
</tr>
<tr>
<td>Labrundinia fosteri</td>
<td>a</td>
<td>Parachironomus sp.</td>
<td>l</td>
</tr>
<tr>
<td>Natarsia sp.</td>
<td>l</td>
<td>Parachironomus directus</td>
<td>a</td>
</tr>
<tr>
<td>Nilotanypus sp.</td>
<td>l</td>
<td>Pedionomus sp.</td>
<td>l</td>
</tr>
<tr>
<td>Procladius sp.</td>
<td>l</td>
<td>Pedionomus curticaudatus</td>
<td>a</td>
</tr>
<tr>
<td>Tanypus c.f. mopunctipens</td>
<td>l</td>
<td>Phaenopsectra sp.</td>
<td>l</td>
</tr>
<tr>
<td>c.f. Tanypus sp.A</td>
<td>l</td>
<td>Polypedilum sp.</td>
<td>l</td>
</tr>
<tr>
<td>Nanocladius sp.</td>
<td>l</td>
<td>Polypedilum purus</td>
<td>a</td>
</tr>
<tr>
<td>Cricotopus sp.</td>
<td>a</td>
<td>Polypedilum sp.A</td>
<td>a</td>
</tr>
<tr>
<td>Apedilum sp.</td>
<td>l</td>
<td>Polypedilum sp.B</td>
<td>a</td>
</tr>
<tr>
<td>Apedilum subcinctum</td>
<td>a</td>
<td>Polypedilum sp.C</td>
<td>a</td>
</tr>
<tr>
<td>Apedilum elachisto</td>
<td>a</td>
<td>Polypedilum sp.D</td>
<td>a</td>
</tr>
<tr>
<td>Asheum curticaudatus</td>
<td>a</td>
<td>Polypedilum sp.E</td>
<td>a</td>
</tr>
<tr>
<td>Axares sp.</td>
<td>l</td>
<td>Polypedilum sp.F</td>
<td>a</td>
</tr>
<tr>
<td>Beardius sp.</td>
<td>l</td>
<td>Pseudochironomus sp.</td>
<td>a</td>
</tr>
<tr>
<td>Beardius aciculatus</td>
<td>a</td>
<td>Saetheria sp.</td>
<td>l</td>
</tr>
<tr>
<td>Fissimentum sp.</td>
<td>l</td>
<td>Xenochironomus sp.</td>
<td>l</td>
</tr>
<tr>
<td>Chironomus sp.1</td>
<td>l</td>
<td>Zavreliella sp.</td>
<td>l</td>
</tr>
<tr>
<td>Chironomus sp.2</td>
<td>l</td>
<td>Zavreliella longiseta</td>
<td>a</td>
</tr>
<tr>
<td>Taxon</td>
<td>Stage</td>
<td>Taxon</td>
<td>Stage</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Cladopelma sp.1</td>
<td>l</td>
<td>Caladomyia pistra sp.</td>
<td>a</td>
</tr>
<tr>
<td>Cladopelma sp.2</td>
<td>l</td>
<td>Cladotanytarsus sp.1</td>
<td>l</td>
</tr>
<tr>
<td>Cladopelma forcipis</td>
<td>a</td>
<td>Cladotanytarsus sp.A</td>
<td>a</td>
</tr>
<tr>
<td>Cryptochironomus sp.</td>
<td>l</td>
<td>Micropsectra</td>
<td>l</td>
</tr>
<tr>
<td>Cryptochironomus sp.A</td>
<td>a</td>
<td>Nimboeca</td>
<td>l</td>
</tr>
<tr>
<td>Cryptochironomus sp.B</td>
<td>a</td>
<td>Paratanytarsus</td>
<td>l</td>
</tr>
<tr>
<td>Dicrotendipes sp.</td>
<td>l</td>
<td>Stempellina</td>
<td>l</td>
</tr>
<tr>
<td>Dicrotendipes c.f. sinoposus</td>
<td>a</td>
<td>Stempellinella sp.1</td>
<td>l</td>
</tr>
<tr>
<td>Einfeldia sp.</td>
<td>l</td>
<td>Stempellinella sp.2</td>
<td>l</td>
</tr>
<tr>
<td>Glyptotendipes sp.</td>
<td>l</td>
<td>Stempellinella sp.3</td>
<td>l</td>
</tr>
<tr>
<td>Goeldichironomus sp.1</td>
<td>l</td>
<td>Sublettea</td>
<td>l</td>
</tr>
<tr>
<td>Goeldichironomus sp.2</td>
<td>l</td>
<td>Tanytarsus sp.1</td>
<td>l</td>
</tr>
<tr>
<td>Goeldichironomus amazonicus</td>
<td>a</td>
<td>Tanytarsus sp.2</td>
<td>l</td>
</tr>
<tr>
<td>Goeldichironomus carus</td>
<td>a</td>
<td>Tanytarsus sp.3</td>
<td>l</td>
</tr>
<tr>
<td>Goeldichironomus holoprasinus</td>
<td>a</td>
<td>Tanytarsus sp.4</td>
<td>l</td>
</tr>
<tr>
<td>Hyporhygma sp.</td>
<td>l</td>
<td>Tanytarsus hastatus</td>
<td>a</td>
</tr>
<tr>
<td>c.f. Lipinella sp.</td>
<td>l</td>
<td>Tanytarsus sp.A</td>
<td>a</td>
</tr>
<tr>
<td>Microchironomus sp.</td>
<td>l</td>
<td>Tanytarsus sp.B</td>
<td>a</td>
</tr>
<tr>
<td>Microtendipes sp.</td>
<td>l</td>
<td>Tanytarsus sp.C</td>
<td>a</td>
</tr>
</tbody>
</table>

However, comparability of the aforementioned studies with ours suffered from certain limitations. On the one hand, those studies were carried out at different geographic altitudes, thus covering the range from tropical to temperate fauna. On the other, only rough descriptions of the habitat types, samples were taken from, were given, often mingling captures from running and still waters. The occurrence of Orthocladiinae, being well represented in those other studies, entailed low taxonomic overlap with our data, not exceeding 50 percent on the generic level. Consequently, the chironomid fauna from a nearby site in Guatemala (Sublette and Sasa 1994) most closely resembled that from the northern Andes of Colombia (Riss and Ospina 2000). And the so far only record from the central lowlands of Yucatán (Contreras-Ramos and Andersen 1999) displayed a generic correspondence with our data of 64 percent – not more than comparison with the chironomid list for northern Colombia (Nazarova et al. 2004). Latter findings indicate that the chironomids of the entire Yucatán lowland can be regarded as a circum-Caribbean element.

Comparative analyses of existing record lists were limited due to ambiguity or absence of pertinent complementary information about sample habitats in most of the chironomid field studies referred to here. Generally spoken, better comparability of study results would allow for means and goals to an advanced level, such as ecological meta-analyses or biogeographic diagnoses. This conclusion also may be understood as a plea for stronger consideration of simple but useful ecological specifications of sample habitats to be given along with future chironomid field records.

Acknowledgements

This study was financially supported by the German Research Foundation (DFG). The authors express their gratitude to Martin Spies for helpful advices and to their co-operating colleagues Antje Schwalb, Burkhard Scharf and Liseth Pérez.

References

Andersen, T. and Mendes, H.F. 2002. New species and records of the *Axarus "rogersi-group"* from South and Central America (Diptera, Chironomidae). – *Acta Zoologica*

Morrone, J.J. 2006. Biogeographical areas and transition zones of Latin America and the Caribbean Islands based on pangeographic and cladistic analyses of the entomofauna. – Annu. Rev. Entomol. 51: 467-494.

NEW RECORDS OF CHIRONOMIDAE (DIPTERA) FROM CONTINENTAL FRANCE

Joel Moubayed-Breil

Applied ecology, 10 rue des Fenouils, 34070-Montpellier, France,
Email: jm.aquabiol@neuf.fr

Abstract
Material recently collected in Continental France has allowed me to generate a list of 83 taxa of chironomids, including 37 new records to the fauna of France. According to published data on the chironomid fauna of France 718 chironomid species are hitherto known from the French territories. The nomenclature and taxonomy of the species listed are based on the last version of the Chironomidae data in Fauna Europaea, on recent revisions of genera and other recent publications relevant to taxonomy and nomenclature.

Introduction
French territories represent almost the largest variety of aquatic ecosystems in Europe with respect to both physiographic and hydrographic aspects. According to literature on the chironomid fauna of France, some regions still are better sampled than others, and the best sampled areas are: The northern and southern parts of the Alps (regions 5a and 5b in figure 1); western, central and eastern parts of the Pyrenees (regions 6, 7, 8), and South-Central France, including inland and coastal rivers (regions 9a and 9b). The remaining regions located in the North, the Middle and the South-East of France have received little attention and are still only partially explored and need to be prospected more in the years to come.

According to published data accumulated since 1991 there are 681 registered species from France (Serra-Tosio and Laville 1991, Laville and Serra-Tosio 1996, Moubayed et al. 2000, Garcia and Laville 2000, Delettre 2001, Sæther and Spies 2004). In the current paper, I give a complementary checklist of new records on the basis of recent field work throughout Continental France over the last two decades. The habitats sampled include high altitude peat pits, springs and streams, mountain lakes and reservoirs, temporary streams and pools. Fully developed pharates, adults, pupae, pupal exuviae and larvae were sampled from chironomid populations throughout the various geographic regions.

Figure 1. Major biogeographic regions and subregions of France

Sites and methodology
The identification of slide mounted specimens was aided by recent taxonomic revisions and keys to adults or pupal exuviae (Reiss and Säwedal 1981; Tuiskunen 1986; Serra-Tosio 1989; Sæther 1990; Soponis 1990; Langton 1991; Sæther and Wang 1995; Kyerematen and Sæther 2000; Michiels and Spies 2002; Vårdal et al. 2002; Langton and Visser 2003; Sæther and Spies 2004; Stur and Ekrem 2006; Ekrem 2006; Ekrem 2007) as well as of recent general recommendations on taxonomy and nomenclature (Sæther and Ferrington 2003; Spies and Sæther 2004). Previous geographical distribution of the species was based on the last version of the Chironomidae data in Fauna Europaea (Sæther and Spies 2004), on the latest unpublished data for Fauna Europaea (Sæther and Spies pers comm.), as well as on the taxonomic publications listed above.

The collection sites were located in the ten major physiographic and biogeographic regions and subregions of France (Corsica not included, Figure 1). The habitats sampled include springs, permanent and temporary streams and pools, peat pits, rithral and potamal of rivers, estuaries, lakes and ponds. An informative map on the biogeographic regions of France is also given by
Serra-Tosio and Laville (1991). Within the ten prospected regions, two are located in northern France (1 and 2), three in central-south and central France (3, 5 and 4) and five (6, 7, 8, 9 and 10) in southern France. The geographic delimitation of the ten regions and subregions is:

- **1**, North-West France, including both the Channel and the North Sea coastal streams (1a) and potamic parts of the Seine river basin (1b).

- **2**, North-East France, rivers located in the plain and piedmont including the upper stream of the Seine river basin.

- **3**, Central-South-West France, including both the Atlantic coastal rivers from the northern part (3a) to the southern part (3b).

- **4**, Central-France, including the upper stream and rhithral of the Sioule river basin located in the volcanic region of Auvergne (4a); the upper stream of both Allier river and Loire river basin and surrounding piedmont and lowland wetland areas below 1000 m (4b).

- **5**, Central-East France, including the upper stream of the Rhone river basin (5a) and the Alpes (especially located in high and middle mountain areas, 5b).

- **6**, **7** and **8**, French part of the Pyrenees and Pre-Pyrenees, including Western-Pyrenees (6), Central-Pyrenees (7) and Eastern-Pyrenees (8). Pyrenees consist of both mountain and high mountain rivers (6a, 7a, 8a), Pre-Pyrenees consist only of piedmont and mountain rivers (6b, 7b, 8b).

- **9**, South-Central France, including both the inland rivers of the northern part (9a) and the coastal Mediterranean rivers of the southern part (9b). Nevertheless, with respect to chironomid fauna, three geographical zones of biogeographical significance have been identified in the Mediterranean region between the Spanish and the Italian borders (Moubayed et al. 2000).

- **10**, South-East France, including the Var and Maritime Alp departments.

Sampling methods mainly used were: Surber net for benthos; Brundin drift net for pharates, pupae and pupal exuviae; Troubleau net for individuals floating on the surface of the water; sweep net for adults.

List of species

In total, material of 83 chironomid taxa was collected throughout the ten biogeographical areas in Continental France since 1980 (Table 1). Among these taxa there were 8 Tanypodinae, 5 Diamesinae, 35 Orthocladiinae and 35 Chironominae (14 Chironomini and 21 Tanytarsini). Based on recent published data on French chironomid communities (Serra-Tosio and

<table>
<thead>
<tr>
<th>Tanypodinae (8 species)</th>
<th>Record</th>
<th>Stage</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctopelopia barbitarsis (Zetterstedt)</td>
<td>P</td>
<td>Pe</td>
<td>9b</td>
</tr>
<tr>
<td>Arctopelopia griseipennis (van der Wulp)</td>
<td>P</td>
<td>Pe</td>
<td>7b,8b,9b</td>
</tr>
<tr>
<td>Arctopelopia sp.1</td>
<td>**</td>
<td>Pe</td>
<td>7b,9a</td>
</tr>
<tr>
<td>Conchapelopia hittmairorum Michiels & Spies</td>
<td>P</td>
<td>Pe</td>
<td>2,5a,8b,9,10</td>
</tr>
<tr>
<td>Procladius crassinervis (Zetterstedt)</td>
<td>P</td>
<td>N,Pe</td>
<td>1b,2</td>
</tr>
<tr>
<td>Procladius lugens Kieffer</td>
<td>*</td>
<td>N,Pe</td>
<td>2,5,9</td>
</tr>
<tr>
<td>Procladius rufovittatus van der Wulp</td>
<td>*</td>
<td>Pe</td>
<td>2,8a,8b,9</td>
</tr>
<tr>
<td>Procladius sp.1 (nr Procladius sp, from Norway)</td>
<td>**</td>
<td>Pe</td>
<td>8a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diamesinae (5 species)</th>
<th>Record</th>
<th>Stage</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boreoheptagyia rugosa Saunders</td>
<td>P</td>
<td>Im,Pe</td>
<td>8b,10</td>
</tr>
<tr>
<td>Boreoheptagyia sp.1 (near B. rotunda Serra-Tosio)</td>
<td>**</td>
<td>Im</td>
<td>10</td>
</tr>
<tr>
<td>Diamesa thomasi Serra-Tosio</td>
<td>P</td>
<td>N,Pe,L</td>
<td>7a,8a</td>
</tr>
<tr>
<td>Diamesa veletensis Serra-Tosio</td>
<td>*</td>
<td>N,Pe,L</td>
<td>8a</td>
</tr>
<tr>
<td>Potthastia sp.1</td>
<td>**</td>
<td>Pe</td>
<td>4b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orthocladiinae (35 species)</th>
<th>Record</th>
<th>Stage</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brillia pudorosa Cobo, Gonzales & Vieira-Lanero</td>
<td>*</td>
<td>N,Pe</td>
<td>3b</td>
</tr>
<tr>
<td>Bryophaenocladius scanicus Brundin</td>
<td>*</td>
<td>Im</td>
<td>4,8b,9</td>
</tr>
<tr>
<td>Bryophaenocladius sp.1</td>
<td>**</td>
<td>Im</td>
<td>9b</td>
</tr>
<tr>
<td>Corynoneura gratias Schlee</td>
<td>P</td>
<td>N,Pe</td>
<td>1a,3a,3b,8a,8b</td>
</tr>
<tr>
<td>Cricotopus algarum (Kieffer)</td>
<td>P</td>
<td>Im,Pe</td>
<td>1a,1b,2,3</td>
</tr>
<tr>
<td>Cricotopus caducus Hirvenoja</td>
<td>P</td>
<td>Im,Pe</td>
<td>1a,3a,3b,9b</td>
</tr>
</tbody>
</table>

Table 1. List and geographical distribution of species. * = new record for France; ** = undescribed species; P = present; Im = imago; N = nymph or pharate; Pe = pupal exuviae; L = larva.
<table>
<thead>
<tr>
<th>List of species</th>
<th>Record</th>
<th>Stage</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cricotopus sp.1 (nr C. levantinus Moubayed & Hirvenoja)</td>
<td>**</td>
<td>N,Pe</td>
<td>9b,10</td>
</tr>
<tr>
<td>Eukiefferiella bedmari Vilchez-Quero & Laville</td>
<td>*</td>
<td>Im,Pe</td>
<td>1a,3a,3b</td>
</tr>
<tr>
<td>Eukiefferiella brehmi Gowin</td>
<td>*</td>
<td>Pe</td>
<td>8a,8b,9a,10</td>
</tr>
<tr>
<td>Euryhaplus fuscipropes Saether & Wang</td>
<td>*</td>
<td>N,Pe</td>
<td>6b,9b</td>
</tr>
<tr>
<td>Georthocladius sp.1</td>
<td>**</td>
<td>Pe</td>
<td>8a</td>
</tr>
<tr>
<td>Heterotrissocladius grimmshawi Edwards</td>
<td>*</td>
<td>N,Pe</td>
<td>2,5a,10</td>
</tr>
<tr>
<td>Heterotrissocladius sp.1</td>
<td>**</td>
<td>Pe</td>
<td>9b</td>
</tr>
<tr>
<td>Krenosmittia hispanica Wüelker</td>
<td>*</td>
<td>Im,N,Pe</td>
<td>8a,8b</td>
</tr>
<tr>
<td>Limmephyes bidumus Saether</td>
<td>*</td>
<td>Im,N,Pe</td>
<td>5b,8a,9,10</td>
</tr>
<tr>
<td>Limmephyes gelasius Saether</td>
<td>*</td>
<td>Im,N,Pe</td>
<td>9b,10</td>
</tr>
<tr>
<td>Limmephyes spinigus Saether</td>
<td>*</td>
<td>Im,Pe</td>
<td>7a,8a</td>
</tr>
<tr>
<td>Orthocladius holsatus Goetghebuer</td>
<td>*</td>
<td>Pe</td>
<td>7b,8b</td>
</tr>
<tr>
<td>Parachaetocladius sp.1</td>
<td>**</td>
<td>Im</td>
<td>8a</td>
</tr>
<tr>
<td>Parakiefferiella sp.1</td>
<td>**</td>
<td>Im,N,Pe</td>
<td>9a</td>
</tr>
<tr>
<td>Paralimnophyes longiseta Thienemann</td>
<td>P</td>
<td>Im,Pe</td>
<td>2,3,4b,5a</td>
</tr>
<tr>
<td>Paraphaenocladius intercidens Brundin</td>
<td>*</td>
<td>Pe</td>
<td>8a</td>
</tr>
<tr>
<td>Paratrichocladius lanzavecchiae Rossaro</td>
<td>*</td>
<td>Im,N,Pe</td>
<td>9a,9b,8b,10</td>
</tr>
<tr>
<td>Paraphaenocladius intercidens Brundin</td>
<td>*</td>
<td>Im</td>
<td>8b,9b</td>
</tr>
<tr>
<td>Pseudorthocladius sp.1</td>
<td>**</td>
<td>Pe</td>
<td>8a,8b</td>
</tr>
<tr>
<td>Pseudosmittia angusta (Edwards)</td>
<td>P</td>
<td>Im</td>
<td>1a,1b,2,3a,5a</td>
</tr>
<tr>
<td>Smittia aquatica Goetghebuer</td>
<td>*</td>
<td>Im</td>
<td>1b,2</td>
</tr>
<tr>
<td>Smittia betuletorum Edwards</td>
<td>*</td>
<td>Im</td>
<td>2</td>
</tr>
<tr>
<td>Smittia foliacea (Kieffer)</td>
<td>P</td>
<td>Im</td>
<td>1a,2,3a,5,9,10</td>
</tr>
<tr>
<td>Smittia longitibia Goetghebuer</td>
<td>*</td>
<td>Im</td>
<td>3b,6b</td>
</tr>
<tr>
<td>Smittia paranudipennis Brundin</td>
<td>*</td>
<td>Im</td>
<td>7a,8a</td>
</tr>
<tr>
<td>Smittia reissi Rossaro & Orendt</td>
<td>*</td>
<td>Im</td>
<td>9b</td>
</tr>
<tr>
<td>Smittia scutellosaetosa Caspers</td>
<td>P</td>
<td>Im</td>
<td>1,2,8b,9b</td>
</tr>
<tr>
<td>Smittia sp.1</td>
<td>**</td>
<td>Im</td>
<td>1b,2</td>
</tr>
<tr>
<td>Thienemannia libanica Laville & Moubayed</td>
<td>P</td>
<td>Pe</td>
<td>5b,10</td>
</tr>
</tbody>
</table>

Chironominae (35 species)

Chironomini (14 species)

Chironomus sp.1	**	Im,N,Pe,L	1b,2
Cryptotendipes nigrotritens (Edwards)	*	Im,N,Pe	2b,3,9a
Cryptotendipes usmaensis (Pagast)	P	N,Pe	1b,2,4b,9b
Dicroteniipes pallidicornis Goetghebuer	*	Im,Pe	1b,2
Glyptotendipes signatus Kieffer	P	Im,Pe	1b,2,5a
Microchironomus deriba (Freeman)	P	Im,Pe	1b,2,3
Parachironomus digitalis Edwards	*	Im,N,Pe	9a,9b
Parachironomus sp.1	**	Im,N,Pe,L	1b,2
Polypedilum bicrenatum Kieffer	P	Im,N,Pe	3a,3b,9b,10
Polypedilum tetracrenatum Hirvenoja	*	Im,N,Pe	1b,2
Polypedilum (Cerobregma) *lotensis* Moubayed-Breil	P	Im,N,Pe	9a
Polypedilum (C.) *satheri* Moubayed-Breil	P	Im,N,Pe	4a,4b,9a
Polypedilum (Tripodura) sp.1	**	Pe	8b,9b
Sargentia coracina (Zetterstedt)	*	Im,Pe	1b,2,4b,9

Tanytarsini (21 species)

Cladotanytarsus conversus Johannsen	P	Im,N,Pe,L	1b,2
Cladotanytarsus nigriventattus Goetghebuer	P	Im,Pe	1b,2,8a,8b
Constempellina brevicosta (Edwards)	*	Im,N,Pe	5b,9a
Constempellina sp.1	**	Pe	1b,2
Micropsectra aristata Pinder	*	Im,N,Pe	1a,3a,3b,8b
Micropsectra bavarica Stur & Ekrem	*	Im,N,Pe	4a,4b,5,8,9,10
Micropsectra schrankelaei Stur & Ekrem	*	Im,N,Pe	1,2,3,4,5a,8b,9,10
Micropsectra sohiae Stur & Ekrem	*	Im,N,Pe	2,4,5a,8a,8b,9,10
Micropsectra sp.1	**	Im,N,Pe,L	8a
Neozavrelia cuneipennis (Edwards)	*	Im,N,Pe	1a,2,8a,9a
Neozavrelia luteola Goetghebuer	*	Im,N,Pe	9a,9b
List of species

<table>
<thead>
<tr>
<th>Record</th>
<th>Stage</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parapsectra uliginosa Reiss</td>
<td>*</td>
<td>Im,N,Pe</td>
</tr>
<tr>
<td>Rheotanytarsus sp.1</td>
<td>**</td>
<td>Im,N,Pe,L</td>
</tr>
<tr>
<td>Stempellina alni Brundin</td>
<td>P</td>
<td>Im,N,Pe,L</td>
</tr>
<tr>
<td>Stempellina subglabripennis (Brundin)</td>
<td>P</td>
<td>N,Pe</td>
</tr>
<tr>
<td>Stempellinella brevis (Edwards)</td>
<td>P</td>
<td>Im,N,Pe,L</td>
</tr>
<tr>
<td>Stempellinella reissi Casas & Vilchez-Zuero</td>
<td>P</td>
<td>Im,N,Pe,L</td>
</tr>
<tr>
<td>Tanytarsus longitarsis Kieffer,</td>
<td>*</td>
<td>N,Pe</td>
</tr>
<tr>
<td>Tanytarsus multipunctatus Brundin</td>
<td>*</td>
<td>Im,N,Pe</td>
</tr>
<tr>
<td>Virgatanytarsus sp.1</td>
<td>**</td>
<td>Pe</td>
</tr>
<tr>
<td>Virgatanytarsus sp.2</td>
<td>**</td>
<td>Pe</td>
</tr>
</tbody>
</table>

Laville 1991, Laville and Serra-Tosio 1996, Moubayed et al. 2000, Delettre 2001, Sæther and Spies 2004; Garcia and Laville 2000), 37 species are new records for France (*) and 20 species belong to new undescribed species (**). The remaining species (P) are considered to be new records for some regions or subregions of France. Thus, including the 37 new records which represent 5% of the French chironomid fauna, 718 chironomid species are now known from France. Of the 1237 European species listed in the last version of Fauna Europaea for Chironomidae by Sæther and Spies (2004), 58% are recorded from France. In the current study, the highest diversity (37 and 34 species) was encountered in two areas located in southern France: south-central France (region 9, 45.6%), eastern Pyrenees (subregion 8, 42%).

Distribution of some species and remarks

- **Procladius sp.1.** Pupal material of Procladius sp.1 is collected in a high altitude lake in Eastern Pyrenees. It fits the description of Procladius sp reported from Norway by Fittkau and Murray (1985: 96, Fig. 5.31, C). This undescribed species can be easily recognized on the basis of the following thoracic horn characters: elliptic plastron; rim weakly represented, almost absent; respiratory atrium oval, elongated and larger at apex.

- **Procladius crassinervis** (Zetterstedt) was first reported by Serra-Tosio and Laville (1991) as a probable species from South Eastern France. The present record is based on mature male adults, pharates and pupal exuviae collected in lakes, ponds and large reservoirs located in northern areas at low altitude (1b, 2).

- **Boreoheptagyia sp.1.** Only one male adult was collected in a spring located in south eastern France (region 10). The species is morphologically similar to Boreoheptagyia rotunda Serra-Tosio but can be distinguished from this species by the following combination of characters: antenna 715 μm long; AR=0.67; last flagellomere 185 μm long, elongated, longer than preceding 4 segments combined; presence of anal point on tergite IX; absence of notch on gonostylus.

- **Diamesa thomasi** Serra-Tosio. In France, Diamesa thomasi has been recorded only from the two type localities located in the Central Pyrenees (7a, 4 adults) by Serra-Tosio (1970). I have found it in the Eastern Pyrenees (subregion 8a) where very large populations (adults, pharates, pupae and larvae) were collected, inhabiting high altitude peat pits located at 2250 m; examples of associated species are D. aberrata Lundeberg, D. bohemana Goetghueber, D. bertrami Edwards, D. veletensis Serra-Tosio, D. zernyi Edwards, Pseudodiamesa nivosa (Goetghueber), P. branickii (Nowicki), Chaetocladius suecicus (Kieffer), Krenoposectra nohedensis Moubayed and Langton, Micropsectra auvergnensis Reiss.

- **Cricotopus sp.1** is morphologically similar to C. levantinus Moubayed and Hirvenoja known from the lotic part of the Orontes River in Lebanon. Recently this species has been recorded from South-West Europe including France, Spain, Corsica (Fauna Europaea, Sæther and Spies 2004). Associated material including male adults, pharates, pupae and pupal exuviae of Cricotopus sp.1 was recently reported also from Algeria by Moubayed-Breil and Lounaci (2007) and shows that it belongs to a new species or new subspecies different from C. levantinus: the male imago lacks a notch on the gonocoxite lobe, the distribution of anterior armament on tergites III-VI of the pupal exuviae are not crescent-like and the size of spines on the pupal abdominal tergites are stronger in levantinus. Comparison of
material from both Algeria and France with type material from Lebanon allowed us to consider that *Cricotopus* sp.1 from France, belongs to the same new species or subspecies as reported from Algeria. In addition, despite several lists of species reported from intense investigations in Syrian and Turkish territories along the extended basin of the Orontes River (Reiss 1985, 1986; Caspers and Reiss 1989) populations of *C. levantinus* are not recorded from these two neighboring countries.

- **Eukiefferiella bedmari** Vilchez-Quero & Laville is reported as a circum-mediterranean element well known from both Atlanto-Mediterranean (Spain, Morocco) and Ponto-Mediterranean (Greece, Lebanon, Turkey) regions (Vilchez-Quero and Laville 1987; Laville and Reiss 1992). *Eukiefferiella bedmari* shows an unexpectedly large geographical distribution northward along both the South-West and Central-West Atlantic coastal streams (3a, 3b), and even reaches the Channel coastal streams (1a). However, despite thorough investigations in Southern France including Mediterranean coastal streams and rivers, this is the first record for this species in France. The material examined consists of a few pupal exuviae collected in some small Atlantic coastal rivers located in subregions 1a, 3a and 3b.

- **Limnophyes gelasinus** Sæther has been known only from 1 single male adult from Korea (Sæther 1990). Here, *L. gelasinus* is for the first time recorded from the European continent (France), but it was also recently recorded from the North African region (Algeria) by Moubayed and Lounaci (2007). The material consists of a few male pharates and pupal exuviae, and the species seems to be well represented in south eastern France (region10) and the Aïssi oued basin in Algeria.

- **Paralimnophyes longiseta** Thienemann has been exclusively encountered in both central and northern parts of Continental France (Serra-Tosio and Laville 1991, Delettre 2001). Male adults of *P. longiseta*, are rather well represented in wetland areas near marshes and ponds located eastward and westward of Central-France.

- **Pseudosmittia angusta** (Edwards), *Smittia foliacea* (Kieffer) and *S. contingens* (Walker) were first reported from France by Delettre (2001), but was overlooked in Fauna Europaea. Only male imagines of *P. angusta* and *S. foliacea* were found in this study, and were collected along wetland and river basins in both the western and the eastern part of France: Atlantic and Channel coastal streams in the west (1a, 3a) and inland rivers in the east (5). In addition, only a few populations of *S. foliacea* are recorded from wetland areas located in the Mediterranean region (9a, 9b, 10).

- **Micropsectra schrankelae** Stur and Ekrem and *M. sofiae* Stur and Ekrem were recently described from Europe (Stur and Ekrem 2006). The identification of these two species in the male adult or pupal stage must be done with care as they are morphologically very similar to *M. atrofasciata*. I have recorded these two species from many regions throughout France, and will expect to see more records throughout the Holarctic region as the species’ descriptions become more well known. Undoubtedly, many specimens previously believed to be *M. atrofasciata* probably are different species in the *atrofasciata* group and *M. atrofasciata* might be less widespread than it has been regarded in previous literature.

- **Stempellinella reissi** Casas & Vilchez-Quero was until recently only known from its type locality in Sierra Nevada, Andalucia, Spain (Casas and Vilchez-Quero 1991). Material collected by me in the French Eastern Pyrenees was included in a recently published revision on *Stempellinella* (Ekrem 2007). Large populations of *S. reissi* have been captured from middle and high altitude springs and streams located in Eastern Pyrenees (8a) and Central France (region 4b). Larvae of *S. reissi* inhabit sandy and gravelly habitats of cold waters near springs, peat pits and streams located at variable altitudes. Dense populations appear to be more common in streams located in high altitude areas.

Acknowledgements

Thanks are due to my colleague Torbjørn Ekrem (Trondheim, Norway) for helpful comments on the manuscript.

References

Casas, J. J. and Vilchez-Quero, A. 1991. *Stempellinella reissi* sp. n. (Diptera:
Chironomidae) from Sierra Nevada (Southern Spain). *Aquatic Insects*, **13** (2): 115-121.

SHORT COMMUNICATIONS

The Sublette Collection to University of Minnesota

The Sublette Collection of Chironomidae has been given to the University of Minnesota, Department of Entomology, St.Paul/Minneapolis. Most of the collection has been transported back to the main campus by Len Ferrington and three graduate students. However, I have retained a skeleton reference collection, mostly of material from NM and CO, and hope to continue a modest research program. Prior to making the gift, a bulk of the Tanytarsini was loaned to Dr. Torbjørn Ekrem/Dr. Elisabeth Stur, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway, except the Cladotanytarsus which were loaned to Dr. Wojciech Gilka, Department of Invertebrate Zoology, University of Gdansk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland. Additionally, the Bryophaenocladius (Orthocladiinae) are on loan to Dr. Xinhua Wang, Life Science College, Nankai University, Tianjin, 300071 China. These loans will be returned to UMN. The collection contains extensive salivary gland squashes of polytene chromosomes, most with associated reared adults and immatures, from the genus Chironomus. These squash slides, most prepared by Mary Sublette, have the dissected larval head capsule and the terminal abdominal segments mounted on the same slide.

James E. Sublette
New Chironomidae Mailing List

Cardiff University has generously run the chironomid listserv for about 10 years now. David Pascoe, who has done a wonderful job in administrating it since 2000, recently decided that it was time to pass this task on to someone else. The Museum of Natural History and Archaeology gladly accepted to take on the job, and I will try to keep the list up and running. Members of the old mailing list have automatically become subscribers of the new one, and should already have received a welcome message. If you have not become one, you are not yet registered as a subscriber, and can do so at this web page: http://lists.vm.ntnu.no/mailman/listinfo/chironomidae. From this site you can also administer your subscription and view the mailinglist archive. To post a message to subscribers of the mailinglist, write an email to Chironomidae@lists.vm.ntnu.no. I look forward to see fruitful discussions and good flow of information in the new Chironomidae listserv!

Torbjørn Ekrem

New Books

“Contributions to the Systematics and Ecology of Aquatic Diptera: A Tribute to Ole A. Sæther”

Edited by Trond Andersen

In order to congratulate Ole A. Sæther on his 70th birthday and for 46 prosperous years of scientific studies in freshwater biology and insect systematics, colleagues from around the world contributed 35 papers on the ecology and systematics of Ceratopogonidae, Chaoboridae, Chironomidae, and Psychodidae. Eight new genera and nearly 50 new species are described in this book which comprises more than 350 pages. All articles were peer-reviewed before publication.

Content
Ekrem, T. and T. Andersen: Professor Ole Anton Sæther 70 years: four decades of chironomid research.
Andersen, T. and H. F. Mendes: Five enigmatic new orthoclad genera from Brazil (Diptera: Chironomidae, Orthocladiinae).
Brodersen, K. P.: Chironomids (Diptera) from sub-saline lakes in West Greenland: diversity, assemblage structure and respiratory adaptation.
Caldwell, B. A.: Morphological variation, additional distribution records, and notes on ecology of Pagastia orthogonia Oliver (Diptera: Chironomidae).
Cranston, P. S., G. M. Benigno and M. C. Dominguez: Hydrobaenus saetheri Cranston, new species, an aestivating, winter-emerging chironomid (Diptera: Chironomidae) from California.
Ekrem, T. and E. Stur: Description of Tanytarsus hjulorum, new species, with notes and DNA barcodes of some South African Tanytarsus (Diptera: Chironomidae).
Endo, K., E. A. Makarchenko and E. Willassen: On the systematics of Linevitshia Makarchenko, 1987 (Diptera: Chironomidae, Diamesinae), with the description of L. yezensis Endo, new species.
Gilka, W. and L. Paasivirta: Two new species of the genus Tanytarsus van der Wulp (Diptera: Chironomidae) from Fennoscandia.
Goddeeris, B., K. Hermans and H. Hampel: Experimental termination of diapause in three Chaoborus species (Diptera: Chaoboridae) from a Belgian lowland pond.

Jacobsen, R. E.: Orthocladius (Orthocladius) saetheri new species, from the Appalachian Mountains (Diptera: Chironomidae).

Lencioni, V., B. Rossaro and B. Maiolini: Alpine chironomid distribution: a mere question of altitude?

Makarchenko, E. A. and M. A. Makarchenko: A review of Tokunagaia Sæther (Diptera: Chironomidae) from the Russian Far East, with the description of four new species.

Martin, J., A. Blinov, E. Aliева and K. Hirabayashi: A molecular phylogenetic investigation of the genera closely related to Chironomus Meigen (Diptera: Chironomidae).

Moubayed-Breil, J.: Polypedilum (Cerobregma) lotensis new species, and P. (C.) saetheri new species, from lowland streams and rivers in France (Diptera: Chironomidae).

Murray, D. A.: Limnophyes platystylus new species (Diptera: Chironomidae, Orthocladiinae) from Ireland.

Niitsuma, H.: Saetheromyia, a new genus of Tanypodinae from Japan (Diptera: Chironomidae).

Oyewo, E. A. and R. E. Jacobsen: Polypedilum (Pentapedilum) epleri, a new species from the eastern USA (Diptera: Chironomidae).

Paasivirta, L.: Chironomid species in Finnish springs and their surroundings.

Roque, F. O. and S. Trivinho-Strixino: Spatial distribution of chironomid larvae in low-order streams in southeastern Brazilian Atlantic Forest, a multiple scale approach.

Wagner, R. and T. Andersen: Psychodidae (Diptera: Nematocera) from the West Usambara Mountains, Tanzania.

Willassen, E.: Sasayusurika aenigmata Makarchenko (Diptera: Chironomidae, Diamesinae) - a Japanese endemic discovered in the Indian Himalaya.

Wülker, W. F.: Two new Chironomus species with fluviatilis-type larvae from the near-shore sandy sediments of Lake Michigan (Diptera: Chironomidae).

Trond Andersen

Book reference

How to order

Order from: The Caddis Press, P.O. Box 21039, Columbus, OH 43221-0039 USA
Price: $70 US
Payment: PayPal (using <barmitag@columbus.rr.com>), International Postal Money Order, or a personal check drawn on a US bank in US dollars. Purchase orders from verified institutions will be accepted, but subsequent payment must be by one of these three methods.
Postage: United States: Media Mail ($5), Priority Mail ($9)
Canada and Mexico: Priority Mail International (6-10 days- $20 US)
New Key to Chironomidae adult males

It is finally here – a new edition of the probably most widely used key to species-level identification of chironomid adult males.

The 1978 key by Clive Pinder has been out of print for some time, but instead of merely reprinting the old version, Peter Langton and Clive Pinder have done a marvellous job in adding species and update the taxonomy and nomenclature. In fact, the number of included species is increased by 35% in the 2007 edition. Thus, it will most certainly be a welcomed addition to the library of many chirodromologists, not only in Great Britain. This is hardly the only reason why the books are worth buying though. The introduction includes facts and details on Chironomidae morphology, taxonomy, phylogeny and methodology, and will therefore be an excellent starting point for students and other beginners in midge identification. The only key references I was missing in this part of the publication was Sæther’s most recent works on nematoceran and chironomid phylogenies (Sæther 2000a, b) and the significant nomenclatorial remarks by Spies and Sæther (2004).

Like the 1978 edition, the separate keys subfamilies, genera and species are enriched with drawings of diagnostic characters directly in the text. This is particularly useful as you do not need to search for the clarifying drawing in a plate at the end or in a different volume. Still, Langton and Pinder have chosen to keep the volume with hypopygial drawings for additional identification confirmation, a very wise decision in my opinion. The drawings are of good quality artistically, but I was somewhat disappointed to see that the print was poorer than the 1978 edition despite that the paper used is of better quality. Although, perhaps not always necessary to display diagnostic features properly, those of us who appreciate fine details will be less satisfied with the plates now than we were for the 1978 edition. I also think that plates numbered with letters are easier to navigate in than unnumbered figures, although the pattern repeats itself and is properly explained in the beginning of volume 2.

The publication of this key has been delayed for some time after the manuscript was finalised, and the reader should be aware that there are publications on chironomid taxonomy and nomenclature from 2006-2007 that are not allowed for (e.g. Stur and Ekrem 2006), and some inconsistencies in name use with that recommended by Spies and Sæther (2004). Moreover, a key supplement diagnosing 16 additional species was added to volume two at a later stage and is therefore not incorporated directly in the major key but in the end of volume 2. This could have been problematic, but the authors have made sure that the supplement is referred to in the major key whenever this is relevant. Thus, although not optimal, I think their solution is considerably better than leaving out the additional 16 species all together. The index at the end of volume 1 is also worth commenting on since it is organised by genus and works as a checklist as well as an index to all treated species. It is easy to navigate in and directs the reader both to the relevant key and the hypopygium drawing.

In general, the new key by Langton and Pinder is well written, taxonomically comprehensive and will be an extremely valuable tool for European chironomid species identification in the future. If you haven’t ordered it yet, you should.

Torbjørn Ekrem, Torbjørn.Ekrem@vm.ntnu.no

Book reference
References

How to order
Order from: The Freshwater Biological Association, The Ferry Landing, Far Sawrey, Ambleside, Cumbria, LA22 OLP, U.K. Email: info@fba.org.uk. Internet: www.fba.org.uk/fbapub.html
Price: £50 for both volumes + postage & packing.

New key to Tanypodinae larvae

The Chironomidae Larvae of the Netherlands and Adjacent Lowlands is the first volume of a new series of practical keys to chironomid larvae. Its subtitle General ecology and Tanypodinae describes what authors Henk Vallenduuk and Henk Moller Pillot have found room for in the almost 150 pages of this volume.

The first part of the book is devoted to a chapter on general ecology of Chironomidae and includes facts on behaviour, life history and responses to abiotic environmental factors. It is quite interesting reading and gives a nice, compact view of the most important areas of chironomid ecology. The remaining part of the book is dedicated to keys, descriptions, ecological notes and numerous figures of Tanypodinae larvae. The major key is made for both third and fourth instar larvae, is mostly dichotomous, and is accompanied by line drawings of characteristic features. It includes 56 taxa and is so constructed that most of the characters used can be observed using a decent stereo microscope, facilitating rapid identification without the need for slide preparations. Although clearly an advantage for ecologists, it takes some practice to get used to. The larval key is followed by a “key to prepupa”. This pictorial guide to genera and species using thoracic horns is a very useful addition to the larval key and is certainly a valuable tool to identify prepupa. The fact that this key is not dichotomous is not disturbing since the seven pages of drawings and key features are easy to navigate. The remaining part of chapter five includes morphological comments, identification matrices and more illuminating drawings. Although the authors clearly state that the book does not include complete descriptions of the larva, and perhaps best is viewed as a supplement to existing taxonomical literature, key characters are treated both in keys, taxonomic comments and matrices. Moreover, chapter six treats each and every taxonomical entity included in the keys (either species of genus) in detail with comments on systematics, distribution and numerous ecological aspects. This part of the book is very well referenced and a good source for additional literature on the Tanypodinae. Even reports and theses are cited. There is, however, at least one major work that remains unmentioned. Fauna Europaea (Sæther & Spies 2004) has become one of the major references for taxonomical and distributional data on European Chironomidae, and it would be useful for the reader to know how the Fauna Europaea data relate to the information given in the book. Also, I think the book would have benefited from and found a broader audience if all European genera were included in the key. As an example, the genus Larsia is not uncommon in Europe, and has among other countries also been found in Belgium, France, Luxembourg and Germany. The key in Chironomidae Larvae of the Netherlands and Adjacent Lowlands does not include Larsia and chances are high that sampled Larsia larvae will be identified to morphologically similar genera (and thus remain undetected) if this book is the only tool.
used for identification. There are only five European genera which are not treated in the book (Pentaneurella, Larsia, Derotanypus, Hayesomyia, Meropelopia), thus reference to these could easily have been included. The final pages of the book contain numerous diagnostic microphotographs and tables of biological and ecological properties of Tanypodinae larvae.

In general, the *Chironomidae Larvae of the Netherlands and Adjacent Lowlands* should be useful to all chironomid ecologists and palaeolimnologists, and also to most taxonomists working with tanypodines. However, due to the geographical limitation, the book might be best suited for those working in the Netherlands. The price of EUR 69.50 for the nicely bound hardcover book is in the higher end of the scale, and will perhaps make many potential buyers think twice before ordering – especially if working outside of the European Lowlands.

Elisabeth Stur, Elisabeth.Stur@vm.ntnu.no

Book reference

References

How to order

Order from: KNNV Publishing, PO Box 310, 3700 AH Zeist, The Netherlands.
Fax: +31 30 2368907. Email: info@knnvuitgeverij.nl.

Price: EUR 69.50.

The identification and use of Palaearctic Chironomidae larvae in palaeoecology

The guide describes and illustrates 198 sub-fossil chironomid types and categories that can be found in European lake sediments and includes ca. 280 colour photographs of fossil chironomid specimens. Furthermore, it contains an introduction to chironomid palaeoecology, chironomid ecology, and preparation methods for sub-fossil chironomid remains.

This is a practical guide for both the skilled and the novice researcher on sub-fossil chironomids. The book contains adequate background information to get started from scratch. The first chapters include a brief review on practical laboratory- and field techniques, the life history of chironomids, the use of chironomids as proxies of past environmental conditions, identification of sub-fossil head capsules, and importantly for the palaeoecologist, on the influence of key environmental variables on chironomids. In the latter section, the authors discuss the influence of temperature, pH, substrate morphology, water depth, food, and salinity. The only relevant information on chironomids that I feel deserves more mentioning in the introductory chapters is a section on species interactions, such as competition and predation. It may be hard to quantify the impact of species interaction on any palaeoenvironmental inference based on chironomids, however predation and competition certainly exert some influence on the species community structure, and hence may also influence any inference.
In the introduction, I especially appreciate that the authors also discuss some weaknesses that must be borne in mind during interpretation of chironomid data. These shortcomings include the taxonomy of sub-fossil head capsules, but in this respect, the taxonomic contribution in this book is a milestone. This manual is by far the most up-to-date and elaborate identification guide on sub-fossil chironomid head capsules that exists. The taxonomic keys and images compose the main body of the book. All genera include a diagnostic section of the genus and of head capsule morphotypes within the genus. In addition, information on how to separate morphological similar taxa is given and the authors have amalgamated information on the environmental preferences of the taxa. The taxonomic knowledge presented in the book is the culmination of years of experience among the authors and among leading scientists sharing information at international workshops.

Many of the images provided are composed of multi-layered stacked digital pictures. The quality of the images is generally high and the specimens reflect the wide array of preservation status for sub-fossil head capsules. Most researchers will find themselves flipping the pages and comparing the particular specimen in the microscope against the images provided in the book. In the foreword, Ian Walker fittingly remarks that, “The authors’ greatest reward will find this book not on library shelves, but lying next to the microscope, among an active midden of microscope slides.” While many researchers on sub-fossil head capsules up to now have been flipping through worn copies of Wiederholm’s (1983) manual on chironomids of the Holarctic region, I am certain most of us will replace Wiederholm by Brooks et al. This is not to say that the book is the final contribution to sub-fossil chironomid analysis. We should seek for higher taxonomic resolution and correct neotaxonomical nomenclature. For sub-fossil head capsules with worn or lacking critical characters, the outcome of the identification can rarely be confident at species level. However, the taxonomy for many groups in the manual approaches that of neotaxonomy apart from the use of types, i.e. *Endochironomis tendens* – type, or *Cladotanytarsus mancus* types 1 and 2. For other groups, the taxonomic resolution may still be refined as we search the wealth of already existing information and information in progress on reared and DNA-barcoded larval specimens. This is important in order to close the gap between researchers working on past and on present chironomids. The key to understanding past chironomid assemblages lies in the present. There is room for many future editions of this book with refined taxonomy and ecological information. In these editions to come, I have one plea; please provide larger images! Squeezing figure captions and six images, many of which contain minute details, on one A5 sized page does not make sense in a practical laboratory manual meant for countless hours of picture-surfing. One gets a good general introduction into sub-fossil chironomid analysis by reading the first three chapters. However, such methodological literature already exists. If space was limiting when the book was produced, I would rather have the introductory sections shortened and spent more space on larger images. Most of us will perhaps only read the introductory chapters once, while the rest will be explored on a daily basis. Still, this manual is a must-have for all researchers even minutely involved with sub-fossil chironomid analysis.

Gaute Velle, Gaute.Velle@bio.uib.no

Book reference

How to order
Price: £20.00 + postage & packing.
REGIONAL REPRESENTATIVES 2007

AFRICA
Amakye, Josef S., Institute of Aquatic Biology (C.S.I.R.), P.O.Box 38, Achimota -Accra, Ghana. Regional representative for West Africa
Harrison, Arthur, 8 - 7847 East Saanich Road, Saanichton, B.C. V8M 2B4, Canada. Email: harrisona@shaw.ca Regional representative for South Africa

AMERICAS
Masaferro, Julieta, Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. Email: J.Masaferro@nhm.ac.uk Regional representative for Argentina
Callisto, Marcos, Universidade Federal de Minas Gerais, ICB, Depto. Biologia Geral, Lab. Limnologia/Ecologia de Bentos, CP. 486, CEP. 30.161-970, Belo Horizonte, MG, Brazil. Email: callisto@mono.icb.ufmg.br Regional representative for Brazil
Walker, Ian R., Biology and Earth & Environmental Sciences, University of British Columbia Okanagan, 3333 University Way, Kelowna, British Columbia, Canada V1V 1V7 Email: ian.walker@ubc.ca Regional representative for Canada

De la Rosa, Carlos, Catalina Island Conservancy, P. O. Box 2739, Avalon, California 90704, USA. Email: edelarosa@catalinaconservancy.org Regional representative for Central America
Alcocer, Javier, UNAM Campus Iztacala, Limnology Lab, Environmental Conservation & Improvement Project, Universidad Nacional Autonoma de Mexico, Calle 15, #51 San Pedro de los Pinos, Mexico City, D.F. 03800, Mexico. Email: jalcocer@unamvm1.dgsca.unam.mx Regional representative for Mexico

Ferrington Jr., L.C., Department of Entomology, Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA. Email: ferri016@tc.umn.edu Regional representative for USA

ASIA
Wang, Xinhua, Department of Biology, Nankai University, Tianjin, 300071 China. Email: xhwang@nankai.edu.cn Regional representative for the P. R. of China
Mazumdar, Abhijit, Dept of Zoology, University of Burdwan, Burdwan 713 104, W.B., India Email: abhijitau@rediffmail.com Regional representative for India
Mousayi, Seyed Karim, University of Tromsø, Institute of Clinical Medicine (IKM), KK Lab, Brevika Centre, N-9037 Tromsø, Norway. Email: karimm@fagmed.uio.no Regional representative for Iran
Kugler, Jehoshua, Dept of Zoology, Tel-Aviv University, Tel-Aviv 69978, Israel. Regional representative for Israel
Iwakuma, Toshio, Hokkaido University, Kita-Jujo-Nishi 5, Kita-ku, Sapporo, Hokkaido, 060 Japan. Email: iwakuma@ees.hokudai.ac.jp Regional representative for Japan
Ismail, A.R., Jabatan Biologie, University Pertanian Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Regional representative for Malaysia
Makarchenko, Eugenyi A., Laboratory of Freshwater Hydrobiology, Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok - 22, Russia. Email: emakarchenko@mail.ru Regional representative for the Far East of Russia
Erbaeva, Engelsina, Institute of Biology, Irkutsk State University, P.O. Box 24, Lenin street 3, 664033 Irkutsk, Russia. Regional representative for Lake Baikal and River Angara, South Siberia
Byeong-Jin, Youn, Pusan National University, Department of Biology, #30 Changeon-dong Kumjeong-Ku, Pusan 609- 735, South Korea. Regional representative for South Korea

EUROPE

Contreras, Ruth, Naturhistorisches Museum, 2. Zoologische Abt., Burgring 7 (Box 417), A-1014 Wien, Austria. Email: ruth.contreras@wavenet.at Regional representative for Austria

Goddeeris, Boudewijn, Koninklijk Belgisch Instituut voor Natuurwetenschappen, Afdeling Zoetwaterbiologie, Vautierstraat 29, B-1040 Brussels, Belgium. Email: goddeeri@kbmirsnb.be Regional representative for Belgium

Michailova, Paraskeva, Institute of Zoology, boul. Rouski 1, Bulgarian Academy of Sciences, Institute of Zoology, Sofia 1000, Bulgaria. Email: parmich@mail.bol.bg Regional representative for Bulgaria

Matena, Josef, Biology Centre, Academy of Sciences CR, Institute of Hydrobiology, Na Sadkach 7, CZ-370 05 Ceske Budejovice, Czech Republic. Email: matena@hbu.cas.cz Regional representative for Czech Republic

Lindeggaard, Claus, Freshwater Biological Laboratory, University of Copenhagen, 51 Helsingorsgade, DK-3400, Hillerød, Denmark. Email: clindeggaard@bi.ku.dk Regional representative for Denmark

Kangur, Andu & Kulli, Vorstjärn Limnological station, EE2454 Rannu, Estonia. Email: andu@lim.tartu.ee Regional representative for Estonia

Koskenniemi, Esa, West Finland Regional Environment Centre, P.O. Box 262, FIN-65101 Vaasa, Finland. Email: Esa.Koskenniemi@environment.fi Regional representative for Finland

Delettre, Yannick R., C.N.R.S. (U.M.R. 6553 "ECOBIOS") - Universite de Rennes I, Station Biologique, F-35380 Rainpont, France. Email: yannick.Delettre@univ-rennes1.fr Regional representative for France

Spies, Martin, Schramelstr. 151, D-81247 München, Germany. Email: spies@zi.biolologie.uni-muenchen.de Regional representative for Germany

Dévai, György, L. Kossuth University, Ecological Institute, H-4010 Debrecen, Hungary. Email: devaigy@delfin.klte.hu Regional representative for Hungary

Olafsson, Jon S., Institute of Freshwater Fisheries, Keldnaholt, IS-112 Reykjavik, Iceland. Email: jsol@veidimal.is Regional representative for Iceland

Murray, Declan, UCD School of Biology and Environmental Science, Science Education and Research Centre (West), University College Dublin, Belfield, Dublin 4, Ireland. Email: declan.murray@ucd.ie Regional representative for Ireland

Rossaro, Bruno, Univ. of Milano, Dept. of Biology, Sect. Ecology, via Celoria 26, I-20133 Milano, Italy. Email: rossaro@mailserver.unimi.it Regional representative for Italy

Leslie, Heather A., Institute for Environmental Studies (IVM), Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. Email: heather.leslie@ivm.faw.vu.nl Regional representative for the Netherlands

Willassen, Endre, University of Bergen, Bergen Museum, The Natural History Collections, Muséplass 3, NO-5007 Bergen, Norway. Email: Endre.Willassen@zmb.uib.no Regional representative for Norway

Kownacki, Andrzej, Institute of Freshwater Biology, Academy of Sciences, Ul. Slawkowska 17, PL-31016 Krakow, Poland. Regional representative for Poland

Hughes, Samantha, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Departamento de Engenharia Florestal (DEF), Tapada da Ajuda, 1349-017 Lisboa, Portugal. Email: sammynol@isa.ulis.pt or Centro de Estudos da Macaronésia (CEM), Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Madeira, Portugal. E-mail: samantha@uma.pt Regional representative for Portugal

Tudoreanca, Maria-Monica, Department of Ecology-Genetics, Faculty of Biology and Geology, "Babes-Bolyai" University, 1 M. Kogalniceanu Str., Cluj-Napoca, 3400 Romania. Email: mtudor@biollog.ubbcluj.ro Regional representative for Romania

Zinchenco, Tatiana, Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti 445003, Russia. Email: tdz@mailru.com Regional representative for European Russia and the Volga Region
Bitusik, Peter, Faculty of Ecology and Environmental Sciences, Technical University, Kolpasska 9, SK-969 01 Banská Stiavnica, Slovakia. Email: bitusik@fee.tuzvo.sk **Regional representative for Slovakia**

Rieradevall, Maria, Departament d’Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645 - 08028 Barcelona, Spain. Email: mrieradevall@ub.edu **Regional representative for Spain**

Johnson, Richard K., University of Agricultural Sciences, Box 7050, S 75007 Uppsala, Sweden. Email: Richard.Johnson@ma.slu.se **Regional representative for Sweden**

Lods-Crozet, Brigitte, Service des Eaux, Sols et Assainissement, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland. Email: brigitte.lodscrozet@sesa.vd.ch **Regional representative for Switzerland**

Langton, Peter H., 5 Kylebeg Avenue, Mountsandel, Coleraine, Co. Londonderry, Northern Ireland, BT52 1JN - Northern Ireland. Email: PHLangton@kylebegave.fsnet.co.uk **Regional representative for UK**

PACIFIC

Cranston, Peter S., Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, US. Email: pscranston@ucdavis.edu **Regional representative for Australia**

Boothroyd, Ian K.G., Kingett Mitchell & Associates, Level 2, ASDA Plaza, 4 Fred Thomas Drive, P.O. Box 33849, Takapuna, Auckland, New Zealand Email: iboothroyd@kma.co.nz (work) **Regional representative for New Zealand**

Catalan, Zenaida Batac, Institute of Environmental Science and Management, The University of the Philippines at Los Banos, College, Laguna, Philippines. **Regional representative for Philippines**
This listing is different from what has been presented in earlier issues: In order to justify the epithet "current", and due to the fact that nearly 300 titles for 2007 are already saved, all of the most actual titles hitherto collected are listed, preceded by the - hopefully almost complete - year 2006 and by supplements to the two preceding years. The compilation was achieved, as usual, from many sources: databases, tables of contents of journals, references and citations of papers, autopsy of many periodicals, lists provided by authors (thanks to you!). In particular, publisher issued search alerts proved to be rich in results. Only printed titles are reported here with the occasional exception of online-only journals (PLoS or BioMed journals e.g.). Titles announced, even with available DOI numbers, are not considered before printing. In general, online publications should be retrieved elsewhere, best check the chironomid home page for eventual references regularly.

Supplement to 2004 Current Bibliography

Dominik, P. 2004a. Ochotokwate z plemienia Tanytarsini (Diptera: Chironomidae) znan Jeziorn Raduńskich. (Chironomid midges of the tribe Tanytarsini (Diptera: Chironomidae)

Takeda, A. M., Kobayashi, J. T., Resende, D. L. M. C., Fujita, D. S., Avelino, G. S., Fujita, R.

Tsuj, H., Kanno, K. and Katayama, J. 2004a. (Invasion of rooms by small flying insects and their responses to an adhesive light trap.) - Pest Control Research 19; NO.1; PAGE.7-15

Supplement to 2005 Current Bibliography

Current bibliography 2006

Hydrobiol. Suppl. 158, Large Rivers 16: 541-555.

Croisetière, L., Hare, L. and Tessier, A. 2006a. A field experiment to determine the relative importance of prey and water as sources of As, Cd, Co, Cu, Pb, and Zn for the aquatic invertebrate Sialis velata. - Envir. Sci. Technol. 40: 873-879.

Cser, B. és Révész, Á. 2006a. Makrofauna-vizsgálatok a Tápión. (Macrofauna-

Hirvenoja, M., Palmén, E. and Hirvenoja, E. 2006a. The emergence of Halocladius variabilis (Staeger) (Diptera: Chironomidae) in the surroundings of the Tvärminne Biological Station in the northern Baltic Sea. - Ent. fenn. 17: 87-89.

Kubovčík, V. and Bitušik, P. 2006a. Subfossil chironomids (Diptera, Chironomidae) in three Tatra Mountain lakes (Slovakia) on an acidification gradient. - *Biologia, Bratisl.* 61, Suppl. 18: S147-S166.

Makarchenko, E. A. i Makarchenko, M. A. 2006b. Novye i maloizvestnyi vidy khironomid podsemeistva Orthocladiinae

Man’ko, V. V. 2006a. (Methodological approaches to investigation of Na’-Ca” exchange in exocrine secretory cells.) - Ukrain. biokhim. Zh. 78:43-62.

(Insecta: Diptera) to oxygen-poor habitats. -
Pol. J. Ecol. 54: 687-693.

Morozova, E. E. 2006a. Sistematika, morfologiya i ekologiya khironom rodra Cryptochironomus basseina Volgogradskogo vodo-khranalishcha. (Systematics, morphology and...

Özkan, N. 2006c. Trakya Bölgesi (K karel, Tekirdağ, İstanbul ve Çanakkale) Chironomid (Chironomidae; Diptera) Faunas . (Fauna of chironomids (Chironomidae; Diptera) in
Turkish Thrace Region (Kırklareli, Tekirdağ, İstanbul and Çanakkale). - Su Ürünleri Derg. 23: 125-132.

Ozkan [= Özkan], N. and Camur-Elipek, B. 2006a. The dynamics of Chironomidae larvae (Diptera) and the water quality in Meric River (Edirne/Turkey). - Tiscia 35: 49-54.

to fish predators, and effects on algae and suspended material. - *Aquat. Ecol. 40*: 85-95.

paleolimnological perspective. - Lake Reservoir Mgmt 22: 44-58.

Sushchik, N. N., Gladyshev, M. I., Kalachova, G. S., Makhutova, O. N. and Ageev, A. V. 2006a. Comparison of seasonal dynamics of

Current Bibliography 2007

Andersen, T. 2009a. Contributions to the systematics and ecology of aquatic Diptera - a tribute to Ole A. Sæther. - Caddis Pr., Columbus. 358 pp.

macroinvertebrate fauna in a foreland along the river waal, the main distributary in the Rhine delta. - *River Res. Applics* 23: 171-183.

Endo, K. 2007a. Taxonomic notes on the genus Syndiamesa Kieffer (Diptera: Chironomidae)

Hose, G. C., Walter, T. and Brooks, A. J. 2007a. Short-term colonisation by macroinvertebrates...

Ilyashuk, B. P. and Ilyashuk, E. A. 2007a. Chironomid record of Late Quaternary climatic and environmental changes from two sites in Central Asia (Tuva Republic, Russia) - local, regional or global causes? - Quatern. Sci. Rev. 26: 705-731.

Kelly, D. J. and Jelyman, D. J. 2007a. Changes in trophic linkages to shortfin eels (Anguilla australis) since the collapse of submerged

in southern Brazil. - J. Kans. ent. Soc. 80: 229-242.

