First report of leaf spot of *Smilax china* caused by *Alternaria longipes* in China

Y. Long, T. Hsiang and J. Huang**

The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; and Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada

S milax china is a small perennial plant belonging to the Liliaceae frequently found in the warm temperate mountainous or hilly regions across eastern Asia. It is a commonly used Chinese herbal medicine. Leaf spot of *S. china* has been found to be a destructive disease in Tongcheng County, Hubei, China, where this plant is extensively cultivated. Symptoms were observed on infected leaves and fruits from 2006 to 2008 in a plantation established in 2002. Up to 70% of the plants in the areas surveyed showed severe leaf spot symptoms each year.

Typical lesions observed were brown, circular or oval and 5–7 mm across. These enlarged and linked together, extending until entire leaves withered. Isolations were made onto potato dextrose agar (PDA) initially forming white colonies. After seven days on PDA, the colonies turned grey with dark centres. Sporulation was induced on cut filter paper following Zhang (2003). Conidiophores were fasciculated or single, straight or knee-curved, light brown with regular septa, and 20–58 × 3·6–5·5 μm. Each conidium was obclavate, brown, 28–48 × 10–17 μm, with 3–7 transverse and 0–3 longitudinal or oblique septa. The tops of some conidia developed curved, light brown with regular septa, and 20–58 μm. Species identity was confirmed morphologically based on descriptions in Simmons (1981, 1999). Sequences of rDNA-ITS were obtained from three isolates, and comparisons with GenBank showed 100% similarity with *A. longipes* (AY751457).

Pathogenicity tests were performed by spraying until runoff (200 mL/plant) a conidial suspension (5 × 10⁵ conidia/mL) containing 0·1% Tween-20, onto upper and lower surfaces of 30 leaves of six one-year-old 20-cm tall plants. Plants were incubated with a 12 h photoperiod at 25°C and 90% relative humidity. Twelve days after inoculation, brown spots were observed on inoculated leaves, but no symptoms were seen on water-treated control plants. Koch’s postulates were fulfilled by re-isolating *A. longipes* from diseased leaves. *Alternaria longipes* is known in China to cause tobacco brown rot, but to our knowledge, this is the first report of *A. longipes* infecting *S. china*, and furthermore, no previous reports of a disease of *S. china* have been found.

References

E-mail: junbinhuang@mail.hzau.edu.cn. Accepted 13 November 2008 at www.bspp.org.uk/hdr where figures relating to this paper can be viewed.

Superelongation disease, caused by *Elsinoe brasiliensis*, confirmed on cassava in Trinidad and Tobago

R. Reeder*, P. L. Kelly*, A. A. St. Hill† and K. Ramnarine†

Global Plant Clinic, CABI, Bakeham Lane, Egham, Surrey, TW20 9TY, UK; and Ministry of Agriculture, Land and Marine Resources, Plant Pathology Department, Research Division, Trinidad & Tobago

Cassava (*Manihot esculenta*) is an important crop in the Caribbean. In 2007, a new disease was observed on cassava in fields in the north, south and central areas of Trinidad. Disease incidence ranged from 5–100%. Field symptoms included raised, pale, tan-coloured corky lesions on the petioles and midribs of leaves and stem. Infrequently, chlorotic spots with necrotic centres were seen on the leaf lamina, which dried and fell out giving a ‘shot hole’ appearance. Leaves were often twisted and curled. Samples were sent to the Global Plant Clinic, UK for diagnosis.

Sphaceloma manihoticola (teleomorph *Elsinoe brasiliensis*) was consistently isolated from the leaf material. Colonies on potato carrot agar were slow-growing, pulvinate, and fissured. Most colonies were bright red and tomentose. Conidiophores were phialidic, forming a continuous layer or grouped into fascicles. Conidia were hyaline, nonseptate, and ellipsoid, 3–6 (4·65) × 2·2–5 (2·21) μm. Species identity was confirmed morphologically at CABI, UK and cultures placed in the Genetic Resource Collection (IMI 395825 and 395826).

In Trinidad, pathogenicity tests were conducted in polythene tents on one-month-old cassava cv. MMex. Cuttings were sprayed with a conidial suspension (2 × 10⁶ conidia per mL) of *S. manihoticola* originally isolated from diseased cassava. Control plants were sprayed with sterile distilled water (SDW). All plants were incubated in a polythene tent for 21 days at 22–30°C and misted with SDW at least three times daily. Disease symptoms identical to those observed in the field appeared 7–10 days after inoculation. The fungus was reisolated from these symptoms. Control plants did not develop symptoms.

This is the first record of *E. brasiliensis* on cassava in Trinidad and Tobago, although it is widespread in Barbados, the Dominican Republic and Panama. The fungus is considered a major pathogen of cassava that can drastically reduce yields (Alvarez & Molina, 2000). Besides the typical leaf and petiole lesions, severe infection of young plants can result in the elongation of internodes resulting in thin and weak stems (due to the hormone gibberellin), which accounts for the common name superelongation disease. This symptom is frequently seen in severely infected young plants, but was not observed in Trinidad. However, it is not unusual for plants suffering from this disease to exhibit no elongation of the internodes, especially during the dry season (Krausz, 1976).

Acknowledgements

Our thanks to Dr. Paul Cannon of CABI who confirmed the identity the pathogen.

References

E-mail: r.reeder@cabi.org. Accepted 8 October 2008 at www.bspp.org.uk/hdr where figures relating to this paper can be viewed.