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ABSTRACT

FRACTALS CREATED FROM NONAFFINE FUNCTIONS AND PREDICTING

ATTRACTOR PARAMETERS USING NEURAL NETWORKS

Liam Graham Advisor:

University of Guelph, 2020 Dr. Matthew Demers

Fractals have a wide variety of applications in industries such as architecture and video

games, as well as in research fields including soil mechanics and antenna design, amongst

others. Finite collections of contractive set-valued affine functions, called iterated function

systems (IFSs), have been shown to possess unique, globally attractive fixed points, termed

attractors. These attractors often display fractal features. In this thesis we extend the

theory of IFSs to include functions with bounded derivatives, and piecewise functions, both

of which produce interesting results. Piecewise IFSs also allow for the development of fractal

splicing. Additionally, we approximate a solution to a long-standing fractal inverse problem:

Given the image of an attractor, what are the parameters of the IFS that produced it? We

make use of neural networks to approximate this mapping.
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Chapter 1

Introduction

Fractals can be thought of as infinite sets that possess self-similar features. These objects, in

part known for their ability to resemble nature quite well, have a wide variety of applications.

While they have been used in areas such as architecture, video games, movies, and computer

graphics for their appealing physical manifestations, they have also been useful in the fields

of soil mechanics [1], antenna design [2], and many others. One possible driving force behind

this array of applicable fields is their fractional dimension property. That is, we can define

a dimension for these infinite sets that is strictly non-integer, unlike the three dimensional

world we live in. Possessing this fractional dimension is another possible definition for a

fractal set. So how exactly can we create one?

The principal mechanism that allows us to create fractals lies behind Banach’s fixed point

theorem: A contraction mapping on a complete metric space possesses a unique, globally

attractive fixed point. Thus, repeated iteration of a contractive function on a point in a

complete metric space will always lead to the same fixed point for that function, no matter

the starting location. Combining this idea with iterated function systems (IFSs); a finite

collection of contractive set-valued functions, is one method of creating sets possessing these

fractal properties. In other words, these IFSs satisfy Banach’s fixed point theorem and have

unique, globally attractive fixed points themselves, known as attractors, which are infinite
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sets, and often contain self-similar features and a fractional dimension.

Of course, since fractal sets are infinite, we can only ever obtain approximations of

them. Once we have an IFS satisfying the proper contractivity conditions, we can apply

a specialized version of fixed point iteration, often referred to as the chaos game, to generate

points approximating its attractor. This algorithm begins with a point and randomly selects

a function from the IFS to apply. Functions from the IFS then continue to be randomly

selected and applied to the output of the previous function. The resulting sequence of outputs

from each transformation quickly converges to the attractor and accurately portrays it when

graphed.

Almost all work done on fractals created from IFSs explores solely IFSs consisting of affine

maps. We will introduce new functions from which we can build an IFS and generate fractal

approximations. Namely, functions that have a bounded derivative, and piecewise functions.

We find that both types of IFSs produce interesting features in their attractors. The functions

we explore that have a bounded derivative result in attractors that still maintain many

features of affine functions. For IFSs constructed from piecewise functions, we only examined

those for which each branch of the piecewise function is affine. Though, these functions are

still quite interesting as they manifest the boundary between the functions in their attractors.

For both types of alternative IFSs, we are able to produce extensions of common affine-

consisting IFSs. In terms of the piecewise functions, this takes the form of fractal splicing:

Combining the attractors of two IFSs by means of piecewise functions.

As a result of the many applications of fractals, there has been a long-standing inverse

problem in the field of fractal geometry: Given an image of a fractal, what are the parameters

of the IFS that generated it? There have been several approaches to this problem already,

such as moment based methods [3, 4], making use of wavelet transforms [5], evolutionary

algorithms [6], and most recently, a swarm intelligence method called the cuckoo search [7].

These previous approaches give satisfactory results for several fractals, however, they fail to
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solve the problem in a more general setting. In this thesis, we attempt to solve this problem

not by doing an exhaustive search for each attractor, but by obtaining a function that maps

the image of an attractor to IFS parameter values. In order to perform such a task, we will

approximate the function with a neural network.

Neural networks are nested vector-valued functions that optimize their parameters through

gradient descent to approximate other functions. There have been many recent advances in

this field allowing for technologies such as speech recognition and prediction [8], algorithms

that can outperform humans at games such as chess and go [9], and many others. Convolu-

tional neural networks are a specialized type of function approximator for use in image-related

applications. These networks are the key mechanism behind self-driving cars, and object de-

tection and labelling algorithms, amongst others [8]. We will use these convolutional neural

networks in order to map a given attractor to its IFS parameter values.

In order to train the network to perform the desired task, we will use a method called

supervised learning. This type of machine learning has the model compute an answer which

then gets compared with known values in order to calculate an error, and update parameters

of the network. Supervised learning often requires vast amounts of data, hence, we will create

large databases of randomly initialized approximated fractal9 sets in order to accomplish this

task.

The second chapter of this work covers the necessary tools to understand iterated function

system theory, much of which can be found from [10]. It defines the required mathematical

concepts and theorems, and describes algorithms to approximate IFS attractors, as well as

how one can calculate the fractal dimension.

Chapter 3 is novel work that uses the tools of Chapter 2 to construct conditions that must

be met in order to produce an IFS guaranteed to possess an attractor when all parameters

are randomly generated. We then use these conditions to generate fractal databases and

analyse some of their properties.
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In Chapter 4 we present original work that develops theory for the previously mentioned

nonaffine functions to be used in IFSs. We extend theorems from Chapter 2 in order to show

their convergence to an attractor, and provide examples of these fractals. We also provide

methods of extending common IFSs to nonaffine IFSs.

The fundamental ideas behind neural networks are covered in Chapter 5. This chapter

covers the basic framework of this machine learning technique, as well as its implementation,

common practices, and optimization methods. Many of the concepts in this chapter stem

from [8]. We also cover network designs of competition winning models in this field from

which we will derive principles used in our own network structure.

The creation, training, and results of the neural network used to predict IFS parameter

values is given in Chapter 6. Here we justify the design choices of our model, provide metrics

of its performance, and reconstruct attractors from the model output for comparison with

the original.

Future work of both nonaffine extensions of IFSs, as well as the neural network implemen-

tation can subsequently be found in Chapter 7. Some supplementary examples of nonaffine

function IFS attractors as well as source code for this work can be found in the appendix.
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Chapter 2

Fundamental Concepts in Iterated

Function System Theory

There are many different kinds of fractals as well as ways to generate them. In this chapter we

define and derive the tools necessary to understand fractals generated from iterated function

systems. Additionally, we cover methods of generating them, and methods for calculating

the fractal dimension.

2.1 Mathematical Analysis Background

The theory behind fractals lies heavily in mathematical analysis. We will build these tools

from some familiar definitions that can be found in [10].

Definition 2.1 (Metric Space). A metric space is the pairing of a space, X, with a metric,

or distance measuring function, d : X ×X → R, where d satisfies the following properties:
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1. d(x, y) = d(y, x) ∀x, y ∈ X

2. 0 < d(x, y) <∞ ∀x, y ∈ X, x 6= y

3. d(x, x) = 0 ∀x ∈ X

4. d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X

Definition 2.2 (Sequence of Bounded Variation). Let {xn}∞n=1 be a sequence in a metric

space (X, d). Then it is called a sequence of bounded variation if
∑∞

n=1 d(xn+1, xn) <∞.

Definition 2.3 (Cauchy Sequence). Let {xn}∞n=1 be a sequence in a metric space (X, d).

Then it is called a Cauchy sequence if for any ε > 0, ∃Nε ∈ N such that if m, n ∈ N and

m, n ≥ Nε, then d(xm, xn) < ε.

Definition 2.4 (Complete Metric Space). Let (X, d) be a metric space. Then the following

are equivalent:

• (X, d) is a complete metric space

• Every sequence of bounded variation in X converges to a point in X

• Every Cauchy sequence in X converges to a point in X

Definition 2.5 (Contractive Function). A function f : X → X is called contractive on a

given metric space (X, d) if ∃ c ∈ [0, 1) such that d(f(x), f(y)) ≤ c · d(x, y), ∀x, y ∈ X. Then

f is called a contraction mapping, and c, the contraction factor.

Definition 2.6 (Fixed Point). Let (X, d) be a metric space, and f : X → X. f possesses a

fixed point, x̄ ∈ X, if f(x̄) = x̄.

Definition 2.7 (Open Cover and Subcover). Let S be a subset of a metric space (X, d), and

{Ui}i∈ I be a collection of open sets which could be finite, or infinite. Then if S ⊆
⋃
i∈ I Ui,

{Ui}i∈ I is called an open cover. Additionally, if {Ui}i∈ J where J ⊂ I is an open cover for

S, then {Ui}i∈ J is called a subcover for S.
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Definition 2.8 (Compact Set). Let S be a subset of a metric space (X, d). Then S is said

to be compact if every open cover of S has a finite subcover, that is, a subcover containing a

collection of a finite number of open sets.

These definitions are necessary as the type of fractals that will be used throughout this

thesis are created from contractive functions that act on compact subsets of complete metric

spaces. They also rely on the following theorem:

Theorem 2.1 (Banach’s Fixed Point Theorem). Let (X, d) be a complete metric space.

Then if f : X → X is a contraction mapping, it possesses a unique, globally attractive fixed

point.

Proof. Let (X, d) be a complete metric space and f : X → X be a contractive function,

that is, ∃ c ∈ [0, 1) such that d(f(x), f(y)) ≤ c · d(x, y), ∀x, y ∈ X. Now, let x0 ∈ X and

xn+1 = f(xn), ∀n ∈ N. We begin by noting that

d(xn, xn+1) = d(f(xn−1), f(xn))

≤ c · d(xn−1, xn).

By induction we see that

d(xn, xn+1) ≤ cn · d(x0, x1).

Hence the series of distances between points is given by

∞∑
n=0

d(xn, xn+1) ≤
∞∑
n=0

cn · d(x0, x1) =
1

1− c
d(x0, x1),

which is clearly finite. Thus {xn}∞n=0 is a sequence of bounded variation and therefore

converges in a complete metric space. Let x̄ = limn→∞ xn. Then x̄ is a fixed point of f ,
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hence f(x̄) = x̄. Suppose now that f has a second fixed point, x̄′. Then,

d(x̄, x̄′) = d(f(x̄), f(x̄′)) ≤ c · d(x̄, x̄′)

0 ≥ (1− c)d(x̄, x̄′).

This is only possible if x̄ = x̄′ since c ∈ [0, 1) making (1 − c) positive, and a valid metric

must satisfy d(x, y) ≥ 0 and d(x, y) = 0 =⇒ x = y. Thus, f has a unique fixed point in X.

Additionally, we can see this fixed point is globally attractive as we can start the sequence

{xn}∞n=0 with any x0 ∈ X and use the iteration shown in this proof to obtain x̄.

Now we have all the mathematical tools needed to talk about fractals, we can begin examining

iterated function systems; the means by which we will generate fractals throughout this

thesis.

2.2 Iterated Function Systems

A simple method of generating a fractal set is through an iterated function system (IFS)[10].

An IFS is essentially a finite collection of contractive functions defined on a complete metric

space, and can be formally defined as follows:

Definition 2.9 (Iterated Function System). Let (X, d) be a complete metric space and

W = {ŵi : X → X}Nn=1 be a set of contractive functions. Then W is an IFS, or sometimes

called N-map IFS.

An IFS alone does not generate a fractal, though. We require a means through which we

can apply an IFS to points in a metric space. These means are provided by the Hutchinson

operator [11].
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Definition 2.10 (Hutchinson operator). Let W = {ŵi : X → X}Nn=1 be an IFS acting on

the space (X, d), and S ⊆ X be non-empty and compact. Then the Hutchinson operator is

given by

HW (S) =
N⋃
i=1

ŵi(S),

where

ŵi(S) = {wi(x) |x ∈ S}.

As we can see, the Hutchinson operator acts on sets of points in X, rather than a single

point, though it could of course be applied to any singleton set. Given a complete metric

spaceX, we can generate another metric space that we will denoteH(X); the space composed

of all compact, non-empty subsets of X. We wish to show that the Hutchinson operator is

itself a contractive mapping in this space. In order to do so, we must find a metric for H(X)

that measures distances between sets, and we would particularly like one that makes it a

complete space. We begin by defining the distance from a point to a set.

Definition 2.11 (Point-Set Distance). Let (X, dX) be a complete metric space, x ∈ X, and

S ⊆ X. Then the point-set distance is given by,

dX, point(x, S) = inf
y ∈S

dX(x, y).

Note that the right-hand side of the equation is well defined as X is a complete space.

We can now define the distance between two sets in a similar manner.

Definition 2.12 (Set-Set Distance). Let (X, dX) be a complete metric space, R ⊆ X and,
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S ⊆ X. Then the set-set distance is given by,

dX, set(R, S) = sup
x∈R

dX, point(x, S)

= sup
x∈R

(
inf
y ∈S

dX(x, y)

)
.

In words, we can calculate dX, set(R, S) as follows: Take a point in R and find the greatest

lower bound of its distance to S. Then, do this to all points in R to obtain a set of greatest

lower bounds. dX, set(R, S) is then the least upper bound of that set. An example may help

demonstrate what is happening.

Example 2.1. Working in R, let R = [0, 1], S = [2, 4], and take the distance function to

be the natural metric for R; dR(x, y) = |x− y|. Calculating the distance both ways we see,

dR, set(R, S) = sup
x∈R

(
inf
y ∈S

dR(x, y)

)
dR, set(S, R) = sup

x∈S

(
inf
y ∈R

dR(x, y)

)
= sup

x∈R
dR(x, 2) = sup

x∈S
dR(x, 1)

= dR(0, 2) = dR(4, 1)

= 2 = 3.

As can be seen from the above example, this distance function does not satisfy the symmetry

property (the first requirement in Def. 2.1), and therefore is not a valid metric. Additionally,

dX, set(R, S) = 0 does not imply equality; both of these problems can be fixed with a small

modification. One may also note that dX, set(R, S) may be infinite for sets that are not

compact. This problem will not matter as long as we only pair it with H(X).

Definition 2.13 (Hausdorff Distance). Let (X, dX) be a metric space, R ⊆ X, and S ⊆ X.
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Figure 2.1: A visualization of the Hausdorff distance. The Hausdorff distance is given by
the larger of the two distances shown.

Then the Hausdorff distance is given by

dH(R, S) = max{dX, set(R, S), dX, set(S, R)}.

This can be visualized my taking the maximum of the two distances shown in Fig. 2.1.

It can easily be seen that the Hausdorff distance is a valid metric. In addition, it happens

to form a complete metric space with H(X).

Theorem 2.2. Let (X, d) be a complete metric space. Then its induced Hausdorff metric

space, (H(X), dH), is also complete.

Proof. Here we provide only a sketch of the proof as the full proof is quite long and complex.

For more, see [10, 12]. Begin by constructing a Cauchy sequence {An} in (H(X), dH). Then,

let A be the set of all points x ∈ X such that there is a sequence {xn} converging to it,

where xn ∈ An ∀n. The next step is to show that A ∈ H(X), which can be done using

the fact that {An} is Cauchy and showing that A ⊆ An + ε, where for a set S, S + ε is

the set {x ∈ X : dX, point(x, S) ≤ ε}. Lastly, it can be shown that An ⊆ A + ε and hence

dH(An, A) ≤ ε, thus {An} converges to A, and (H(X), dH) is complete.
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With the pairing of H(X) and the Hausdorff distance being a complete space, if we can

show that the Hutchinson operator is a contraction mapping in this space for any given

IFS, then we can apply Banach’s fixed point theorem. In order to do this, we will require

Lemma 2.3, which can be found in [10].

Lemma 2.3. Let (X, d) be a complete metric space. Then for any sets S1, S2, S3, S4 ∈

H(X), we have that

dH(S1 ∪ S2, S3 ∪ S4) ≤ max{dH(S1, S3), dH(S2, S4)}.

Proof. Let S1, S2, S3, S4 ∈ H(X). Then we see that

dX, set(S1 ∪ S2, S3 ∪ S4) = sup
x∈S1∪S2

dX, point(x, S3 ∪ S4)

= max
{

sup
x∈S1

dX, point(x, S3 ∪ S4), sup
x∈S2

dX, point(x, S3 ∪ S4)
}

= max{dX, set(S1, S3 ∪ S4), dX, set(S2, S3 ∪ S4)}.

Similarly, we see

dX, set(S1, S3 ∪ S4) = sup
x∈S1

(
inf

y∈S3∪S4

d(x, y)
)

= sup
x∈S1

(
min

{
inf
y∈S3

d(x, y), inf
y∈S4

d(x, y)
})

≤ min

{
sup
x∈S1

(
inf
y∈S3

d(x, y)
)
, sup
x∈S1

(
inf
y∈S4

d(x, y)
)}

= min{dX, set(S1, S3), dX, set(S1, S4)}.

With the minimum in this result, we can choose dX, set(S1, S3 ∪ S4) ≤ dX, set(S1, S3) and

dX, set(S2, S3 ∪ S4) ≤ dX, set(S2, S4). It follows that dX, set(S3, S1 ∪ S2) ≤ dX, set(S3, S1) and
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dX, set(S4, S1 ∪ S2) ≤ dX, set(S4, S2). Hence we get the following:

dH(S1 ∪ S2, S3 ∪ S4) = max{dX, set(S1 ∪ S2, S3 ∪ S4), dX, set(S3 ∪ S4, S1 ∪ S2)}

≤ max
{

max{dX, set(S1, S3), dX, set(S2, S4)},

max{dX, set(S3, S1), dX, set(S4, S2)}
}

= max
{

max{dX, set(S1, S3), dX, set(S3, S1)},

max{dX, set(S2, S4), dX, set(S4, S2)}
}

= max{dH(S1, S3), dH(S2, S4)}.

Before continuing to the proof of the Hutchinson operator being a contraction mapping,

chapter four will require knowing that equality can be achieved in this lemma when S1 is

disjoint from S2, and S3 is disjoint from S4. This can be shown by first noting that in

the above choice to set dX, set(S1, S3 ∪ S4) ≤ dX, set(S1, S3), we could have instead chosen

dX, set(S1, S3 ∪ S4) ≤ dX, set(S1, S4). This would lead to a different inequality of the form

dH(S1 ∪ S2, S3 ∪ S4) ≤ max{dH(S1, S4), dH(S2, S3)},

which is equivalent to switching the labels of the sets in one of the unions. With this label

switching, we can assume S3 to always be the closer set to S1 out of S3 and S4, and use the

original statement of the lemma. Then the only relation in the proof preventing equality is

sup
x∈S1

(
min

{
inf
y∈S3

d(x, y), inf
y∈S4

d(x, y)
})
≤ min

{
sup
x∈S1

(
inf
y∈S3

d(x, y)
)
, sup
x∈S1

(
inf
y∈S4

d(x, y)
)}

= sup
x∈S1

(
inf
y∈S3

d(x, y)
)
.
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We can now see that this will be an equality for disjoint compact subsets of R2.

Example 2.2. Working in R2 with the Euclidean metric, let the sets S1, S2, S3, S4 ∈ H(R2)

be defined as in Fig. 2.2. Following the process outlined above, we first calculate the left-hand

side of the Lemma. The largest value in the set of minimum distances from points in S1∪S2

to points in S3 ∪ S4 would be

dR2, set(S1 ∪ S2, S3 ∪ S4) = sup
(x1, y1)∈S1∪S2

(
inf

(x2, y2)∈S3∪S4

dR2((x1, y1), (x2, y2))

)
= dR2((−3, 3), (−3, −1))

= 4

Similarly, the set-set distance calculated the other way yields,

dR2, set(S3 ∪ S4, S1 ∪ S2) = sup
(x1, y1)∈S3∪S4

(
inf

(x2, y2)∈S1∪S2

dR2((x1, y1), (x2, y2))

)
= dR2((−3, −3), (−3, 1))

= 4

Then the Hausdorff distance is max(4, 4) = 4. All points used to calculate both these dis-

tances are either in S1 or S3, hence it is clear that Lemma 2.3 holds for this example.

Theorem 2.4. Let W = {ŵi : X → X}Nn=1 be an IFS on a complete metric space (X, d).

Then the Hutchinson operator as defined in Def. 2.10 is a contraction mapping in (H(X), dH).

Proof. We will prove this theorem only for 2-map IFSs, however, it can easily be extended

by induction to IFSs with N contraction mappings. Let R, S ∈ H(X). Then applying
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Figure 2.2: A visual depiction of the sets used in Ex. 2.2

Lemma 2.3 to these sets results in

dH(HW (R), HW (S)) = dH(ŵ1(R) ∪ ŵ2(R), ŵ1(S) ∪ ŵ2(S))

≤ max{dH(ŵ1(R), ŵ1(S)), dH(ŵ2(R), ŵ2(S))}

≤ max{c1, c2}dH(R, S).

where c1 and c2 are the contraction factors of the ŵ1 and ŵ2 mappings respectively. Thus

HW is a contraction mapping on (H(X), dH).

We have now satisfied all the requirements to apply Banach’s fixed point theorem, hence

the Hutchinson operator has a unique, globally attractive fixed point in (H(X), dH).

Definition 2.14 (Attractor). Let W be an IFS. Then W has a fixed point in (H(X), dH)

called the attractor, given by

A = HW (A) =
N⋃
i=1

ŵi(A).

We can find the attractor of a given IFS by using the iteration given in the proof of Banach’s
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fixed point theorem. If (X, d) is the metric space on which the functions in an IFS are

defined, then for any compact subset S0 ⊆ X, we can define Sn+1 = HW (Sn). The attractor,

A, is found by taking the limit limn→∞ Sn = A. This fixed point iteration often leads

to fractal properties; namely infinitesimal details and self similarity in the sense that the

attractor is comprised of shrunken, distorted copies of itself.

Example 2.3. In this example we show how some fractals can resemble nature quite well.

For example, the attractor produced from the IFS

W =



ŵ1(x, y) =

0.195 −0.488

0.344 0.443


x
y

+

0.4431

0.2452


ŵ2(x, y) =

 0.462 0.414

−0.252 0.361


x
y

+

0.2511

0.5692


ŵ3(x, y) =

−0.058 −0.070

0.452 −0.111


x
y

+

0.5976

0.0969


ŵ4(x, y) =

−0.035 0.070

−0.469 −0.022


x
y

+

0.4884

0.5069


ŵ5(x, y) =

−0.637 0.000

0.000 0.501


x
y

+

0.8562

0.2513


is shown in Fig. 2.3 and resembles a tree. There are many objects in nature which we can
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Figure 2.3: The fixed point of an IFS that resembles as tree.

simulate with a fractal. The maple leaf shown in Fig. 2.4 was made with the IFS

W =



ŵ1(x, y) =

0.14 0.01

0.00 0.51


x
y

+

−0.08

−1.31


ŵ2(x, y) =

 0.43 0.52

−0.45 0.50


x
y

+

 1.49

−0.75


ŵ3(x, y) =

0.45 −0.49

0.47 0.47


x
y

+

−1.62

−0.74


ŵ4(x, y) =

0.49 0.00

0.00 0.51


x
y

+

0.02

1.62


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Figure 2.4: The fixed point of an IFS that looks like a maple leaf.

2.3 Generating Iterated Function System Attractors

Attractors can have very interesting features. As we just saw in the previous section, some

of them resemble objects we see in nature such as plants and trees. So how exactly do we

obtain a picture of an attractor? The true answer is that we cannot. Attractors contain

infinitesimal details that are impossible to completely capture graphically, and therefore we

can only ever obtain an approximation. To obtain an approximation though, we have already

briefly talked about one method. Both methods found in this section can be found in [10].

Definition 2.15 (Deterministic Algorithm). Let (X, d) be a complete metric space, and W =

{ŵi}Ni=1 be an IFS consisting of contractive functions on X. Then the deterministic algorithm

goes as follows: Pick an initial compact subset of X, the easiest would be a point S0 = {x0}.

Then, perform fixed point iteration by repeatedly applying the Hutchinson operator. The first
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iteration will result in the set

S1 = HW (S0)

=
N⋃
i=1

ŵi(x0)

= {ŵ1(x0), . . . , ŵN(x0)}.

Applying the operator again yields

S2 =
N⋃

i, j=1

ŵi(ŵj(x0))

={ŵ1(ŵ1(x0)), . . . , ŵ1(ŵN(x0), ŵ2(ŵ1(x0)),

. . . , ŵ2(ŵN(x0)), . . . , ŵN(ŵN(x0))}

The more iterations of the deterministic algorithm we complete, the more points we have,

and the better the approximation of the attractor. We can then plot the points to visualize

the attractor of a given IFS.

Example 2.4. In this example we use the unit square in R2 as our initial set with the
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following IFS:

W =



ŵ1(x, y) =

0.255 0

0 0.255


x
y

+

0.3726

0.6714


ŵ2(x, y) =

0.255 0

0 0.255


x
y

+

0.1146

0.2232


ŵ3(x, y) =

0.255 0

0 0.255


x
y

+

0.6306

0.2232


ŵ4(x, y) =

 0.37 −0.642

0.642 0.37


x
y

+

 0.6356

−0.0061


Plotting the first 9 iterations of the deterministic algorithm, we get the images in Fig. 2.5.

The problem with the deterministic algorithm is that the number of points grows much

too quickly. If we begin with m points in our initial set, then after n iterations of this

algorithm we will have mNn points in Sn. So, for example, with m = 1, an IFS consisting of

N = 4 functions, and we perform n = 10 iterations, we already have over a million points!

This algorithm tends to be very computationally expensive as there are larger and larger

gaps in the number of points between iterations. Doing even a few too many iterations could

be computationally exhaustive, whereas doing too few may result in a poor approximation

of the attractor. Luckily, there is another algorithm which is much more stable with respect

to the number of points.

Definition 2.16 (The Random Algorithm / The Chaos Game). Let (X, d) be a complete

metric space on which the functions in an IFS, W = {ŵi}Ni=1, are defined. Then choosing an
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Figure 2.5: The first nine iterations of the deterministic algorithm to generate the attractor
of the IFS in Ex. 2.4 where the initial set is the unit square.
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initial point x0 ∈ X, we find the next point by computing

xn+1 = ŵσn(xn),

where σn ∈ {1, 2, ... , N} is a random index. The set {xk} is then our approximation to the

attractor.

This random algorithm, commonly referred to as the chaos game, is much more frequently

used to generate pictures of attractors from IFSs. It allows us to generate the points just as

easily as in the deterministic algorithm, but we can choose exactly how many points we would

like there to be in our end result. Additionally, we can make this algorithm more efficient

than the deterministic algorithm by assigning each function in the given IFS a probability

proportional to the size of the contraction factor for a given function. That is, those functions

with a larger contraction factor have a higher probability of being selected. The combination

of the IFS and probabilities is often called an IFS with Probabilities (IFSP). However, the

method being used in this algorithm to find the attractor is not the same as the method

used in Banach’s fixed point theorem, so we must find a way to show that the sequence of

points that are generated do indeed converge to the attractor.

Theorem 2.5. Let (X, dX) be a complete metric space on which the IFS W = {ŵi}Ni=1 is

defined with attractor A. Then the sequence {xn}∞n=0 obtained from the random algorithm

with indices {σn}∞n=1 contains points arbitrarily close to A.

Proof. The point-set distance between the first two points in the sequence and the attractor

is given by

dX, point(x0, A) = inf
y ∈A

dX(x0, y),

and

dX, point(x1, A) = inf
y ∈A

dX(ŵσ1(x0), y).
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Let Aσ1 represent ŵσ1(A), which is clearly a subset of A. Then we see,

dX, point(x1, A) ≤ inf
y ∈Aσ1

dX(ŵσ1(x0), y)

= inf
z ∈A

dX(ŵσ1(x0), ŵσ1(z))

≤ c inf
z ∈A

dX(x0, z)

= c dX, point(x0, A).

where c = max{ci}, and ci is the contraction factor for ŵi. Then for the kth point in the

sequence we get a distance to the attractor of

dX, point(xk, A) ≤ c dX, point(xk−1, A)

≤ c2 dX, point(xk−2, A)

...

≤ ck dX, point(x0, A).

Since c ∈ [0, 1), dX, point(xn, A) → 0 as n → ∞. Hence the points in the sequence {xn}

become arbitrarily close to A. Additionally, we see that for any ε > 0, ∃N such that if

n > N , then dX, point(xn, A) < ε.

Typically, the first few points in the random algorithm are not in the attractor set. What

this theorem allows us to do, though, is exclude from our approximation any points until

they are sufficiently close that they are within some specified tolerance (for example, the

width of a pixel on a computer screen). Then, all points in the sequence following the last

excluded one must be closer to the attractor than it.

Example 2.5. In this example we approximate a fractal known as the Barnsley fern using

the random algorithm with a random first point. We generate the first hundred points, discard
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Figure 2.6: The Barnsley fern attractor generated using the random algorithm with 5,000,
30,000, and 1,000,000 points going from left to right respectively.

all but the last, and calculate the desired number of points to obtain the approximation. Using

5,000, 30,000, and 1,000,000 points to approximate the attractor of the IFS below results in

the images found in Fig. 2.6.

W =



ŵ1(x, y) =

0 0

0 0.16


x
y

+

0

0

 p = 0.01

ŵ2(x, y) =

 0.85 0.04

−0.04 0.85


x
y

+

 0

1.6

 p = 0.85

ŵ3(x, y) =

0.20 −0.26

0.23 0.22


x
y

+

 0

1.6

 p = 0.07

ŵ4(x, y) =

−0.15 0.28

0.26 0.24


x
y

+

 0

0.44

 p = 0.07
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2.4 Fractal Dimension

How can we measure these fractals? Is there some measurement that we can use to compare

the attractor in Fig. 2.5 to the one in Fig. 2.6? We cannot compare the area they seem to

span because in actuality, both of these attractors span zero area. They only seem to have a

non-zero area because we are approximating the attractors and plotting them on a computer

with finite resolution. Indeed these fractal sets do not cover an area, yet they cannot be

represented with a single dimensional length either; they exist in a non-integer, fractional

dimension. An infinite set possessing a non-integer dimension such as this is one definition

of a fractal. This section will define what the fractal, or Hausdorff dimension is, and how

one can approximate it with only an approximation of an attractor.

We can begin to define this property by noting that it is related to how an object scales.

That is, when [0, a] is scaled to [0, ba], it has b1 times the length; when [0, a]2 is scaled to

[0, ba]2, it has b2 times the area. We will define the fractal dimension to be an invariant

quantity when scaling a set, such as the one and two in the exponent of these examples. Let

(X, d) be a complete metric space with A ∈ H(X). Let ε > 0 and B(x, ε) denote a closed

ball of radius ε centered at the point x ∈ X. Finally, define N (A, ε) to be the smallest

positive integer M such that

A ⊂
M⋃
n=1

B(xn, ε),

where {xn}Mn=1 ⊂ X. Note that we know N (A, ε) exists as A is compact, and hence has a

finite subcover. We can then define the fractal dimension of A to be D, if for some positive

constant C we have

N (A, ε) ≈ Cε−D.

Here ”≈” signifies that if f(ε) ≈ g(ε), then lim
ε→0

(ln (f(ε))/ ln (g(ε))) = 1. Thus, isolating for
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D gives us

D ≈ ln (N (A, ε))− ln (C)

ln (1/ε)

Taking the limit as we decrease the radius of the balls to zero gives us a more formal

definition, found in [10].

Definition 2.17 (Fractal Dimension). Let (X, d) be a complete metric space and A ∈

H(X). For any ε > 0, let N (A, ε) be the smallest number of closed balls of radius ε needed

to form a cover for A. Then if

D = lim
ε→0

{
ln (N (A, ε))

ln (1/ε)

}

exists, D is the fractal dimension of A.

Since we are taking the limit as the radius of the balls reduces to zero, it does not actually

matter whether we use a closed ball, or some other closed set whose size is determined by ε.

This makes this property of fractals much more easy to calculate computationally.

Example 2.6. In this example we calculate the fractal dimension of the Sierpiski triangle

by splitting each region into boxes at a consistent rate, and counting how many boxes contain

a piece of the fractal. As we can see from the images in Fig. 2.7, each time we decrease the

side-length of the box by a factor of two, we get three times as many boxes containing a piece

of the fractal. Thus, if ε = (1/2)k, then N (A, ε) = 4 · 3k. This allows us to calculate the
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Figure 2.7: Images demonstrating how one can calculate the fractal dimension of the Sier-
pinski triangle through breaking each region into boxes.

fractal dimension of the Sierpinski triangle as follows:

D = lim
k→∞

ln (4 · 3k)
ln ( 1

(1/2)k
)

= lim
k→∞

ln (4
1
k · 3)

ln (2)

=
ln (3)

ln (2)

≈ 1.5849.

Unfortunately, it is typically much more difficult to accurately calculate the fractal di-

mension, especially as we only have an approximation of the true fractal set. However, we

can estimate the fractal dimension by using each pixel as a box. Therefore, for any given

fractal we can estimate the fractal dimension by

D =
ln (# of pixels corresponding to the fractal)

ln (picture width)
.

The Sierpinski triangle shown in Fig. 2.7, for example, is a 640 × 640 image and there are

36446 pixels corresponding to the attractor. Thus, our estimate of the fractal dimension is
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Resolution Estimated Fractal Dimension
160× 160 1.6361.585
320× 320 1.630
640× 640 1.626

1280× 1280 1.621

Table 2.1: Estimated fractal dimension for the Sierpinski triangle at various resolutions.

1.626, which is not far off considering the ease with which it was calculated. Additionally, we

can see that this approximation tends towards the true value of the fractal dimension as the

resolution of the image increases. This is demonstrated in Table 2.1, showing approximations

of the fractal dimension of the Sierpinski triangle at various resolutions.

28



Chapter 3

Creating Databases of Randomly

Initialized Fractals

One of the goals of this thesis is to obtain a mapping from an image of an attractor to its

parameters through the use of a neural network. This will require vast amounts of data.

This chapter will focus on creating that data and analyzing some of its properties.

3.1 Iterated Function Systems with Random Parame-

ters

In this section we will cover how to generate fractals with random parameters. It is not as

simple as randomly initializing an IFS, as in order to have an attractor, an IFS must satisfy

Banach’s fixed point theorem. Thus, the IFS must consist entirely of contractive functions.

Therefore, if we randomly initialize parameters of an IFS, we must find a way to check

whether each of its functions is contractive before we attempt to generate the attractor. We

limit ourselves to fractals represented in two dimensions created from affine transformations.
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Thus, a given function in these IFSs can be denoted as

ŵ(x) = Ax+ b,

where A ∈ R2×2, and w, x, b, ∈ R2. In order for this transformation to be contractive, we

require

||ŵ(x)− ŵ(y)||2 ≤ c||x− y||2, c ∈ [0, 1)

||Ax+ b− Ay + b||2 ≤ c||x− y||2

||A||2 ≤ c,

where ||A||2 is the induced two-norm of the matrix. Specifically, this norm is defined as

||A||2 = sup
x, ||x||2 6=0

||Ax||2
||x||2

||A||22 = sup
x, ||x||2 6=0

xTATAx

xTx

= λmax(A
TA),

where λmax(A
TA) is the largest eigenvalue of ATA. Since we know that ATA will be a positive

semi-definite, and symmetric matrix, all of its eigenvalues will be nonnegative. Recall that

the characteristic polynomial of a matrix is the lowest order polynomial whose roots are

precisely at the eigenvalues of its corresponding matrix. Let the characteristic polynomial

of ATA be denoted by

f(t) = t2 − Tr(ATA)t+ det(ATA).

Applying the restriction f(1) > 0 then forces both eigenvalues to be either larger than one,

or smaller than it, as this quadratic always has a positive second derivative. In addition,
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we impose the condition that this should be a contractive function, hence ||Ax||2 < ||x||2.

Pairing this last requirement with the standard basis for R2, we get the following set of

conditions to check for contractivity:


a21,1 + a22,1 < 1

a21,2 + a22,2 < 1

Tr(AAT)− det(A)2 < 1

where ai,j are parameters in the matrix A. We can see that this forces both eigenvalues

to be less than one as whether or not the eigenvalues are less than or greater than one is

determined by the minimum of the quadratic. This minimum is given by

f ′(t) = 2t− Tr(ATA) = 0

t =
Tr(ATA)

2

=
a21,1 + a21,2 + a22,1 + a22,2

2

< 1

Example 3.1. In this example we show some fractals generated using random parameters.

The image on the left of Fig. 3.1 is the attractor of the function system:

W =



ŵ1(x, y) =

 0.325482 0.651813

−0.843093 0.053819


x
y

+

0.128834

0.109288


ŵ2(x, y) =

 0.537771 −0.189520

−0.604284 −0.303044


x
y

+

−0.402950

−0.195668


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Figure 3.1: Examples of attractor sets pertaining to IFSs with randomly initialized param-
eters. These fractals were generated using 1,000,000 points with the random algorithm.

The image on the right of Fig. 3.1 has the IFS



ŵ1(x, y) =

−0.4193 −0.0270

−0.4613 −0.2053


x
y

+

0.2791

0.0481


ŵ2(x, y) =

−0.3939 0.4496

0.4406 0.4919


x
y

+

−0.2792

−0.2756


ŵ3(x, y) =

 0.1568 −0.3538

−0.7952 0.3318


x
y

+

0.4873

0.2117


ŵ4(x, y) =

 0.3812 0.5316

−0.5675 0.2246


x
y

+

−0.1638

0.2334


Of all the images of fractals shown so far, none of them have included axes displaying

their size, despite all the points being values in R2. This was done not only to make the

pictures look cleaner, but because the edges of most of these images has been fixed as the

square of side length two, centered at the origin. However, many of these fractals were not
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originally able to fit in this region. We can instead randomly initialize a fractal, and later

scale its size by noting how the size of an attractor is affected by an IFSs parameters. Define

the sequence

xn+1 = ŵ(xn)

= Axn + b

= A(Axn−1 + b) + b

...

= Anx0 +
n−1∑
k=0

Akb.

In the limit as n → ∞ we see that the first term vanishes since ||A||2 < 1, and the sum

approaches a constant. Thus ||xn||2 is proportional to ||b||2. We can thus change the size

of a fractal by scaling all parameters in b of each function in an IFS. We will call these

components of each function the additive parameters.

Example 3.2. In this example we randomly initialize a four function IFS, and scale its

attractor to fit in the square of side length two centered at the origin. We randomly sampled

the 24 parameters from a uniform distribution between the values −1 and 1. After ensuring

contractivity we get the IFS
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Figure 3.2: The attractor corresponding to the randomly generated IFS in Ex. 3.2

W =



ŵ1(x, y) =

−0.280024 −0.416243

0.552090 −0.103137


x
y

+

−0.897841

0.414642

 p = 0.25

ŵ2(x, y) =

−0.243396 0.371675

−0.013273 0.078729


x
y

+

−0.077269

0.673438

 p = 0.25

ŵ3(x, y) =

−0.210925 0.150266

0.827353 0.081144


x
y

+

 0.024475

−0.452672

 p = 0.25

ŵ4(x, y) =

0.664901 −0.423435

0.444192 0.767060


x
y

+

0.991207

0.362855

 p = 0.25

where p is the probability of selection for each function. After generating the first 1,000,000

points using the random algorithm, the attractor set was not contained in the desired region.

Specifically, it reached in magnitude a value of 3.16 in the x direction, and 3.66 in the y

direction. To correct this, all additive parameters were divided by the larger of these two

values, 3.66, resulting in the new absolute maxima of 0.85 and 0.97 in the x and y directions

respectively. Note that it does not reach a magnitude of exactly one as both our initial

set for the attractor and the one generated after scaling the additive parameters are only

approximations. The attractor of this IFS is shown in Fig. 3.2.
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One important advantage of putting each fractal in a fixed universal viewing window such

as this, is that the value of a pixel does not change between images. This will be pertinent

when examining databases we create with these fractals, as well as when we use them to

train a neural network to predict their parameters.

3.2 Properties of Randomly Generated Fractal Sets

Using the methods shown in the previous section, we generated fractal databases of attractors

made from IFSs with each of two, four, six, and eight functions, by doing the following:

1. Randomly initialize an IFS with parameters sampled from a uniform distribution span-

ning [−1, 1], and equally distributed probabilities.

2. Check all functions of the IFS for contractivity, and regenerate all parameters of the

functions that are not contractive.

3. Generate 1,000,100 points using the random algorithm, and discard the first hundred.

4. Check the generated points for values that lie outside [−1, 1]2. If no points are found,

store the fractal in the database. If one or more points is found, continue to the next

step.

5. Divide all additive parameters in the IFS by the largest single coordinate value, and

return to step three.

The resolution of the images was chosen to be 640 × 640. While a higher resolution

could provide more precise details of the attractor, images of this size are much larger than

those of typical neural network applications. As we will see in chapter five, this is because

neural networks can take up large amounts of memory, and the higher the resolution, the

more memory will be required. Two questions that may arise, though, are how do we know
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Functions in the IFS 2 4 6 8
Avg. Absolute Difference 58.0 486.22 966.36 1215.82

Avg. Relative Difference (%) 0.19 1.12 1.62 1.66

Table 3.1: Comparison of the number of pixels corresponding to an attractor when it is
generated with 1,000,000 points of the random algorithm, to when it is generated with
1, 100, 000 points.

1,000,000 points is sufficient to represent the attractor with this resolution? And, how do

we know 100 points is sufficient to remove points that are not within the width of a pixel?

These are especially pertinent when considering that the probability associated with each

function was evenly distributed, as we do not know the optimal values. The answer to the

first question is the following: Examining these databases will show that the number of

pixels used to represent each fractal is almost always less than 200,000, regardless of the

number of functions in the IFS. Thus, many of the pixels represent a multitude of points,

and generating more would not drastically change the resultant image. Empirical evidence

of this is shown in Table 3.1, where we generated 1,000 randomly initialized fractals with

1,000,000 points, regenerated them with 1,100,000 points, and compare the number of pixels

corresponding to the attractor. To answer the second question, consider a relationship we

derived in the previous chapter:

dX,point(x
k, A) ≤ ckdX,point(x0, A),

where c is the largest contraction factor of a function in the IFS. To ensure that the hundredth

point is within the width of a pixel no matter the initial point and location of the attractor,

we require

c100 <
1

640
→ c < 0.937.

Though, when considering that the other functions are likely to be more contractive, dis-

carding the first hundred points is likely to be enough for the vast majority of randomly
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generated fractals. Additionally, we will see in Chapter 5 that a few pixels out of place will

likely not affect the output of a neural network significantly.

Each of the generated databases contained 250,000 fractals. For each one, not only was

the image of the attractor stored, but the following variables as well:

• All fractal parameter values

• The number of pixels taken up by the fractal

• An estimate of the fractal dimension

• The centroid of the fractal pixels

• The standard deviation of the fractal pixels from the centroid in both the horizontal

and vertical directions

A detail that will become important when training a neural network with these randomly

generated IFSs is the way the parameters are stored. Since the attractor of an IFS will be

the same no matter the order of the functions, we have to be able to account for this when

training a neural network to predict parameters of an IFS for a given image. So, the functions

were ordered based on the value of the parameters in the matrix of the affine transformation.

Labelling these parameters as

w(x, y) =

a b

c d


x
y

+

p
q

 ,
then the functions were ordered in increasing order of the a parameters. If two functions

were to possess the same value, an unlikely case for randomly generated double precision

numbers, then they were ordered in increasing order of their b parameter. Saving all these

variables allows us to analyze properties of fractals in a more general setting, and view trends
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as the number of functions in a given IFS is changed. Fig. 3.3 shows comparisons of a subset

of a given dataset relative to the entire respective dataset. The values being compared are

the absolute values of the multiplicative parameters; those parameters in the matrix of

the affine transformation, where the subset is the top ∼1,000 fractals with the fewest pixels

pertaining to the attractor. What we can deduce from this set of graphs, is that for IFSs

comprised of fewer functions, the magnitude of the multiplicative parameters has a greater

influence on the number of pixels used to represent the fractal. The same trend is seen

in Fig. 3.4, which compares the same property, but the subset is constructed from the top

∼1,000 fractals that have the most attractor pixels. It makes sense that the absolute size

of these multiplicative parameters will partially determine the number of pixels required to

represent the attractor as they are related to each functions contraction factor. Fractals with

larger parameters will be less contractive, and hence span more pixels. To understand why

this effect dies out with more functions, we must first look at some other properties.
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(a) (b)

(c) (d)

Figure 3.3: Comparing distributions of the absolute value of the multiplicative parameters.
The green represents the top ∼1,000 attractors for being composed of the fewest amount of
pixels. The blue is the distribution of the entire dataset from which the green subset was
taken. (a), (b), (c), and (d) shows the distributions for the databases of fractals with two,
four, six, and eight functions in their IFSs respectively.
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(a) (b)

(c) (d)

Figure 3.4: Comparing distributions of the absolute value of the multiplicative parameters.
The green represents the top ∼1,000 attractors for being composed of the most amount of
pixels. The blue is the distribution of the entire dataset from which the green subset was
taken. (a), (b), (c), and (d) shows the distributions for the databases of fractals with two,
four, six, and eight functions in their IFSs respectively.
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The next properties we will examine are the effect the number of functions in an IFS has

on the number of pixels corresponding to the fractal, and the standard deviation with respect

to the centroid of those pixels in the horizontal direction. These are displayed in Fig. 3.5

and Fig. 3.6 respectively. Note that the standard deviation with respect to the centroid in

the vertical direction produces similar results. As we can see from these images, the more

functions that make up a given IFS, the more pixels it will require to represent its attractor,

on average. We can also see from Fig. 3.6, that the standard deviation decreases, on average,

for IFSs comprised of increasing amounts of functions. The overarching theme, then, is that

as we increase the number of functions in an IFS, on average we will go from obtaining a

fractal with fewer pixels that is more spread out, to one with more pixels that is more dense

around its centroid. This makes sense when considering how the random algorithm works

to generate each fractal. Each function in the IFS has a globally attractive fixed point. So,

when the fractal is generated in the random algorithm, whichever function is chosen as the

next transformation will pull the input point slightly closer to its own fixed point. As we

increase the number of functions in the IFS, there are more possible fixed points that the

input point could get pulled towards, leading to a higher concentration of pixels around the

average location. This is also the reason why with more functions, the absolute size of the

multiplicative parameters plays less of an effect on the number of pixels corresponding to

the fractal.

The last properties that we can examine are the centroid location and fractal dimension.

Though, we will not include images of these plots for the following reasons: The centroid

location was approximately normally distributed for all databases. The fractal dimension is

a monotonic transformation of the number of pixels used to represent the attractor. One

can attain the plots for the fractal dimension by using a log-scaled x-axis, and scaling the

data of the images in Fig. 3.5.
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(a) (b)

(c) (d)

Figure 3.5: This figure shows the distribution of the number of pixels each fractal possesses
for multiple datasets. (a), (b), (c), and (d) show the distributions for the databases of fractals
with two, four, six, and eight functions in their IFSs respectively.
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(a) (b)

(c) (d)

Figure 3.6: This figure shows the distribution of the standard deviation along the horizontal
direction of the pixels each fractal possesses for multiple datasets. (a), (b), (c), and (d) show
the distributions for the databases of fractals with two, four, six, and eight functions in their
IFSs respectively.
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Chapter 4

Fractals Created From Nonaffine

Functions

Before continuing to the neural network portion of this thesis, we take a detour to fractals

created from IFSs consisting of nonaffine functions. As of yet, we have only discussed

attractors created from affine transformations. This is in part due to the fact that there

is very little research done on anything else. Approximated attractor sets created in this

chapter are purely for curiosity’s sake of what they might look like, and what functions may

be used to create them; they will not be used beyond this chapter.

Similar to randomly generated affine functions, we must have a set of conditions to guar-

antee that these nonaffine functions are contractive when randomly generating parameters.

Once a function is known to be contractive, it will satisfy Banach’s fixed point theorem, as

well as the theorems stating that the IFS will be a contraction mapping in (H(X), dH). For

each section in this chapter, we will derive these conditions and present some examples of

fractals created from the functions that satisfy them. Also note that we arbitrarily chose

each IFS in this chapter to be a set of four functions, and all attractors were generated with

1, 000, 000 points of the random algorithm, after discarding the first hundred.
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4.1 Bounded Derivative Functions

The first group of nonaffine functions we will look at are those for which we can bound the

derivative. If we have a function f(x) = a g(x) + c such that |g′(x)| ≤M ∀x, where a, c, ∈ R

and M ∈ R+, then by the mean value theorem ∃ p ∈ (x, y) such that

|f(x)− f(y)| = |x− y| |f ′(p)|

= |a| |x− y| |g′(p)|

≤M |a| |x− y|

Thus, in order for f to be a contractive function, we require |a| < 1/M . We will call these

functions represented by g bounded derivative functions and denote the set of all of

them by G. Extending this to two dimensions, let x = (x1, x2), y = (y1, y2), and

f(x) =

a1,1g1(x1) + a1,2g2(x2)

a2,1g3(x1) + a2,2g4(x2)

+ C

where ai,j ∈ R, C ∈ R2, and gi ∈ G. We will denote the matrix with elements ai,j by A.

Checking for contractivity we see,

||f(x)− f(y)||2 =

∥∥∥∥∥∥∥
a1,1(g1(x1)− g1(y1)) + a1,2(g2(x2)− g2(y2))

a2,1(g3(x1)− g3(y1)) + a2,2(g4(x2)− g4(y2))


∥∥∥∥∥∥∥
2

.
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Taking the absolute value of each element, and applying the triangle inequality and mean

value theorem results in

||f(x)− f(y)||2 ≤

∥∥∥∥∥∥∥
|a1,1| · |g1(x1)− g1(y1)|+ |a1,2| · |g2(x2)− g2(y2)|
|a2,1| · |g3(x1)− g3(y1)|+ |a2,2| · |g4(x2)− g4(y2)|


∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥
|a1,1| · |x1 − y1||g′1(p1)|+ |a1,2| · |x2 − y2||g′2(p2)|
|a2,1| · |x1 − y1||g′3(p3)|+ |a2,2| · |x2 − y2||g′4(p4)|


∥∥∥∥∥∥∥
2

,

where p1, p3 ∈ (x1, y1), and p2, p4 ∈ (x2, y2). Let M be the largest bound on the derivative

of all gi. Then,

||f(x)− f(y)||2 ≤

∥∥∥∥∥∥∥
|a1,1| · |x1 − y1|M + |a1,2| · |x2 − y2|M

|a2,1| · |x1 − y1|M + |a2,2| · |x2 − y2|M


∥∥∥∥∥∥∥
2

≤M ||A′||2||x− y||2,

where A′ corresponds to the element-wise absolute value of A. Note that all of the contrac-

tivity conditions derived in the previous section were invariant to changes in sign. Hence,

to guarantee contractivity, we simply need to check M ||A||2 < 1, and can use the same

conditions as before. Additionally, notice that this generalization has the same strength as

we had with affine transformations, as we could choose gi(x) = x ∀i.

We will generate attractors with the gi functions sin(bix), cos(bix), and tanh(bix), where

bi ∈ R is different for each gi. All of these functions have their derivative bounded by Mi = bi,

where |gi(x)| ≤ Mi∀x. For simplicity, we will reduce the number of possible permutations

of functions to explore by restricting ourselves with g1 = g3, and g2 = g4, apart from the

bi values. Selecting all of the parameters from a uniform distribution between −1 and 1,

we generated 100 fractals for each permutation of the functions gi in the transformation, f ,
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Figure 4.1: Examples of some of the less sparse attractors created from the bounded deriva-
tive functions. From left to right shows transformation consisting of the functions cosine
and cosine, sine and sine, and hyperbolic tangent and hyperbolic tangent as the g1 and g2
functions. The viewing window for each image is [−3, 3]2.

above.

It was realized that the bi parameters being less than one resulted in much more sparse

attractors. That is, the number of pixels that represent the attractor is quite small relative

to those created from affine transformations. This effect was slightly inhibited when the gi

functions were chosen to be sine and the hyperbolic tangent. Examples of these attractors

are shown in Fig. 4.1.

One cause of this sparsity could be from making the functions more contractive than

necessary. Since we randomly selected all parameters to have a magnitude less than one, this

may skew the distribution of functions to be more contractive. For example, if maxi(|bi|) <

0.5 for a particular function, then even if all ai,j were to have a magnitude of 1, a very

unlikely case, this would still be a contractive function. We can reduce the extent of this

problem by enforcing M = 1, and then only checking if ||A|| < 1, much like we do for

affine functions. This can be done by using gnewi (bix) = gi(bix)/bi. Note that we could now

relax the restriction of |bi| ≤ 1, though this will not be done for the following reason: As

bi increases, the range of the functions that we are using decreases, which would increase

the sparsity of the attractors. For example, the function cos(4x)/4 can only produce values
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in [−0.25, 0.25]. This restricted range is likely to get further restricted through fixed point

iteration. Some examples of attractors created from these functions are given in Fig. 4.2, for

more, see the appendix.

We can see that the attractors of IFSs constructed from functions with a derivative

bounded by one are much less sparse than before. Additionally, they often display curvature

that does not seem to appear in fractals created from affine functions, yet they still maintain

the feature of possessing shrunken distorted copied of themselves.

As this new transformation retains all the parameters of an affine transformation, we

can make bounded derivative function extensions of common affine fractals. This will by

done by maintaining all the parameters in A and C as defined above, randomly selecting

bi ∈ [−1, 1], and forcing M = 1 in the same manner as we did before. Results of this are

shown in Fig. 4.3. We can see that these fractals maintain many of their original features.

This may be attributed to the fact that for small arguments, both sine, and the hyperbolic

tangent are approximated by x. Similarly for cosine, we have that cos(bi(x∓ π/2))/bi ≈ ±x

for small arguments.
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Figure 4.2: Examples of attractors created from bounded derivative functions in which a
bound of one was forced by dividing each function by bi. Each column from left to right
has cos(bix)/bi, sin(bix)/bi, and tanh(bix)/bi as the g1 = g3 function respectively. Each row
from top to bottom has cos(bix)/bi, sin(bix)/bi, and tanh(bix)/bi as the g2 = g4 function
respectively. The viewing window for each of these is [−4, 4]2.
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Figure 4.3: Bounded derivative function extensions of the Levy C fractal, shown at the
bottom. Each column from left to right has cos(bix)/bi, sin(bix)/bi, and tanh(bix)/bi as the
g1 = g3 function respectively. Each row from top to bottom has cos(bix)/bi, sin(bix)/bi, and
tanh(bix)/bi as the g2 = g4 function respectively. The viewing window for each of these is
[−0.75, 1.5]2.
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4.2 Piecewise Functions

In this section we create attractors from piecewise functions. We can effectively have one

IFS if a given point in the random algorithm sequence satisfies a specific condition, and a

completely different IFS if it does not. Although, we must first show that this piecewise IFS

is a contraction mapping in the space (H(X), dH). To do this, we will repeat the proof of

Thm. 2.4, where ŵ1, one of two functions in an IFS, is now a piecewise function. As before,

let R, S ∈ H(X). Then the distance between these sets after applying the Hutchinson

operator is

dH(HW (R), HW (S)) = dH(ŵ1(R) ∪ ŵ2(R), ŵ1(S) ∪ ŵ2(S))

≤ max{dH(ŵ1(R), ŵ1(S)), dH(ŵ2(R), ŵ2(S))}.

Define

ŵ1(x) =


ŵ1

1(x) x ∈ Q

ŵ2
1(x) otherwise

,

and let R1 = R ∩Q, R2 = R \R1, S1 = S ∩Q, and S2 = S \ S1. Then we see

dH(HW (R), HW (S)) ≤ max{dH(ŵ1
1(R1) ∪ ŵ2

1(R2), ŵ
1
1(S1) ∪ ŵ2

1(S2)), dH(ŵ2(R), ŵ2(S))}

≤ max{max{dH(ŵ1
1(R1), ŵ

1
1(S1)), dH(ŵ2

1(R2), ŵ
2
1(S2))},

dH(ŵ2(R), ŵ2(S))}

≤ max{max{c11dH(R1, S1), c
2
1dH(R2, S2)}, dH(ŵ2(R), ŵ2(S))},
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where c11 and c21 are the contraction factors of ŵ1
1 and ŵ2

1 respectively. Since R1 and R2, and

S1 and S2 are completely disjoint,

max{c11dH(R1, S1), c
2
1dH(R2, S2)} = max{c11, c21}dH(R, S),

hence we see,

dH(HW (R), HW (S)) ≤ max{max{c1, c2}dH(R, S), dH(ŵ2(R), ŵ2(S))}

≤ max{c11, c21, c2}dH(R, S).

Thus, an IFS containing a piecewise function is contractive in the space (H(X), dH) as long

as both branches of the piecewise function are contractive. This can also be easily extended

to include more than one piecewise function, more than two pieces per piecewise function,

and more than two functions in the IFS.

We will limit ourselves to piecewise affine functions throughout this section, as well as

only two function pieces per piecewise function. We have not developed a way to scale these

fractals like we do with regular affine functions, so the viewing region of attractors throughout

this section was chosen to be [−4, 4]2, as it was found to encompass most randomly generated

attractors. Since this window does not support the range of all the attractors, though, we

generated datasets of 250 fractals, instead of 100 like in the previous section. The IFSs were

constructed by randomly selecting their parameters from the uniform distribution spanning

[−1, 1], and checking the same affine contractivity conditions as before. Some examples of

these piecewise affine IFS attractors are shown in Fig. 4.4. The top row pertains to IFSs

with a piecewise condition being whether the x coordinate is less than zero or not, and the

bottom row corresponds to IFSs with the piecewise condition being whether the y-value is

less than zero or not. For example, the first attractor in the upper row has the function
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system:

W =



ŵ1(x, y) =



0.1397 −0.2843

0.3063 −0.8336


x
y

+

−0.0481

0.0290

 x < 0

 0.3599 0.4186

−0.0924 −0.3478


x
y

+

 0.0286

−0.1175

 x ≥ 0

p = 0.25

ŵ2(x, y) =



−0.6790 0.4759

0.0393 0.6567


x
y

+

0.0620

0.1412

 x < 0

0.1602 0.6751

0.3961 −0.0220


x
y

+

−0.0492

−0.0714

 x ≥ 0

p = 0.25

ŵ3(x, y) =



−0.1891 −0.5533

−0.6981 0.1319


x
y

+

−0.0152

−0.3393

 x < 0

 0.9226 0.3412

−0.2114 0.7290


x
y

+

−0.0598

0.9776

 x ≥ 0

p = 0.25

ŵ4(x, y) =



−0.8095 −0.2954

−0.3793 −0.1487


x
y

+

0.0920

0.5824

 x < 0

−0.5152 −0.6344

0.6020 −0.2905


x
y

+

−0.9057

0.4934

 x ≥ 0

p = 0.25

The particular function chosen for this IFS depends on the x = 0 line; we will call this

the piecewise boundary. Similarly, we will refer to the piecewise components of the IFS

defined for one particular side of the piecewise boundary as a branch of the IFS. With this

terminology, there are some interesting things about the attractors given in Fig. 4.4. To

begin with, there is no definitive lines along the piecewise boundaries, showing where the

53



Figure 4.4: Examples of attractors generated from piecewise affine IFSs. The top row is
produced with the piecewise condition being whether the x coordinate is above or below
zero. The bottom row corresponds to IFSs whose piecewise condition is based on the y
coordinate being above or below zero.
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Figure 4.5: Examples of attractors generated from piecewise affine IFSs. The top row is
produced with a piecewise boundary defined by x = 0 for y ≥ 0, and y = 0 such that x ≥ 0.
The bottom row corresponds to IFSs whose piecewise condition is defined by x+ y = 0.

attractor switches branches. This is simply because it is only the function’s input that is

limited to a specific region; each branch of the each function can produce values on both

sides of the piecewise boundary. However, many of the fractals generated exhibit distinct,

unnatural looking discontinuities. This is shown in several of the attractors displayed in

Fig. 4.4, where it appears as though pieces of the fractal are cut off. In addition, these lines

do not seem to reflect the orientation of the piecewise boundary, whether it is vertical or

horizontal. This also makes sense as each component is dependent on both coordinates of the

previous iteration of the random algorithm. With this in mind, what would some attractors

look like whose piecewise boundaries depends on both coordinates? Some examples of this

are shown in Fig. 4.5.
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With these piecewise boundaries depending on both coordinates, we can see that some of

the fractals not only possess areas that look cut off, but attributes corresponding to chunks

being taken away between two intersecting lines. These can be understood by considering the

deterministic algorithm. Suppose our initial set is the square [−1, 1]2, and that the piecewise

boundary is given by x = 0. Then after the first iteration, one branch of the IFS transforms

half the initial set, while the other branch transforms the other half. Though, each branch

is not able to produce the same set as if it were not cut off by the piecewise boundary.

Hence, some portions of an attractor may only be made through points on the other side of

the boundary. These missing sections then get propagated throughout the attractor as the

algorithm progresses. These iterations of the deterministic algorithm can be visualized in

Fig. 4.6.

There is a problem that arises with this realization, though: Should all transformations

of a branch of the IFS produce sets on its own side, we cannot necessarily produce the full

attractor. For example, the crystal-like fractal shown in Fig. 2.5 completely fits in the region

[0, 1]2. So, if we use a piecewise boundary defined by x = 0, and the initial point or set

of either generation algorithm has only positive x coordinates, we will only generate the

crystal fractal. Additionally, if we are using the random algorithm and the initial point does

have a negative x coordinate, as soon as it gets transformed to a point with a positive x

coordinate, it will never cross the piecewise boundary again. Therefore, we must ensure the

following: Let there be n branches to each piecewise function, each being defined on a region

Qi disjoint from all others. Let Ai be the attractor of the ith branch, and associate each

region Qi with a node, or vertex in a directed graph. Then we can say the node associated

with Qi is connected to the node associated with Qj if Ai∩Qi and Ai∩Qj are both nonempty.

We then require this corresponding directed graph to be strongly connected to ensure the

the random algorithm will utilize each branch of each IFS. Additionally, we can consider

piecewise functions that are not defined for disjoint regions by simply splitting the regions
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Figure 4.6: Using the deterministic algorithm to generate a piecewise affine IFS in order to
display how “missing pieces” of the attractor are created. The piecewise boundary is defined
by x = 0.
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Figure 4.7: An example of how one can make disjoint regions for overlapping piecewise
function conditions.

where there is an overlap, as shown in Fig. 4.7. The IFS on the overlapping region can then

be the union of the overlapping IFS branches.

Another concept, which may seem like an issue at first, is what happens when one branch

of the IFS produces a point on the other side of the piecewise boundary that is not part

of the attractor for that side’s branch. One may think that this point is not part of the

attractor of the piecewise IFS, but this may be incorrect. We can think of the generation of

these piecewise IFSs like a strange version of tug of war between the branches of the IFS. The

attractor is then the equilibrium state of the game. Consider an attractor corresponding to a

piecewise IFS generated with an infinite number of iterations. If we run it through one step

of the deterministic algorithm, each branch will take everything on its side and transform

it one step closer to its own attractor. Doing this will take away points on each side that

do not correspond with their respective attractors. Simultaneously, though, this produces

new points on the other side of the piecewise boundary that are exactly the points that

were taken away. A simplistic version of this can be visualised in Fig. 4.8. Note that this

is actually how regular IFSs work as well. Each point in the set no longer included after

the transformation of a given function in the IFS is produced by one of the other functions.

These piecewise IFSs are then similar to IFSs of IFSs in the sense that their attractors are

58



Figure 4.8: A simplistic depiction of how the attractor of a piecewise IFS incorporates pieces
of each branch’s attractor.

constructed from pieces of each branch’s attractor. Though, we have not yet shown that the

random algorithm actually works for these function systems.

Theorem 4.1. Let W be an IFS with corresponding Hutchinson operator HW , which is a

contraction mapping in (H(X), dH). Then the points xn generated by the random algorithm

become arbitrarily close to the attractor, A, of W . Additionally, for any ε > 0, ∃N such that

if n > N , then dH(xn, A) < ε.

Proof. Let c be the contraction factor of HW . Then the determinstic algorithm produces the
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sequence of sets {Sn}∞n=0, where Sn = HW (Sn−1). Their distance to A is then

dH(Sn, A) = dH(HW (Sn−1), HW (A))

≤ c dH(Sn−1, A)

≤ cn dH(S0, A).

Let {xn}∞n=1 be the sequence of points generated by the random algorithm such that xn =

wσn(xn−1), where σn is a random index, and wi ∈ W . Then we see xn ∈ Sn. In other words,

the sequence generated from the random algorithm is such that the nth point lies in the

set produced from the nth application of the Hutchinson operator. This can be seen as a

modified version of the setup to the nested interval theorem. Now let Sn be the sequence of

sets generated from the deterministic algorithm such that S0 is the singleton set {x0}. Then

the distance between the nth point in the random algorithm and the attractor is found to be

dX, point(xn, A) ≤ dH({xn}, A)

≤ max{dH({xi}, A) |xi ∈ Sn}

= dH(Sn, A)

≤ cn dH({x0}, A).

Closed piecewise function boundaries are another interesting case to consider. Some

examples of this are shown in Fig. 4.9, where the piecewise boundaries are defined by |x|+

|y| = 1 and x2 + y2 = 1, for the top and bottom rows, respectively. We can see from these

images that the fractals appear to be partially made from pieces of squares and circles. We

get both cut out chunks of these shapes as well as filled in squares and circles. The cut out
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Figure 4.9: Examples of attractors generated from piecewise affine IFSs. The top row is
produced with the piecewise boundary defined by |x|+ |y| = 1. The bottom row corresponds
to IFSs whose piecewise boundary is given by x2 + y2 = 1.
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chunks can be explained similar to before; affine mapping being applied to everywhere but a

given region, resulting in missing shapes from the attractor. Similarly, the filled in squares

and circles can be explained as being mappings from the branch inside the shape, to areas

on the other side of the piecewise boundary. This means that we can see which branch of the

IFS formed specific parts of the attractor; the filled in shapes are created from the branch

inside the shape, while the hollow shapes are created from the branch outside of it.

Fractal Splicing

One concept we can apply with these piecewise IFSs is fractal splicing: Combining two,

or more IFSs by making each one a branch of a piecewise IFS. Since we know the attractor

of the piecewise IFS is constructed from pieces of each branch’s attractor, we may be able to

obtain features of both. We will restrict ourselves to only splicing two IFSs together. There

are a few things to keep in mind before we do this, though. Firstly, we can, for the most part,

scale these fractals. By scaling the attractors of each branch, the majority of the piecewise

IFS attractor will be in the same region. The only components of the attractor that may

not be within the desired region are transformed pieces of the other branch’s attractor (the

green and yellow portions shown in Fig. 4.8). This allows us to combine a wider variety of

fractals due to the previously mentioned condition that the corresponding directed graph

must be strongly connected. Results of splicing some common fractals is shown in Fig. 4.10.

Note that the number of functions for each IFS combined in the bottom two rows is not

equal. In these cases, we only made as many functions piecewise as there were in the IFS

possessing less functions. The remaining functions of the original IFS with a greater number

of them, were then kept purely affine. This means that one can obtain different results based

on which functions were made to be piecewise when splicing two fractals with an unequal

amount of functions.
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Figure 4.10: Examples of fractal splicing. The attractors in the left two columns were spliced
together to make the fractals on the right. For each of the spliced fractals the piecewise
boundary is given by x2 + y2 = 0.25. The left column of spliced fractals has the IFS of the
attractor in the left column being defined inside the circle boundary, whereas in the right
column, the IFS branches are switched.
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Figure 4.11: A depiction of how introducing a new mapping from another IFS can incorporate
features of that IFS in the attractor. A mapping from the maple leaf fractal was added to
the IFS pertaining to the attractor on the left. The fractal produced from the new IFS is
shown on the right.

We can see from these examples that by splicing IFSs together, the attractor takes on

attributes of both fractals from which it was made. One interesting thing to note about this,

is that one typically gets “better” results when the number of functions is not equal. What

is meant by this, is that attributes from the attractor of each branch were more easily seen,

and the resulting fractal is typically more natural looking, as opposed to pieces in arbitrary

locations, such as in the top row of Fig. 4.10. This makes sense when considering what

would happen in an iteration of the deterministic algorithm. Having at least one function

in the IFS that is not piecewise will allow it to act on the entire set of points, and blend

the features of each branch. Another way that we can think of this is maintaining a fully

piecewise IFS, but adding a sufficient number of contraction mappings to the IFS consisting

of fewer functions until both branches have the same amount. Simply including an extra

contraction mapping by itself can introduce features of the other attractor. This can be

seen in Fig. 4.11 where a single mapping from the leaf fractal was added to the IFS of the

attractor shown on the left, producing an IFS with the attractor on the right.
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Figure 4.12: The effects of changing the piecewise boundary when splicing two attractors
together. The IFSs corresponding to the attractors in the left column were spliced together
to create the rest of the images. The other images in the top row correspond to piecewise
boundaries being defined as x2 + y2 = 0.25, and |x| + |y| < 0.5 going from left to right
respectively. Similarly, the bottom two spliced fractals have boundaries of x = 0 for y ≥ 0
and y = 0 for x ≥ 0, and y = x respectively.

Another thing to keep in mind when splicing fractals together is how the piecewise bound-

ary will manifest itself. As we saw previously with circles and squares being part of the at-

tractor, the piecewise boundary can substantially change how the spliced fractal looks. This

can be seen in Fig. 4.12 where we splice together the IFSs corresponding to the attractors

in the left column to create the rest of the attractors with various piecewise boundaries.
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Chapter 5

Deep Learning Background

Recent breakthroughs in machine learning, those algorithms that improve through experi-

ence, have provided us with many new and useful technologies. From programs that can

convert hand written notes into text on a computer, to ones that can describe the setting

within an image, these algorithms have a wide array of applications [8]. The purpose of this

chapter is to discuss some of the theory and common practices of particular machine learning

areas so that we can apply them to the fractal databases in order to predict parameters for

a given attractor in the subsequent chapter.

5.1 Feedforward Neural Networks

A feedforward neural network is one of the most basic and essential concepts of deep learning;

a soon to be defined subfield of machine learning. These networks, also called multilayer

perceptrons (MLPs), are typically used as classifiers. That is, the purpose of the network is

to take in data, and classify each piece into a known category. One way that the network can

classify data is by outputting a vector where each component represents a specific category.

Then by convention, the largest component of the output vector is the category the network
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chooses for the given piece of input data [8]. We can begin to express this mathematically

by defining our goal function as y = f ∗(x), which maps input data x to the output vector

y. Then our feedforward neural network is expressed by y = f(x;θ), where θ are parameter

values of the network which are learned to best approximate the function f ∗(x).

Although this concept may be easy to understand, it may still be elusive as to why this

is called a feedforward neural network. There is a purpose to this terminology, though.

The function f(x;θ) is typically constructed from multiple other functions. This is done

for a few reasons. As mentioned above, the input and output of the network are vectors,

hence each function represents a different transformation on the vector from the previous

function output. Splitting up the network into these separate functions not only makes it

easier to understand what these transformations are doing, but allows us to apply other

operations, such as regularization techniques, which will be discussed in a later section,

at multiple areas throughout the network. Suppose our network contains the functions

f1, f2, f3, and f4. Then we might construct our feedforward neural network in a chain as

f(x;θ) = f4(f3(f2(f1(x)))), where each function contains a portion of the parameters θ.

This is where the term feedforward is derived; information is fed from one function directly

into the next. If any output were to be fed back into itself, or a previous function, we would no

longer have a feedfoward network, but instead a recurrent neural network. Recurrent neural

networks are the primary form of machine learning used in continuous input applications

such as speech recognition, and natural language processing [8].

A graph may be constructed that depicts which components of a vector get mapped

to another, and in what combinations, giving the network portion of the term feedforward

neural network. Lastly, a note on the ”neural” terminology used in this field, which is inspired

from biology: We can consider each component of one of the vector valued functions to be a

neuron, or node that takes in a value and outputs another. The computation of that node

along with the network of connections can then be thought of like a brain.
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Figure 5.1: A graphical representation of the simple neural network in Ex. 5.1

Example 5.1. In this example we demonstrate how data is fed forward through a simple

neural network, and how it calculates all the intermediate and output values. The layout of

the network is shown in Fig. 5.1 where the functions f1, f2, and f3 are given by


f1(x, y) = (x, y)

f2(x, y) = (0.2x+ 0.4y, 0.4x+ 0.6y, 0.6x+ 0.8y)

f3(x, y, z) = (0.1x+ 0.2y + 0.3z, 0.4x+ 0.5y + 0.6z)

Note that since this is a feedforward neural network, the dimension of the output of one layer

must match the dimension of the input of the layer it feeds into.

In Fig. 5.1, each blue circle represents a node, or one of the components of the vector

valued functions, and each line represents how that component is connected to the others. We

are then approximating some function f ∗(x, y) with our network of the form f(x, y; θ) =

f3(f2(f1(x, y))) where the parameter values θ is the set of all coefficients in each of the

functions. For this example, we give the network the values (x, y) = (1, 0) and obtain an
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output of (0.28, 0.64). Note that the output does not have to be, and typically is not of the

same dimension as the input vector.

Now that we have a basic understanding of what a feedforward neural network is, we can

go over some more terminology in order to describe different networks efficiently.

Definition 5.1 (Layers). Each vector valued function, which is represented by a vertical line

of nodes in Fig. 5.1, is called a layer. The first layer in the network is called the input layer,

and the last is called the output layer. All layers in between the input and output layers are

called hidden layers. If it were not for the explicit calculations shown in Fig. 5.1, we would

not know what values the nodes in the hidden layers are storing.

Definition 5.2 (Depth). The number of layers used to construct a neural network is called

the depth of the model.

Definition 5.3 (Width). The number of nodes in a given layer is called the width of that

layer.

Definition 5.4 (Fully Connected). When each node in one layer of a network is connected

to each node of the next layer, it is called fully connected. If each layer of a network possesses

this property, it is called a fully connected neural network.

Using these definitions, we can now state that the network shown in Fig. 5.1 is fully

connected with a depth of three, and it possesses one hidden layer of width three. Typically,

the more complicated the function you are trying to approximate, the deeper the model

needs to be; this is where the term deep learning comes from [8]. Creating networks that

contain very wide layers often leads to overfitting. This is akin to attempting to model data

with a polynomial of a degree too high that it no longer generalizes well. This problem will

be addressed in the regularization section.
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Figure 5.2: An example of a neural network that contains bias nodes. The blue circles
represents the regular nodes whereas the red ones represent the bias nodes.

There is another way to think about our network that may be more intuitive and favor

its graphical representation. All the coefficients for the linear transformations in each node

can be thought of as a weight corresponding to each connection. The weights need not be

normalized, but represent the strength of the connection between the two nodes. The value

in each neuron is then given by the sum of the values in the previous layer multiplied by the

corresponding weights.

As of now, we have only looked at linear transformations, however, we can improve the

capacity for our networks to approximate by expanding this to affine transformations. Affine

mappings can be constructed by including another node that is independent of the inputs,

and has a corresponding weight to each node in the next layer. The parameters of this node,

termed a bias node, will also be included in the total set of parameters, θ. An example of a

network containing bias nodes is given in Fig. 5.2. Note that the bias nodes are not included

in the width of the layers. So, this network has a depth of three, a single fully connected

hidden layer of width four, and a partially connected output layer of width three.
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With this framework, we can represent the computation in a given layer by

f(x;w, b) = wTx+ b.

In this equation, w is an m × n matrix of weights with m and n being the number of

nodes in the current and previous layers, respectively, x is a vector of the outputs from the

previous layer, and b is the vector of biases. Note that we can represent missing connections

in the weight matrix with a value of zero. Additionally, the way the bias nodes are actually

implemented is through setting them to one, and multiplying them too by a weight value.

This results in the transformation

f(x;w) = wT

x
1

 ,
however, we will continue with the original notation for simplicity. We can further increase

the capacity for our network to approximate functions by introducing non-linear transfor-

mations, the topic of the next section.

5.2 Activation Functions

With a chain of affine functions, there is a limit on the transformations a given network can

approximate well. Complicated nonlinear functions would be exceedingly difficult to approx-

imate. Hence, we introduce a nonlinear transformation to each layer called the activation

function.

Theorem 5.1 (Universal Approximation Theorem). We say that a set of functions F ∈

L∞loc(Rn) is dense in C(Rn) if for every function g ∈ C(Rn) and compact set K ⊂ Rn, there
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exists a sequence of functions fi ∈ F such that

lim
i→∞
||g − fi||L∞(K) = 0.

Let M denote the set of functions in L∞loc(Rn) such that the closure of the set of any of the

function’s discontinuities is of Lebesgue measure zero. Then, if φ ∈M , we define

Σn = span{φ(w>x+ b) : w ∈ Rn, b ∈ R}.

Then Σn is dense in C(Rn) if and only if φ is not an algebraic polynomial almost everywhere.

Proof. For the proof of this theorem, see [13].

What the universal approximation theorem is saying, is that so long as we have one

hidden layer with a locally bounded, piecewise continuous, nonpolynomial transformation,

we can approximate any function to any degree that we wish [8]. The caveat here is that it

does not specify how wide the hidden layer must be in order to achieve the desired accuracy.

The first activation function that we will examine is called the sigmoid function:

σ(x) =
1

1 + e−x
=

ex

ex + 1

This function was first introduced as it possesses some nice properties: The sigmoid function

satisfies all conditions required by the universal approximation theorem, and its derivative

can be expressed in terms of itself as σ(x)(1 − σ(x)), which will significantly reduce the

number of computations needed when training the model. Additionally, the range of the

function is (0, 1), which allows us to think of outputs more like probabilities. As a result of

this range, it enables the network to deal with a wider array of inputs, as they will all be

contained within that interval. The sigmoid function and its derivative is shown in Fig. 5.3.
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Figure 5.3: A plot of the sigmoid function as well as its derivative.

Example 5.2. In this example we will approximate the Boolean XOR (eXclusive OR) func-

tion using a simple feedforward neural network that contains biases, and uses the sigmoid

activation function. Boolean functions take two input parameters that are either true or

false, represented by one and zero respectively. The XOR function returns true only if one of

the inputs is true while the other is false. The network that we will use to approximate this

function has the architecture shown in Fig. 5.4, where the functions it represents are defined

as 

f1(x, y) =
[
x y

]T
f2(x, y) = σ

(
w2

[
x y

]T
+ b2

)
f3(x, y, z) =

[
0.7818 2.5948 2.4807

][
x y z

]T
+
[
−1.4811

]
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Figure 5.4: A visual representation of the neural network used in Ex. 5.2 to model the XOR
function. The red circles are the biases, and the blue are regular nodes.

Input True Value Model Output

(0, 0) 0 −5.9605× 10−6

(0, 1) 1 1

(1, 0) 1 1

(1, 1) 0 −6.9141× 10−6

Table 5.1: This table displays the input, output, and true values for the XOR neural network
model of Ex. 5.2.

where the matrix of weights w2, and vector of biases b2 are given by

w2 =


2.1851 2.3421

2.4837 −3.0120

−2.1454 2.532

 b2 =


2.21212

−1.9324

−1.4939


Output from the model can be seen in Table 5.1. Of course, the model only came to be able to

produce such accurate output, and have the parameters it does after it was trained to do so,

a topic of a later section. However, the point of this example is to demonstrate that we can

model the XOR function quite accurately by incorporating the sigmoid activation function.
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One should only use the sigmoid activation function for shallow neural networks, though.

There is an issue that arises with it in deep neural networks that will be discussed with the

proper background in the gradient descent and optimization section. So, we turn to another

common activation function called the Rectified Linear Unit (ReLU). ReLU is defined as,

ReLU(x) = max(0, x).

The derivative of the ReLU function is defined everywhere except at x = 0 where a value of

zero is assigned. One may notice that the ReLU function does not satisfy the requirements

of the universal approximation theorem. However, the ReLU activation function has been

shown to be a universal approximator as well.

Theorem 5.2. Let f be a Lebesgue integrable function from Rn to R. Then, a fully connected

network with n input nodes, the ReLU activation function, and a hidden layer of width

n + 4 can approximate f to arbitrary accuracy. Additionally, except for a negligable set of

functions, f cannot be approximated if the width of the hidden layer is no more than n.

Proof. For the proof of this theorem, see [14].

Since the beginning of its use, ReLU has become a multipurpose activation function; it

is used as the default for many neural networks. One problem that comes with it, though,

is the possibility of “dead nodes”. As will be seen in the gradient descent section, should a

node in the network return a negative value, when paired with the ReLU function, it will not

be able to receive updates [8]. If this were to continue happening no matter the input, say

if the network learns a large negative bias, then the node representing this transformation is

considered “dead”.

Because of the possibility of dead nodes with the ReLU activation function, it is recom-

mended to initialize all biases with a small positive value. Additionally, many variants of
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the ReLU function have been made to overcome this issue, and have been shown to perform

just as well [8]. These variants include

• Leaky ReLU: max(0.1x, x)

• Softplus: ln (1 + ex)

• PReLU: max(αx, x), α is another learnable parameter

and many others. These functions attempt to overcome the problem of dead nodes by

introducing a nonzero derivative when the input of the function is negative.

5.3 Loss Functions

Gradient descent is the fundamental mechanism behind deep learning. It is the method by

which these neural networks learn their parameters, and the reason that they work at all.

Using outputs that we know or want for a given input, and using the functions covered in

this section, we can calculate an error, or loss, which is to be minimized through gradient

descent. Supervised learning, the type of machine learning that will be used throughout

this thesis, goes as follows:

• Data is fed forward through the network until the outputs are obtained

• A loss, or cost is calculated using the model outputs and desired outputs

• The gradient of the loss function with respect to each of the parameters of the network

is calculated

• The calculated gradients are used to update each of the parameters of the network

• All steps are repeated until a sufficiently low loss is achieved, or stopping criteria are

met
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In this section we cover various loss functions, and appropriate times to use them. Choos-

ing the correct loss function can drastically decrease the amount of time required to train a

given neural network, and there are many different loss functions to choose from. All loss

functions, however, need to be differentiable everywhere, as we will be applying gradient

descent.

Definition 5.5 (L1 Loss). Let ŷ be the output vector of length n from a neural network, and

let y be the true values. Then, the L1 loss can be calculated as

L1(ŷ, y) =
1

n

n∑
i=1

|ŷi − yi|

Note that this function is not differentiable on any of the lines ŷi = yi. To account for this

the partial derivative with respect to ŷi at such points is defined to be zero.

Definition 5.6 (L2 or Mean Squared Error Loss). Let ŷ be the output vector of length n

from a neural network, and let y be the true values. Then we define the L2, or Mean Squared

Error (MSE) loss to be

MSE(ŷ, y) =
1

n

n∑
i=1

(ŷi − yi)2

Both of these simpler loss functions can be applied to any neural network in general.

However, distinguishing which loss function would work best depends greatly on the data

and purpose of the network. For example, if your data had a significant amount of outliers,

it would be better to use the L1 loss, as L2 would likely produce larger losses, and result in

a gradient that does not necessarily reflect the dataset due to those outliers.

Definition 5.7 (Support Vector Machine). A neural network used to construct one, or more

hyperplanes with the purpose of classifying data by means of maximizing the margin between

the data and hyperplane is called a support vector machine (SVM).
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Definition 5.8 (Hinge Loss). Let y be the output from a neural network. Then the hinge

loss is calculated as

Lhinge(y) = max(0, 1− t · y),

where t is a scaling factor defining a threshold of 1/t for the desired output. Typically t is

chosen to be ±1, where the sign is always chosen to match that of the true category.

The hinge loss is a more specialized loss function often used for SVMs. If a given piece

of data is on the correct side of the margin, the network receives a loss of zero. However, if

a given piece of data is on the wrong side of the margin, the network would receive a loss

proportional to its distance from the margin.

Example 5.3. To get a sense of how this loss function works, suppose we have a classification

network that takes in pixel values of an image and has one output node: We would like it to

return a positive number if the image is of a dog, and a negative number if the image is of a

cat. This is a binary classification network. Now consider the following cases where in the

hinge loss function we are using has a scaling factor of t = 1 if the image is truly a dog, and

t = −1 for images of cats:

1. The network returns a value of 5.0

2. The network returns a value of −0.3

3. The network returns a value of 0.0

In the first case, the neural network is indicating that the image is of a dog. We can also

tell that this is a relatively strong prediction as 5.0 is past the threshold of the hinge loss by a

factor of five. So if the input image truly was a dog, then the hinge loss returns a value of zero.

However, if it were really a cat, then the hinge loss would return max(0, 1− (−1)(5)) = 6.
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Suppose that the image is a cat in the second case. While the network predicts the correct

category by returning a negative value, it fails to meet the threshold and hence we still have

a non-zero loss of max(0, 1− (−1)(−0.3)) = 0.7.

For that last case, it does not actually matter what the image is, as the output is an equal

distance from the threshold for both cats and dogs. Although the chances of this happening

in reality are quite small, it would recieve a loss of one.

If our dataset has more than two categories, we cannot use a binary classifier like in the

above example. Instead, as mentioned previously, we can create a network with multiple

output nodes where each one corresponds to a specific category. The output node with the

largest value is then taken to be the model’s prediction.

Definition 5.9 (Softmax Function). Let ŷ be the output vector of length n from a neural

network. Then, the softmax function takes in a single component of ŷ, and computes the

transformation

Softmax(ŷi) =
eŷi∑n
j=1 e

ŷj
.

Note that this is not a loss function as it does not return a single value for the network.

Instead, it transforms the outputs to a more useful form.

The softmax function can be very useful for classification models as it provides the outputs

with some very useful properties. Namely, the normalization of the outputs allows us to treat

them like probabilities. Then for any given data, we receive an array of probabilities of the

possible categories. In addition, the exponentiation within the function provides a useful

property. Not only does this make the function an everywhere differentiable variant of the

argmax function, which simply takes the largest input, but the exponentials make it much

more difficult to achieve zero loss. In order to obtain a loss value of zero, the correct output

node would have to be infinite. Then, similar to the hinge loss, even if the model predicts
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the correct category, it will continue receiving non-zero loss values so that its parameters

can be updated in a way to produce stronger predictions, that is, one category has a much

higher probability than the others.

Definition 5.10 (Negative Log-Likelihood Loss). Let ŷ be the output vector of length n from

a classification neural network, and ȳ be a transformation of ŷ such that ȳi ∈ (0, 1], and the

sum of all ȳi is one. Let ȳclass be the element corresponding to the true category of the input

data. The Negative Log-Likelihood (NLL) loss is then given by

NLL(ȳ) = − ln (ȳclass).

Note that this loss function can only be used on outputs in (0, 1], otherwise, this function

could result in negative loss values.

The softmax function is typically paired with the NLL loss. Similar to the L2 loss, it

penalizes incorrect outputs exponentially more the further the model is from the true values.

The combination of softmax with the NLL loss forms the Cross Entropy (CE) loss function.

Definition 5.11 (Cross Entropy Loss). Let ŷ be the output vector of length n from a classi-

fication neural network, where ŷclass corresponds to the true category of the input data. The

Cross Entropy loss is then calculated as

CE(ŷ) = − ln

(
eŷclass∑n
j=1 e

ŷj

)
.

The CE loss function gets its name from information theory, where the cross entropy

quantifies the difference between two probability distributions, p and q, over the same set of

events. Specifically, the cross entropy returns the average number of bits needed to identify

an event should a coding scheme used to identify an event in the true distribution p, be
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optimized for the estimated distribution q. For non-trivial distributions the cross entropy is

given by

H(p, q) = −
∑
x

p(x) ln (q(x)),

where x goes over all events in the probability distributions. For classification algorithms,

however, we know the category of the input, and hence the true distribution, p, collapses to

be one in the correct event, and zero for all others. This cancels the sum, resulting in the

above formula for the CE loss when accounting for softmax.

Example 5.4. Suppose the network in Ex. 5.1 was a classification model where the top node

indicates that the input is authentic, and the bottom node indicates that the input is a fake.

After applying the softmax function to the outputs of (0.28, 0.64), the new normalized outputs

are

(0.28, 0.64)→ (
e0.28

e0.28 + e0.64
,

e0.64

e0.28 + e0.64
) = (0.411, 0.589).

Hence the network is indicating that the input is fake with a probability of 58.9%. If the input

were actually authentic, then the CE loss would be

CE(0.28) = − ln (0.411) = 0.889.

Note that this is in part how generative adversarial networks work; a type of network that

takes in an array, and produces outputs such as images of people’s faces. One network is

designed such that an input image is reduced to a relatively small vector and then expanded

once again to the size of the input. Supervised learning is then used to train this network

to reproduce its input. After a desired amount of steps has been performed, the part of the

network that compresses it to a vector is discarded. Meanwhile, supervised learning is used to

train a second network to predict whether an image is authentic, and portrays a real person’s

face, or if it is a computationally generated face. To obtain the computationally generated
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images, random input vectors are given to the image generating network. The output of

the authentication network is used to further update the parameters of the image generating

network, and whether or not that output is correct is used to improve the capabilities of the

authentication network. So, these networks compete against one another; the image gener-

ating network is attempting to fool the authentication network. Once the image generating

network is able to consistently win this competition, the outputs can be quite realistic!

5.4 Gradient Descent and Optimization Algorithms

Now that we know how to calculate the error for the output of a neural network, we can

begin trying to minimize it using gradient descent. Since the gradient of a function points in

the direction of steepest ascent, the method of gradient descent is the act of moving a given

function’s variables in the opposite direction of the gradient in order to minimize it. More

specifically for neural networks, if we have a loss function that tells us how well our model

performs, we can treat the parameters of our model as variables, and modify them in the

direction opposing that of their respective gradients; the direction of steepest descent.

Example 5.5. In this example we will perform linear regression on a small dataset using

gradient descent. We will model the values shown in Table 5.2 with the function f(x) = ax+b.

Gradient descent will allow us to find near optimal values for a and b by minimizing the MSE

loss function. Initializing both a and b to zero, we obtain an initial loss of

Loss =
1

11

11∑
i=0

(f(xi)− yi)2 ≈ 41.75

Then, the gradient of this loss function with respect to a is given by

∂Loss

∂a
=

1

11

11∑
i=0

[
2 · (f(xi)− yi) · xi

]
.
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xi 0 1 2 3 4 5 6 7 8 9 10
yi 1.5 1.7 2.4 4.2 5.1 5.8 6.4 7.2 8.7 9.5 10.6

Table 5.2: Data used in Ex. 5.5 for linear regression by means of gradient descent.

Similarly, the gradient of the loss function with respect to b is given by

∂Loss

∂b
=

1

11

11∑
i=0

[
2 · (f(xi)− yi)

]
.

Putting these together, the gradient vector is

∇Loss =

[
∂Loss

∂a
,
∂Loss

∂b

]
≈ [−76.07, −11.47].

Of course, if we simply change the a and b values by the negated gradient it is easy to see

that our model would become a relatively steep line, and still not model the data properly.

To account for this, a step size is introduced, we will initialize this to α = 0.01. Then, the

change our variables will undergo is

[a, b]→
[
a− α · ∂Loss

∂a
, b− α · ∂Loss

∂b

]
[0, 0]→ [0.761, 0.115]

Simply doing this single iteration has now reduced the loss to a value of 3.71. After a second

iteration, we obtain a loss of 0.60 with parameters a = 0.977, and b = 0.151. After 500

iterations we obtain a loss of 0.098 with parameters a = 0.943, and b = 1.004. We can verify

visually that this line models the data well in Fig. 5.5.

Note that in Ex. 5.5 we had 11 pieces of data, and the loss function averaged the loss

from each of them. For neural networks, it is common to either do this, or sum the loss

attained from each individual piece of data.
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Figure 5.5: Results of using gradient descent for linear regression in Ex. 5.5.

The only differences between the above example and what happens with neural networks,

is that neural networks are much more complicated functions with more parameters, and

possibly multiple outputs, and neural networks typically use stochastic gradient descent.

Dealing with the former first, we will begin by defining notation. Let f(x;θ) be a neural

network with n layers where the ith function has the form φi(w
(i)x(i)+b(i)), with φi being the

activation function, w(i) the matrix of weights, and b(i) the vector of biases. Additionally,

let z be the loss calculated from some differentiable loss function. With this notation, w
(i)
j,k

is the weight of the connection of the kth node in the (i − 1)th layer, to the jth node in the

ith layer. This can be seen by referring back to Ex. 5.2 in the activation functions section.

There, when looking at the w2 matrix, we see that when we multiply it with [ x y ]T on

the right, the first column multiplies with the x and the second with the y. Hence, the

column number of a weight in a weight matrix represents the node from the previous layer.

Similarly, the row represents which node in the current layer the weight forms a connection

with. We will also denote the value of the jth node in the ith layer with x
(i)
j . Expanding the

matrix-vector multiplication in each layer, we get the following formula for the value in each
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node:

x
(i)
j = φi

(∑
k

w
(i)
j,kx

(i−1)
k + b

(i)
j

)
,

where k is the number of nodes in the (i − 1)th layer. With this notation we can use the

chain rule to calculate the gradient of the loss function with respect to any parameter in the

network that we would like.

Example 5.6. For this example we will work with a fully connected, n layer neural network

that has two outputs. Suppose the second last layer of this network has four nodes, and

we would like to calculate the gradient of the loss function, z, with respect to the weight

connecting the fourth node in that second last layer, to the second node in the layer preceding

it. Then, as can be visualized in Fig. 5.6, we must add the components of the derivative that

we get from traversing every path connecting the loss function to that weight. In the given

image, the weight that the partial derivative is being taken with respect to is shown in blue.

The paths from the loss function to this weight are shown in red. This gives us the following

partial derivative:

∂z

∂w
(n−1)
4,2

=
∂z

∂x
(n)
1

∂x
(n)
1

∂x
(n−1)
4

∂x
(n−1)
4

∂w
(n−1)
4,2

+
∂z

∂x
(n)
2

∂x
(n)
2

∂x
(n−1)
4

∂x
(n−1)
4

∂w
(n−1)
4,2

The first term is given from the upper two red lines, whereas the second term is given by the

lower two red lines.

The process of updating the parameters of the network using the calculated gradients is

called backpropagation. Data is fed forward through the network, the loss is calculated,

and then the gradients are calculated and propagated backwards to update the parameters

of the network; this is known as the learning process. It is in the backpropagation step of

the learning process that we see the problem with the sigmoid function shown in the loss

functions section.
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Figure 5.6: A visualization of how the gradient is calculated in Ex. 5.6. The weight that the
gradient is being taken with respect to is shown in yellow. The paths connecting that weight
and the loss function are shown in red.

Suppose we have a deep neural network where the same activation function is applied

to each layer. Then, as we can see from the above example, each factor of each term, other

than the partial derivatives of z with respect to a node, will be proportional to the derivative

of the activation function. That is,

∂x
(k)
j

∂x
(k−1)
i

∝ φ′k,
∂x

(k)
i

∂w
(k)
i,j

∝ φ′k.

It can be seen that if we had taken the gradient with respect to a weight one layer nearer

the input, there would be an additional factor on each term as well. Thus, the gradient of

the loss function with respect to any given weight is proportional to the derivative of the

loss function to the power of the number of layers between the weight and the end of the

network;

∂z

∂w
(k)
i,j

∝ (φ′)(n−k).

As we can see from Fig. 5.3, if we repeatedly multiply the derivative of the sigmoid function
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with itself, it will approach the y = 0 line. Hence, the gradient with respect to parameters

near the input will be negligible no matter the loss, and it will not be possible to update

them efficiently. Thus, the sigmoid function, and related activation functions such as the

hyperbolic tangent function, would not be good choices for deep neural networks. This issue

is known as the vanishing gradient problem.

The back propagation step is also where the issue of dead nodes with the ReLU activation

function arises. Specifically, the partial derivative of a node with respect to a weight will

result in an expression of the form

∂x
(k)
i

∂w
(k)
i,j

=
∂φk

∂w
(k)
i,j

· x(k−1)
j ,

where if ReLU is the activation function, and its input happens to be non-positive, then

∂φk

∂w
(k)
i,j

= 0.

Thus, any weight in an affine transformation resulting in a negative value will not be updated

if the ReLU activation function is used. In addition, this is why the variants of the ReLU

function attempt to overcome this problem by maintining a nonzero derivative for negative

inputs.

Given a good choice of activation function, this method for updating the weights should

work well in situations where we can run all the data through the model at once. However, we

typically do not have all possible data, and there is often too much to run through at once.

For example, we cannot possibly attain every person’s unique way of writing letters and

numbers, but there are databases available that contain many thousands of such examples.

It is infeasible, though, to give a model say 100,000 images as they, as well as the model

with all of its parameters, would take up more memory than the graphics card can hold
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(most machine learning training is performed on a computer’s graphics card). For this

reason, neural networks typically perform stochastic gradient descent (SGD) throughout the

learning process.

Definition 5.12 (Stochastic Gradient Descent). Stochastic gradient descent uses gradient

descent to minimize a function, but only gives the model a randomly selected portion of the

data at a given step of the algorithm.

Example 5.7. In this example we will perform the same task, using the same data, as in

Ex. 5.5. Instead of using regular gradient descent, though, we will make use of SGD. This

will be done by only giving the model two data points at a time. For the first iteration, we

will give the model (0, 1.5) and (1, 1.7). This results in a loss of

Loss =
1

2

[
(f(0)− 1.5)2 + (f(1)− 1.7)2

]
= 2.57

Calculating the gradient in the same way, and with the same step size of α = 0.01, the

first parameter update results in a = 0.017, and b = 0.032. Next, giving the model the

points (2, 2.4) and (3, 4.2), we get a loss of 11.20, producing the parameters a = 0.187, and

b = 0.097. Continuing to give the model the data in a sequential order, after 500 iterations

we obtain the values a = 0.913, and b = 0.934 with a loss of 0.168, giving the results shown

in Fig. 5.7.

As we can see from this new example, SGD performs quite differently than regular gradi-

ent descent. To begin with, if it were possible to have an infinitesimal step size, the loss for

regular gradient descent would be monotonic decreasing. However, this is not the case for

SGD. This is because each batch of data the model receives does not necessarily reflect the

entire dataset. Thus, SGD has a lower convergence rate than regular gradient descent [15].

In the examples, after 500 iterations, the fit of the model for SGD is not as good as that of
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Figure 5.7: Results of using stochastic gradient descent for linear regression in Ex. 5.7.

regular gradient descent. This can be quantified numerically by calculating the loss of the

SGD model with the full dataset, giving 0.158. There are several methods we can apply to

address these problems, and improve the performance of SGD.

The first thing we can do to improve the SGD algorithm is to randomly pick, or shuffle

the data points that we give the model, as opposed to providing them sequentially. Doing

so results in the model having to minimize the loss produced from many different batches,

which provides a wider variety of gradient directions. Globally shuffling the dataset after

enough steps of SGD to get through all of it, and sampling the batches without replacement

has been shown to provide a speedup in the training time [15]. Implementing this tactic on

our SGD model, we reduce the loss on the full dataset from 0.158 to 0.114. This new loss

value was averaged over 1,000 trials due to the introduction of the random sequence of data

points possibly affecting how well the parameters are updated.

Definition 5.13 (Hyperparameter). A hyperparameter is a variable that is set ahead of the

learning process; gradient descent does not affect these parameters.

Another simple way one can optimize the SGD algorithm is by fine-tuning the hyper-

parameters. As of now, the regression examples have several hyperparameters; the number
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of iterations, the batch size, and the step size. In terms of neural networks, the width

and depth of the model are included as well. These parameters can drastically affect how

quickly a model converges, if at all. For example, if we double the number of iterations, this

now improves the average total loss for the SGD algorithm from our example from 0.114 to

0.099, whereas if we half it, we obtain an average loss of 0.134. This now almost matches

the results from regular gradient descent! However, we can further improve the model as the

hyperparameters used for the regular gradient descent example were not fine-tuned as well.

The step size, or more often called learning rate in the realm of neural networks, is

another very influential hyperparameter. It can be difficult to find the appropriate value for

the learning rate as if it is too large, the algorithm may either oscillate around the solution,

but not produce an accurate answer, or diverge entirely. Conversely, if it is too small, the

algorithm may never converge, get stuck in a local minimum, or take much longer than

necessary to converge. These can be seen in the regular gradient descent method shown in

Ex. 5.5 where even if the step size were α = 0.05, by the tenth iteration, the model already

has a loss on the order of 108 with parameter values of a ≈ 13,501, and b ≈ -1,944. However,

if the learning rate were α = 0.001, it would take approximately 4,000 iterations to achieve

the same loss shown in the example. This is not to say that α = 0.01 is optimal, though. The

best learning rate for this example is in the neighborhood of α = 0.025, which achieves the

same loss as in the example in approximately 200 iterations. While for this trivial example

it may not make a large difference, for complicated models it can be the difference between

training a model for hours, compared to days.

Methods of finding the optimal hyperparameters is an active area of research. Typically,

one discriminates between sets of hyperparameters by training one’s model for several itera-

tions through the entire dataset, and testing its accuracy. Accuracy is calculated differently

depending on the purpose of the network. For classification models, accuracy is given by the

frequency with which a model correctly classifies data on a particular dataset. For models
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that predict values, one can use tolerance levels; the accuracy is given by the frequency that

a model correctly produces values in a given tolerance on a particular dataset. The dataset

that is used to measure accuracy is further discussed in section 5.6. A popular method for

generating sets of hyperparameters is through a grid search [8].

Definition 5.14 (Grid Search). To perform a grid search, one generates subsets of each

parameter that they would like to test. Then, each element of each hyperparameter subset is

tested with all variants of the other hyperparameters.

As of now, we have only covered good practices to optimize the SGD algorithm, how-

ever improvements on the algorithm itself exist as well. We present several optimization

techniques, all of which can be found in [8].

Stochastic Gradient Descent With Momentum

One such method of improving the SGD algorithm is to incorporate the “momentum” of

the gradient in the parameter change. This is done by storing previous gradient values and

calculating a moving average by exponentially weighing them. Let zk be the loss calculated

on the kth iteration of training. Then instead of updating the parameters by the learning

rate multiplied with the gradient of zk with respect to its parameters, we update it with

θk = θk−1 − αV k,

where α is the learning rate, θk are the parameters of the network on the kth iteration of

training, and V k is given by

V k = βV k−1 + (1− β)∇zk,
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where V 0 is the zero vector, β ∈ (0, 1) is called the momentum coefficient, and ∇zk is

the gradient of the loss function with respect to the network’s parameters. Note that β is

another hyperparameter of the model, effectively defining the weight of previous gradients

relative to the current one. The motivation behind adding this momentum term is to be

able to get out of local minima, just like rolling a ball down a hill with enough momentum

can overcome rocks that get in its way. This method of updating parameters of the model

is called SGD with momentum (SGDM).

AdaGrad

Another common method for improving SGD is an algorithm called AdaGrad. Changing

certain hyperparameters of the model during the learning process is common practice and

offers many advantages. The AdaGrad algorithm changes the learning rate based on the size

of the gradient. One advantage of doing this, is that it decreases the model’s sensitivity to

the initial learning rate. That is, if you were to pick a sub-optimal learning rate, the model

would likely not perform as bad as if the learning rate were not to be adjusted. Though, if an

optimization algorithm such as this is not implemented, it is common practice to manually

adjust the learning rate when one sees fit. The way AdaGrad specifically scales the learning

rate, is specific to each parameter. That is, for a given parameter of the network, the learning

rate is divided by the Euclidean norm of all previous gradient values with respect to that

parameter. Since the gradient with respect to each parameter is different, each parameter

then has a different learning rate. When the gradient with respect to a given parameter is

large, that parameter receives a greatly decreased learning rate. Similarly, the parameters

corresponding to the smaller components of the gradient receive relatively small decreases in

their learning rates. This algorithm is theoretically desirable for convex optimization as there

is then greater progress for those parameters with smaller slopes. The problem with this
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algorithm is that the accumulation of all squared gradients from the beginning of training

can become excessively large for deep neural networks, effectively preventing the model from

learning, after a given number of iterations.

RMSProp

Combining ideas from both SGDM and Adagrad we can obtain an algorithm called RM-

SProp. RMSProp takes the concept of exponentially weighted gradients from SGDM and

applies it to the learning rate modification of AdaGrad. In other words, for a particular

parameter of the network, one divides the learning rate by the Euclidean norm of all previ-

ous gradient values with respect to that parameter, but exponentially weighs each gradient

value in favour of those that are more recent. This is similar to allowing the network only

a finite memory of the previous gradients in the AdaGrad algorithm, fixing the problem of

overly decreased learning rates. This extension of AdaGrad then allows it to work well in

nonconvex optimization as well. RMSProp has been shown experimentally to perform well

in many situations, and is one of the default optimization methods that can be applied to

almost any problem.

Adam

The incorporation of gradient momentum for the parameter updates themselves, along with

RMSProp leads to an algorithm called Adam. Named so after adaptive moments, Adam

also includes a correction to the updates on the gradients of the weights corresponding to

biases. Note that since Adam has both momentum incorporated in the gradient as well as the

scaling factor for the learning rate, it possesses one momentum coefficient for each of them.

Empirically, Adam has been found to work well for many different models. Additionally,

this algorithm has proven quite robust with respect to hyperparameters, allowing them to
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be kept at their defaults in most cases, apart from the learning rate. For more on Adam,

see [8, 16].

5.5 Convolutional Neural Networks

One common application of neural network models is image recognition and classification.

The goal of such applications is as follows: Given an image and a potential set of possible

labels, assign the label(s) to that image that agrees with what human eyes would see rep-

resented in that image. Some models go so far as to surround objects in the image with

a box that labels it. However, images include much more information, and therefore, more

complications. Suppose we want to create a fully connected neural network model that takes

in a 200 × 200 image, has one hidden layer of the same width as the input layer, and then

leads to a single node output. This model would have 4×104 input nodes, one for each pixel

value; 4× 104 hidden layer nodes; and one output node. That means we need the computer

to store 4× 104× 4× 104 + 4× 104 ≈ 1.6× 109 weight values! If each of these weight values

are stored as the usual 8-byte, double precision floating point numbers, this model would

take up almost 12GB of data. Keep in mind that this is for a relatively small image, and

does not even include multiple hidden layers, bias nodes, or other values the model needs

to store. The way we solve this computer memory problem is through convolutional neural

networks (CNNs).

As the name suggests, CNNs make use of a convolution operation to reduce the number

of parameters in the network. Specifically, CNNs have a filter, or kernel possessing weights

like those from fully connected networks that get updated through gradient descent. This

filter passes over the image and computes a discrete convolution. The output from the

discrete convolution is then often called a feature map, for reasons we will soon see. If we

take I to be our input image, and K to be the two dimensional filter, then the discrete
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Figure 5.8: A visual aid to help understand what exactly the cross correlation operation in
CNNs computes. In each step, the light blue square in the left image is the kernel, whereas
the light blue square in the right image is the output of the cross correlation. The image on
the right of each step is then the feature map.

convolution is given by

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) =
∑
m

∑
n

I(i−m, j − n)K(m,n),

where m and n run through the dimensions of the kernel, and i and j are selected so that

the filter is always on the image. In reality though, this commutivity property is because the

kernel is flipped relative to the input, and so most neural network implementations actually

compute the cross-correlation [8]

(K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n).

This operation can be visualized in Fig. 5.8. In each step, the light blue square in the left

image represents the filter passing over the image. Every pixel value inside this filter will get

multiplied by a weight, and summed to create the single value stored in the light blue square

on the right image. The filter then moves over and computes the next cross-correlation.

Each step computes a single value in the feature map; the image on the right.
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Example 5.8. Let the input matrix I and the kernel matrix K be defined as

I =



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16


K =

0.4 0.3

0.2 0.1

 .

The cross-correlation (K ∗ I)(1, 1) can then be computed as

(K ∗ I)(1, 1) =

1× 0.4 + 2× 0.3

5× 0.2 + 6× 0.1

 = 2.6.

This is only one entry of the feature map, though. The filter then passes over the whole image

computing cross-correlation at each step. The full feature map for this example is then


(K ∗ I)(1, 1) (K ∗ I)(1, 2) (K ∗ I)(1, 3)

(K ∗ I)(2, 1) (K ∗ I)(2, 2) (K ∗ I)(2, 3)

(K ∗ I)(3, 1) (K ∗ I)(3, 2) (K ∗ I)(3, 3)

 =


2.6 3.6 4.6

6.6 7.6 8.6

10.6 11.6 12.6


We call the output of the convolution with the kernel a feature map because it can be

thought of as just that. The kernel essentially computes how strong the presence of a given

feature is at the location on the image where the cross correlation is computed. For example,

the kernel 
0.0 1.0 0.0

0.0 1.0 0.0

0.0 1.0 0.0


can be thought of as a vertical line detection filter. Then, as it passes over all locations of

the image, it computes a value corresponding to the likelihood of there being a vertical line
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in that section of the image. The entire output then maps out where the filter detected lines,

and where it did not.

The kernels do not begin with predetermined filters but instead learn to detect important

features to the dataset the network is trained on. Near the start of the network, we get

filters which may detect lines, or other obscure properties. As we move deeper through the

network, kernels then act on feature maps, allowing them to detect more complex objects.

For example, if a vertical line was detected beside a horizontal line, we may have a corner,

or something similar in the image. The build up of these complex features from more simple

ones is what allows CNNs to read hand-written digits, distinguish between dogs and cats,

and perform well in many other useful applications [8].

With these convolution operations we can still make use of many of the same tactics

as before, such as including biases and applying non-linear activation functions. The only

difference is that we save a significant amount of memory by reducing the parameters in the

network. In fact, we save so much memory that most networks typically have many different

filters in the same layer, each one producing a different feature map, as each one picks up on

different features. However, this can often lead to confusion with how each feature map in the

next layer is actually calculated. For a kernel acting on a layer with multiple feature maps,

each feature map has a different weight in the kernel. So, the cross correlation computation

is now given by

(K ∗ I)(i, j) =
∑
d

∑
m

∑
n

I(i+m, j + n, d)K(m,n, d).

where d goes over all feature maps. In other words, if we think of the feature maps and filter

as three dimensional arrays, we multiply them component-wise for a particular i, and j, and

sum all the values. To obtain a layer with multiple feature maps, one then uses multiple

three dimensional filters.
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Figure 5.9: A visual depiction of a filter that acts on multiple feature maps

Example 5.9. Suppose that one layer outputs an object of size 16 × 64 × 64, that is, 16

feature maps of height and width 64. If the next layer has two 4× 4 filters, each one actually

16 × 4 × 4 weights, we simply do not mention the 16 as it is always made to match the

number of feature maps in the previous layer. Each feature map of the previous layer then

receives its own 4 × 4 convolution. After the single-value producing cross correlation over

the three dimensional array, the filter goes through all locations on the original feature maps.

An example of this can be seen in Fig. 5.9.

We can further reduce the number of parameters in our network by incorporating com-

ponents from the following definitions in our network.

Definition 5.15 (Stride). The stride is a property of a filter that defines how far it moves

before computing the next cross-correlation. A filter with a stride of two would compute a

cross-correlation, move over two pixels, and repeat.

Definition 5.16 (Pooling Layer). Pooling layers are layers in the network with the purpose

of reducing the height and width of their input. This is done by increasing the stride of the

filter.

Definition 5.17 (Max Pooling). A max pooling layer is a type of pooling layer that returns

the largest value inside the filter.
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Definition 5.18 (Average Pooling). An average pooling layer is a type of pooling layer that

returns the average value inside the filter.

Note that max pooling and average pooling layers act on all feature maps, but do so one

at a time, preserving the number of feature maps from the input. Additionally, these layers

are not included in the depth of the neural network.

The cross-correlation shown in Ex. 5.8 can be considered an example of pooling as it

reduced the size of the input from a 4× 4 matrix to a 3× 3 matrix. However, most pooling

layers achieve the reduction in size through a stride greater than one, and typically cut

the height and width of the input in half, approximately. Another reason pooling can be

extremely useful in image related applications, is that it may make the network invariant to

small translations [8]. This allows networks to be able to detect what an object is no matter

where it is placed on a given image.

Example 5.10. Using the same input matrix and filter as in Ex. 5.8, we get the following

outputs when using a stride of two both horizontally and vertically.

Original Filter Max Pooling Average Pooling 2.6 4.6

10.6 12.6


 6 8

14 16


 3.5 5.5

11.5 13.5


Note that in the above example, all of the heights and widths of the feature maps were

cut in half. Regular filters with a stride larger than one can be a useful method of pooling

as it allows the network to learn what is important when reducing the size of the feature

map. Additionally, notice that if we had chosen a stride of three, we would have difficulty

computing the output due to the filter being only half on the image. Strides and filter sizes

are chosen to avoid this dilemma.

With the current framework, we can reduce the height and width of an image quite easily,
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in fact, it is the only thing we can do. So, how can we maintain the dimensions of an image?

This is done through zero padding. Essentially, we add a border of zeros around the outside

of the image. We can add more than one border of zeroes as well. Note that a border of

width one actually increases the width and height of a layer by two, as there will be zeroes

on both sides of the data. This not only allows us to maintain the same dimensions, but

allows the edges of the image to be involved in calculations with the same frequency as pixels

in the middle of the image. If we want to maintain the size of the input with a filter of width

f , we need a border of width (f −1)/2. Though, we require an integer from this calculation,

hence, only filters with odd valued widths and heights can maintain image dimensions. If a

given layer in our CNN has a width or height given by m, then the corresponding dimension

of the feature map, m′, will be

m′ =
m− f + 2p

s
+ 1,

where p is the zero padding border width, s is the stride of the filter, and f is the corre-

sponding length of the filter. We require that this always results in an integer so that the

filters only ever fully fit on the input and border.

5.6 Applications To Hand-Written Digit Recognition

Now that we have all of the necessary tools to construct and train a neural network, we

will go through the process of creating one, and train it to recognize hand-written digits.

The data from this section comes from the MNIST library, which contains 60,000 images for

training, and 10,000 images for testing, all of size 1× 28× 28. The “1” in the size represents

the colour channel, meaning that it is purely black and white. It is common practice to split

up a dataset into both a training set and testing set: The model is exclusively trained
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on the training set, and once it is done training, it is measured for accuracy on the testing

set. It is important to note that backpropogation is not performed when testing a model for

accuracy, and the testing set is only used once, after training is complete. However, with this

setup, we cannot test various sets of hyperparameters through a grid search, or any other

search method: We cannot use the testing set as this was used to update the parameters,

and we cannot use the testing set as the accuracy would then no longer reflect how well the

model generalizes. The testing set is likely to contain biases towards some features of the

true distribution, hence fine-tuning the hyperparameters to it would likely fit to those biases

as well. One solution to this problem is to include a third set called the validation set.

This set is used to measure accuracy during training. A consistently decreasing accuracy

on the validation set is an indication that the model is beginning to overfit to the training

set. With this validation set, the accuracy on the testing set will still provide an unbiased

estimate of the generalization accuracy of the model.

For this model we will define a convolutional layer to consist of: A dimensionality main-

taining 5 × 5 kernel with two layers of zero padding, or a border of width two, followed by

the ReLU activation function, and a 2× 2 max pooling layer with a stride of two that cuts

the height and width in half. Then the architecture of the network we are going to use to

recognize hand-written digits is as follows, and can be visualized in Fig 5.10:

• Input the 1× 28× 28 image

• Apply a convolutional layer resulting in 16 feature maps of size 14× 14

• Apply a convolutional layer resulting in 32 feature maps of size 7× 7

• Flatten the 32× 7× 7 feature maps to a 1,568 node vector

• Feed the data forward through a fully connected layer to a 100 node vector and apply

the ReLU function
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Figure 5.10: A visual depiction of the model used to classify hand written digits.

• Feed the data forward through a fully connected layer to a 50 node vector and apply

the ReLU function

• Feed the data forward through a fully connected layer to a 10 node output vector

Each of the values in the output vector is then associated with a number; the first element

pertains to zero, the second to one, and so on. Before training the network, the image of the

nine shown in Fig 5.10 gives the output

[
0.142 −0.045 0.043 0.076 0.030 −0.068 −0.090 0.134 0.019 −0.081

]T
.

Applying the softmax function would suggest that the number is a one with a probability of

11.3%. Using the CE loss with this output, we get an error of

CE(−0.0810) = − ln
(e−0.0810∑

i e
xi

)
= − ln

( 0.922

10.195

)
= 2.403

To train the model, we made use of the Adam optimizer and the CE loss. We trained the

model for 20 epochs; the number of times run through the entire training set, and used the

following hyperparameters:
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• A learning rate of 0.0001

• A momentum coefficient of 0.9 in the gradient

• A momentum coefficient of 0.999 in the learning rate scaling factor

• A batch size of 100 images

After performing these calculations, the new output for the image of a nine shown above is

[
−15.25 −18.01 −11.52 −3.83 4.09 −10.98 −34.18 4.68 −0.60 17.88

]T
Applying the softmax function, this corresponds to the model predicting that the image is

a nine with a probability of 99.99%. The true accuracy of our model, though, is given from

how well it performs on the test set. For this configuration, the model obtained an accuracy

of 98.92%.

5.7 Regularization Methods

As with many models, neural networks are prone to overfitting data. This problem is made

worse as we do not know the complexity necessary to accurately fit the data. Further,

many of the problems neural networks are applied to require a model complexity similar to

simulating the entire universe [8]. Because of this, the best deep learning models are ones

that are large, but apply methods that prevent it from overfitting to the training data [8].

These are known as regularization methods.

One simple methodology we can put into practice to prevent overfitting is to obtain as

much data as possible, however, this is not always realistic or easy. As mentioned previously,

we can also implement the use of a validation set, and stop training if the accuracy becomes

consistently decreased. Throughout this section we present algorithm modifications that can
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be applied in order to help a given model generalize to data that it was not trained on. Note

that this often comes at the expense of a higher loss on the training set [8].

Parameter Norm Penalties

One common method of regularization is adding a parameter norm penalty. That is, we add

a term to the loss function based on a given norm of the parameters:

L̃(x,y;θ) = L(x,y) + γΩ(θ),

where L is the loss function with the tilde indicating the use of regularization, x is the true

output, and y is the model output. Here, Ω calculates a norm of the parameters θ, and

γ ∈ [0, ∞), another hyperparameter, controls the extent of its effect on the loss. Note that

when implemented, we typically only add a norm penalty to the weights of the network and

not the biases. This is because regularizing the biases as well typically leads to underfitting

the data [8]. Hence, we can replace θ with w in this equation. This may not seem like an

intuitive thing to do, why would we want to limit the weights values that our model can

take on? However, larger weight values are typically a sign that the network is beginning to

overfit [8].

Goodfellow et al. [8] used two common norms for this type of regularization; the L1

norm, and half the square of the L2 norm, also known as Tikhonov regularization, ridge

regression, and weight decay. These modify the gradient as,

L1 Regularization L2 Regularization

L̃(x,y;w) = L(x,y) + γ||w||1 L̃(x,y;w) = L(x,y) +
γ

2
wTw

∇L̃(x,y;w) = ∇L(x,y) + γ sign(w) ∇L̃(x,y;w) = ∇L(x,y) + γw
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where ||w||1 is the sum of the absolute value of each weight parameter. The update to the

weight parameters of the network is then,

w → w − αγ sign(w)− α∇L(x,y) w → (1− αγ)w − α∇L(x,y),

which can still be subject to optimization algorithms. To see how these methods affect the

network over the entire course of training, we can approximate the loss function with a

second order Taylor series with respect to w about the minimum of L, w∗, giving

L̂(x,y;w) = L(x,y;w∗) +
1

2
(w −w∗)TH(x,y;w∗)(w −w∗),

where H(x,y;w∗) is the Hessian matrix of L with respect to w evaluated at w∗. Note that

the first order term is not present in this equation as it vanishes at w∗. In addition, if the

loss function truly were quadratic in the neighborhood of of the minimum of L, such as in

regression by mean squared error minimization, then this would not be an approximation

at all [8]. For simplicity, we will now omit the x and y arguments. The gradient of our

approximated loss function with respect to the weights of the network is now

∇L̂(w) = H(w −w∗).

If we now add the L2 regularization term and attempt to solve for the new minimum at w′,

we get that

γw′ +H(w′ −w∗) = 0

w′ = (H + γI)−1Hw∗.

Note that H was evaluated at w∗, the minimum of L, and hence it is positive semi-definite
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and symmetric. Thus, we can perform an eigenvalue decomposition of the formH = QΛQT,

where Λ is a diagonal matrix of eigenvalues, and Q is an orthogonal matrix of eigenvectors.

Hence our new solution w′ becomes

w′ = (QΛQT + γI)−1QΛQTw∗

=
[
Q(Λ + γI)QT

]−1
QΛQTw∗

= Q−>(Λ + γI)−1Q−1QΛQTw∗

= Q(Λ + γI)−1ΛQTw∗.

Thus, the effect of L2 regularization is to rescale the optimal solution of L, w∗, with the

eigenvectors of the Hessian matrix of the loss function. Specifically, if we write w∗ and w′

as w∗ = Qp and w′ = Qq, then the above equation becomes

q = (Λ + γI)−1Λp.

Hence pi, which is the coordinate of w∗ in the ith eigenvector direction of H , is rescaled

as λi/(λi + γ). Shifts in directions that do not contribute significantly to reducing the loss,

which corresponds to a small eigenvalue (λ � γ) in the Hessian matrix, then decay away.

Similarly, for steps in directions that do contribute significantly to lowering the loss, the

eigenvalue (λ � γ) is large enough that the step in that direction is relatively unaffected.

The logic behind this is that in order to have a significant effect on the loss, a given step is

more likely to be beneficial to many data points. Hence, the steps that get decayed away

are more likely to be those in directions only beneficial to a few data points, which results

in overfitting.

This rescaling effect was only the cause of L2 regularization, though, so how does L1

regularization affect the network throughout the training process? First of all, L1 regular-
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ization shifts all parameters of w by the same amount, unlike L2. In order to accomplish

the same level of analysis with these shifts, we need the approximation that H is diagonal

and positive definite. This approximation holds if for a linear regression problem, one pre-

processes that data in order to remove all correlation between input features. One can use

principal component analysis to achieve this [8]. With this approximation we have

L̂(w) = L(w∗) +
∑
i

[1

2
(wi −w∗i )TH i,i(wi −w∗i ) + γ|wi|

]
.

Following the same procedure as with L2 regularization, we want to optimize this approxi-

mation. We get the analytic solution of

∂L̂(w)

∂wi

= (wi −w∗i )H i,i + γsign(wi) = 0.

Note that if wi < 0, then w∗i < −γ/H i,i, and if wi > 0, then w∗i > γ/H i,i. Hence,

sign(wi) = sign(w∗i ). Rearranging for wi we see

wi = w∗i − sign(w∗i )
γ

H i,i

= sign(w∗i )

(
|w∗i | −

γ

H i,i

)
.

However, there is no reason that the restriction |w∗i | > γ/H i,i should exist. Therefore this

must occur in the only case we have not considered; wi = 0. Hence the solution is

w′i = sign(w∗i ) max

(
|w∗i | −

γ

H i,i

, 0

)
.

The case where |w∗i | ≤ γ/H i,i and hence w′i = 0 occurs, is when the portion of L in L̃ is

overwhelmed by the regularization term, and is driven towards zero. We also see that if

|w∗i | > γ/H i,i, then the solution to the regularized loss function will be shifted by γ/H i,i

towards zero from the solution to the non-regularized loss function. The overall effect of
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L1 regularization is then an increase in sparsity of the weight parameters. This has been

taken advantage of in order to try and simplify models [8]. For example, one could run a

model through training with L1 regularization, observe which weights become zero, or close

to it, and that indicates that those parameters of the network are likely to be unnecessary.

Thus, we can safely remove those nodes, or feature maps from the network without greatly

affecting the loss or efficiency of learning. One could also incorporate a combination of both

L1 and L2 loss, however, we will not use or analyze this method.

Dropout

Another common regularization technique is called dropout. It is the process in which during

training, we randomly drop nodes according to a probability. The dropout probability is yet

another hyperparameter for the model. The difference between this and dropping the nodes

based on their weight from L1 regularization, is that dropping these nodes is not permanent.

Instead, different nodes are dropped for each batch of training, and the nodes chosen are

not due to their weight value, but a dropout probability. Implementing dropout also brings

about the idea of subnetworks; a network constructed from a subset of the nodes of the full

model. Additionally, dropout increases the speed at which we can train our network as a

subnetwork has less parameters than the full model, and therefore there are less values and

gradients to compute. It is important to note that the output nodes have zero probability

of being dropped, as this would likely produce poor results, increase the loss, and drive the

parameters of the network further from their optimal values. Additionally, dropout is only

applied during the learning process, not when using and testing the model.

Dropout works on the assumption that if all the subnetworks can produce accurate results,

so too should the full model. This would not make sense for models that predict actual

values, hence we only apply dropout to models that return a probability distribution [8].
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This is not such a limiting restriction, though, as classifiers, recurrent neural networks for

natural language processing, and many other networks produce probabilistic outputs. With

dropout, we are then forcing each node of our network to learn the correct output with less

information than it would normally receive. Each subnetwork may then pickup on different

features of the input, and shift the parameters in that direction. Applying dropout allows

the model to essentially take votes from all subnetworks on the output that should have the

highest probability [8]. An example may help to show how dropout can be effective without

significantly changing the model output.

Example 5.11. Suppose we have the network architechture shown in Fig. 5.11. The layers

to the left of the diagram are unknown and unimportant as we will simply show the effect

of dropping one of the nodes in the second to last layer on the outputs. We will define the

values in the second last layer of the network to be [ 0.5 −0.2 0.7 1 ]T and the weights to

be given by

w =

 0.6 −0.5 0.3 0.9

−0.2 0.1 0.1 −0.3

 .
Then the output of the full model will be [ 1.51 −0.35 ]T, which after applying the softmax

function results in a probability of 86.5% for the upper node. Now, if the top node in the

second last layer was dropped, we can simply change its value to zero in order to see the effect.

Doing so results in the new outputs of [ 1.21 −0.25 ]T and probability of 81.2%. Therefore,

dropping a node did not drastically change the output of the model, and this should always be

true for fully trained networks. What it has done though, is forced the network to put more

importance on the other features represented by the other nodes in the second last layer. The

result is that using only that subset of features, the network is not as good at predicting the

outcome, hence a different loss and gradient are achieved to account for this.

Practically speaking, dropout has been shown to work better when applied to larger
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Figure 5.11: A diagram of the last two layers of a network used in Ex. 5.11 to show the effect
of dropout on the outputs of a probabilistic network.

networks [8]. Similar to parameter norm penalty regularization, it is also not applied to

the bias nodes. For CNNs, it has been empirically shown that applying dropout to the

convolutional layers has relatively little effect [17]. Thus, we typically only apply dropout to

the fully connected layers of CNNs. For more on dropout, see [8, 17].

Ensemble Networks

The idea of taking output from multiple different networks is not unique to dropout. En-

semble methods are those methods where we train several models, and take the output to

be the answer with the most votes. Each different model, even if they all have the same

layout, will pick up different features due to different initialization. This works as different

models are then likely not to make the same errors when being tested [8]. The advantage of

model averaging is that the outputs are only ever as bad as the worst network. So we can

only ever increase the accuracy of the model. However, it takes significantly more time and

computational power to train the multitude of networks in the ensemble. These models are

quite common in competitions to achieve the highest accuracy.
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Batch Normalization

The last form of regularization we will cover in this section is called batch normalization.

It is an attempt to reduce the effect of a problem that can arise in neural networks called

internal covariate shift (ICS) [18]. The essence of this problem arises from training the

network in batches. As we update parameters of the model that are nearer the input, the

parameters closer to the outputs have to deal with a large variety of different distributions.

Not only will the parameter updates cause different distributions to occur further in the

network, but due to the batches being randomly sampled from the entire dataset, they may

have a variety of distributions themselves. The layers further in the network then have to

constantly readjust for the different distributions, and the deeper the neural network the

worse this problem becomes. Batch normalizaton attempts to overcome this problem by

fixing the mean and variance of each batch put through the network.

Suppose the nth layer of our neural network possesses m nodes. Then we can obtain the

mean and variance of values in that layer by

µ
(n)
B =

1

m

m∑
i=1

x
(n)
i and (σ

(n)
B )2 =

1

m

m∑
i=1

(x
(n)
i − µ

(n)
B )2

respectively, where xi is the value in the ith node of the nth layer. Here, we are sub-scripting

µ(n) and σ(n) with a B to denote that the values we obtain from these equations are only

for batch B of the training dataset. Then we can transform this distribution to one with a

mean of zero and variance of one with the mapping

x̂
(n)
i =

x
(n)
i − µ

(n)
B

σ
(n)
B

.

However, it may not be best for the distribution in each layer to have a mean of zero and

variance of one. Forcing this upon the network limits its expressive power, hence batch
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normalization also transforms each layer as

y
(n)
i = δ(n)x̂

(n)
i + β(n),

where δ(n) and β(n) are parameters specific to each layer, and are learned through gradient

descent like the other parameters of the model [8, 18]. Note that if δ(n) = σ
(n)
B and β(n) = µn,

then this transformation would just return the parameters to their original values. This is

possible, and would happen too, but only if they were the optimal values. Additionally,

a small number, such as 10−8, is added to the denominator of the first transformation to

avoid divisions by zero [8, 18]. Batch normalization has been shown to do more than just

attempt to resolve the ICS problem, though. It actually tends to make the landscape of the

loss function smoother, stabilizing the gradients, and allowing for faster convergence to the

minimum [19].

5.8 Convolutional Neural Network Architecture

Now that we know what neural networks do, and how they work, how should we design a

model for a particular task? The answer is relatively unknown. However, certain architec-

tures have been shown to be better than others, and to understand why, we will go through

some of the previously winning models of the ImageNet Large Scale Visual Recognition chal-

lenge (ILSVRC): A yearly competition in which models must classify images of a database

with millions of images and thousands of categories. In the competition, the model must

correctly classify as many RGB images as it can, pertaining to a subset of the full dataset

that spans 1, 000 categories. These images vary in size, however, they are typically prepro-

cessed to 3 × 256 × 256, where the three represents the colour channels. Due to the size of

these images, a CNN should be used, as a fully connected network would be too large, and

112



Figure 5.12: This figure displays the structural design of AlexNet, the 2012 ILSVRC winner.
The height and width of the convolutional layers represents the size of the feature maps,
and the depth represents how many kernels were applied to the previous layer. Found from:
https://www.learnopencv.com/understanding-alexnet

take up too much memory.

AlexNet

AlexNet is the name of the network that won the competition in 2012. The property that

set it apart from the other networks is that it was much larger than any other convolutional

network that had been seen previously. In fact, it was so large that it had to be split over

two different graphics processing units (GPUs); the hardware that is typically used to train

neural networks, as they perform many simple computations very quickly. AlexNet had the

architecture shown in Fig 5.12.

What we can learn from this configuration is that we should slowly decrease the size of

the feature maps, performing at least one convolutional layer between the pooling layers.
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Then, once the dimensions of the feature maps are small enough, switch to fully connected

layers. The other take-away from this model is that it is good to have lots of kernels. While

we do need to keep track of the number of parameters of our network to ensure it does not

get too large, each new kernel will detect a different feature and can thus be a very useful

addition to the model. For more on this model see [20].

VGGNet

Next we will look at the runner-up for the ILSVRC 2014 competition. A common way to

measure the accuracy in this competition is whether the true category is among the top five

predicted classes. It was in this year that this top-five error rate reached values below 10%.

The runner-up for the 2014 competition was called VGGNet, a network similar to that of

AlexNet. The reason we are examining this network is that it is scalable, and performs quite

well at each level. In fact, it was not just VGGNet that was the runner-up in 2014, but each

version of the network took all top places aside from first. A visual representation of each

of the variations of this network can be seen in Fig 5.13.

There are several things to note about this network. First of all, it not only has more

kernels per convolutional layer than AlexNet, but it also has more convolutional layers in

general. The theme that we start to see, is that as we decrease the height and width of the

feature maps, we increase the depth, or number of feature maps. Along with having more

convolutional layers, the kernel sizes in each layer are smaller than that of AlexNets. This

is another parameter saving method.

Consider the following two scenarios:

1. One 7× 7 convolutional layer

2. Three sequential 3× 3 convolutional layers
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Figure 5.13: This image shows the architecture of each of the VGGNet vari-
ations, the runner-ups for the ILSVRC 2014 competition. In this graphic,
Conv3-64, for example, represents a convolutional layer with 64 3 × 3 kernels.
Found from: https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-
ilsvlc-2014-image-classification-d02355543a11
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In the first scenario, each value in the feature map represents one 7× 7 block of the image,

and there are a total of 49 parameters involved to calculate it. In the second scenario, the

feature map after the first layer will be composed of values that represent a 3 × 3 block of

the preceding image. Then, in the output from the second layer, each value will represent a

5× 5 block from the original image. After the last filter, each value in the feature map will

represent a 7 × 7 block of the original image, matching that of the first scenario. However,

the second option only has 27 parameters as opposed to the 49 of the first. Hence, in terms of

reducing the number of parameters of a model, it is better to have more layers with smaller

kernels.

Another aspect one may notice is that there are special purple blocks in this figure.

The LRN block represents a local response normalization layer. This is similar to batch

normalization, but in a localized area of the feature map. This type of layer will not be

used, hence we will not discuss it further. The other purple block has a 1 × 1 kernel. This

may lead one to think that it is an unimportant layer, however, since filters have different

weights for each feature map, we can think of this as selecting and adding specific weights

of some feature maps the model deems useful. In addition, 1 × 1 convolutions can be used

to change the dimensionality of the its input in order to reduce the number of parameters

in the model.

Example 5.12. In this example we demonstrate how 1 × 1 convolutions can reduce the

number of parameters involved in a convolutional layer. Specifically, since each kernel, no

matter the number of input feature maps, produces a single output feature map, we can use

n 1× 1 filters to reduce the number of feature maps on which we perform other calculations.

Suppose we take as input an object of size 256 × 64 × 64, and we would like to apply 256

filters of size 3 × 3. We have the following two methods by which we can accomplish this

task:
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1. Directly compute the 3× 3 convolutional layer with 256 filters.

2. Reduce the number of feature maps to 64 by applying 64 1×1 filters, compute 64 feature

maps using 3 × 3 kernels, and re-expand the number of feature maps by applying 256

1× 1 filters.

If we take the first option, then the total number of parameters involved will be

256× 3× 3× 256 = 589, 824.

However, the number of parameters involved in the second scenario would be

256× 1× 1× 64 + 64× 3× 3× 64 + 64× 1× 1× 256 = 69, 632.

Thus, we have reduced the number of parameters involved in the calculation by almost a

factor of ten!

For more on the VGG network see [21].

GoogLeNet

The network that beat VGG, and the winner of the competition in 2014, was designed by

Google, and is called GoogLeNet, or Inception-v1. It is with this model that we get the

idea of blocks in a neural network. The motivation behind the blocks, or in this case called

inception modules, is that different filter sizes may pick up different features. However, there

is no reason we need to choose between the filter sizes. We can see the design of the inception

modules in Fig. 5.14, and the full layout of GoogLetNet in Fig. 5.15.

The inception module fully takes advantage of the dimensionality reduction provided by

the 1× 1 convolutions, as shown by the purple blocks in Fig. 5.14. We can then also choose
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Figure 5.14: The inception module, or block used in GoogLeNet.

Figure 5.15: The architecture of GoogLeNet, the 2014 ILSVRC competition winner. Each
inception module block performs the computations shown in Fig. 5.14.
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the number of features we want in the concatenation at the end of this block, and more

specifically, how much of each convolution we want represented. This allows the network not

to have to choose between the filter sizes but instead take the important components from

each one.

As for the full GoogLeNet model itself, you may notice that it is somewhat strange

looking, and has multiple end points (the red blocks). The softmax function at the end

of the longest chain is the true end of the network, though. The intermediary ends of

the network are used to help the network get through the ever-present vanishing gradient

problem. Although the team behind GoogLeNet used the ReLU activation function between

the layers, very long networks such as this are still prone to vanishing gradients. For more

on this network see [22].

ResNet

The last network that we will examine in this section is the 2015 ILSVRC winner, called

ResNet. This network is not only important for its concept, but because it was the first

model to surpass human-level performance in the ILSVRC. In 2014, after training for a few

days, Andrej Karpathy tested himself in the ImageNet competition and obtained a top five

error rate of approximately 5.1%. While this may initially appear to be a poor accuracy for

human performance, with 1, 000 classes, the categories can become quite definitive and delve

into specifics such as breeds of dogs.

The key concept to ResNet is another method to overcome the vanishing gradient prob-

lem. That is, we can create a “gradient-highway” by including skipped connections.

Skipped connections are where the output of a node is not only connected to the next layer,

but layers further along the network as well. Many different lengths of the ResNet model

were tested, their designs are shown in Fig. 5.16. The ResNet-152 model produced the best
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Figure 5.16: The design of each of the ResNet models used in the 2015 ILSVRC competition.
Each of the blocks contained within square brackets posses a skipped connection between
the start and end of the block. Inside the square brackets shows the filter size followed by
the number of feature maps created from that filter.

results.

The effect of these skipped connections is what gives ResNet its name. Let x be the input

to a given layer and T (x) be the computations that layer, or multiple layers would perform

if there were no skipped connections in the model. Then the difference between the input

and the output, or the residuals is given by

R(x) = T (x)− x.

Hence by rearranging, we see that if we add the input of a layer to the output of the following

computations, the network during training now approximates R(x);

T (x) = R(x) + x.

These skipped connections help to overcome the vanishing gradient problem through the
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Model Top-5 Error (%) Number of Layers Number of Parameters (×106)
AlexNet 15.3 8 62
VGG-16 8.8 16 138

GoogLeNet 6.67 22 6.8
ResNet-152 3.57 152 62

Table 5.3: A comparison of all the networks discussed in this section. This table compares
the top five error percentage, number of layers, and number of parameters in each of the
models.

shorter path they create. Overcoming the vanishing gradient problems allows for much

deeper networks to be created. For more on ResNet, see [23].

A comparison of performance, number of layers, and number of parameters of all the

models discussed in this section can be found in Table 5.3. The theme in this table is that

we are creating longer networks that perform better, while simultaneously attempting to

minimize the number of parameters. Since the ILSVRC 2015 competition, there have been

newer models with better accuracy, such as ResNext [24], Inception-v4, or Inception-ResNet

[25], and several others. Many of these networks are modified versions of GoogLeNet and

ResNet. We will not use these models, so they will be omitted.
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Chapter 6

Predicting Iterated Function System

Parameters

In this chapter we combine the areas of fractals and neural networks, and attempt to provide

a solution to a long standing inverse problem: Given an image, can we obtain parameters

of an IFS that has an attractor resembling that image? Solutions to this problem have

been found for several images that were already attractors, however, this was the result

of exhaustive searches, see [3, 4, 5, 6, 7] for details on these. We would like to solve a

more general version of this problem: Obtain a mapping from an image to IFS parameters

pertaining to an attractor resembling that image. Throughout this chapter we will construct

a neural network model that will approximate this function, train it on the fractal databases

constructed in Chapter 3, and provide samples of output from the model, as well as model

accuracies.
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6.1 Designing The Model

The goal of this section is to incorporate many of the methods of the previous chapter in

order to design a network that, when trained on the fractal databases we created, predicts

parameters of an IFS that has an attractor resembling a given image. We will mimic the

structure of the ResNet model as it has been shown to perform well and allow for very deep

neural networks. However, ResNet was originally used for classification, made use of the

CE loss function, and had a manually adjusted learning rate. Since we want our model to

predict the parameters of an IFS we will modify the ResNet structure, and incorporate the

following features:

• The Adam optimizer.

• Batch normalization between each layer.

• The Leaky ReLU activation function between each layer.

• 6N outputs corresponding to the parameters of the N functions in each IFS of the

database the network is being trained on.

• The MSE loss function.

• L2 weight decay.

As shown in the Convolutional Neural Network Architecture section, the ResNet architecture

relies on blocks created from multiple convolutional layers with a skipped connection. The

block configuration from which we will construct our network is shown in Fig. 6.1, where

the size of the kernel in the middle layer will be treated as a hyperparameter. Note that in

order to be able to add the input of the block to the output produced from the convolutional

layers, their dimensions must match. Thus, the convolutional layers must preserve these
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Figure 6.1: The block structure that we will use in our model. The size of the filter in the
middle layer will be treated as a hyperparameter.

dimensions. The 1 × 1 convolution layers will do this automatically, however, the middle

layer will require zero padding.

Each of the convolutional layers shown in Fig. 6.1 is followed by batch normalization and

the Leaky ReLU activation function. The first layer of convolution in each block is used to

reduce the number of feature maps from the input, whereas the last layer expands it back

to the original amount. We will call the uninterrupted repetition of blocks in a network a

chunk. That is, a chunk of size three corresponds to three repeated blocks. Between each

chunk in our network are pooling layers. We chose to make each pooling layer have a stride

of two, where the size of the kernel became a hyperparameter. The kernel size was always

chosen to be an even number, k, so that k/2−1 layers of zero padding allowed for the height

and width of the image to be perfectly cut in half. We additionally chose to double the

number of feature maps each pooling layer took as input.

Since the size of the images in our databases are significantly larger than those in the

ImageNet database, we will require more pooling layers than ResNet to reduce the dimen-

sionality sufficiently. With the chunks and pooling layer framework in place, we sequentially

computed a pooling layer followed by a chunk a total of seven times. With an initial pooling

layer resulting in 8 feature maps of size 320× 320, the output from the last layer would then

be an object of size 512 × 5 × 5. This was followed by one or more fully connected layers

leading to the outputs.

124



The next step in creating the model is to fine-tune the hyperparameters. Note that

the depth of the model is now controlled by the size of each chunk, taking its place as a

hyperparameter. This leaves the following hyperparameters we must adjust:

• The number and width of fully connected layers.

• The size of each chunk.

• The size of the filter in each block.

• The size of the filter in each pooling layer.

• The learning rate.

• The momentum coefficients.

• The size of each batch.

• The regularization coefficient.

The momentum coefficients were kept at their defaults as Adam has been shown to be robust

to many applications with respect to hyperparameters other than the learning rate [8, 16].

These defaults were 0.9, and 0.999 for the momentum in the parameter update and learning

rate scaling factor, respectively. Additionally, the L2 weight decay factor was kept at its

default of 0.01 as well, since we have large enough datasets that overfitting should not be an

issue.

All models were written in version 3.7 of the Python programming language with version

1.2 of the pytorch machine learning library. They were each trained on two GPUs in the

Graham cluster of the compute Canada resources. This allowed for a total of 12GB of

memory for the model. Due to the size of our images, this leaves relatively little space

for the fully connected layers, so only two configurations were tested. After flattening the

512× 5× 5 object to a vector of size 12,800, the fully connected layers either
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1. Connected to a layer of width 500, followed by a layer of width 100, followed by the

6N outputs. Or,

2. Connected to a layer of width 1,000, followed by the 6N outputs.

Due to the memory limitations, there was also only a limited number of chunk sizes

possible as well. A scheme similar to ResNet-152: Chunk sizes of 3, 8, 36, and 3, scaled to

seven chunks, would be ideal to test, but not possible. This is also the reason the number

of feature maps from our initial pooling layer is 8, as opposed to the 64 found in ResNet-

152. With this in mind, if our first chunk is of size 3, then the second must be of size 4,

or 5, should we maintain the concept of having much larger chunks near the end of the

convolutional layers, similar to ResNet.

In order to find near-optimal hyperparameters, we performed a grid search of those

remaining. The model was trained for two epochs with a given configuration and set of

hyperparameters, and then tested for its accuracy to discriminate which combination is

best. The accuracy of the model was tested using various tolerance levels. If a value output

by the model is within the given tolerance of the corresponding true value, it is considered

correct.

Example 6.1. Suppose we gave the model an attractor corresponding to the IFS

W =



w1(x, y) =

 0.387439 0.032326

−0.509266 −0.686624


x
y

+

−0.209960

0.369290


w2(x, y) =

 0.442961 −0.458575

−0.166075 0.588832


x
y

+

−0.355568

−0.350048


,
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Tolerance 0.1 0.2 0.3 0.4 0.5
Accuracy 4/12 9/12 10/12 11/12 12/12

Accuracy (%) 33.33 75 83.33 91.67 100

Table 6.1: Calculating the accuracy of a neural network at various tolerance levels

and it produced parameters corresponding to the IFS

W =



w1(x, y) =

−0.034522 0.078493

−0.495476 −0.455910


x
y

+

−0.285416

0.245609


w2(x, y) =

 0.537892 −0.272841

−0.273395 0.281454


x
y

+

−0.233959

−0.247660


.

Then the accuracies it would receive for this particular piece of data are given in Table 6.1

Alternatively, we could have measured the accuracy based on the similarity between the

input and the attractor of the model produced IFS. However, fractals are typically quite

sensitive to their parameters; a small change in a few parameters of a single function can

perturb the attractor of an IFS a significant amount. This concept, paired with the fact that

none of the models had a high accuracy under the method shown in Ex. 6.1, means that

measuring the difference in attractors would not be an accurate measurement to discriminate

between sets of hyperparameters.

The effect of the structure of the network on the model accuracy was found to be fairly

consistent throughout each database. This gives us the freedom to use the same model

architecture with different hyperparameters for each dataset, allowing for a direct comparison

of the models after each one is trained. Of the various schemes of chunk sizes tested, they all

produced relatively similar results. However, it was still beneficial to have an increase in the

size of the chunks near the end of the convolutaional layers. In addition, the larger models

performed slightly better. The model design found to work best, and that we will train on
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Functions in the IFS 2 4 6 8
Learning rate 7.5× 10−6 7.5× 10−5 5× 10−5 2.5× 10−5

Table 6.2: Learning rates chosen for the neural networks used to predict IFS parameters of
each database.

each of the databases, has chunk sizes of 3, 5, 7, 11, 29, 23, and 17.

The fully connected layers impacted the accuracy of the model more significantly than

the chunk sizes. The first scheme; the one that was not chosen, was typically 2 − 3% less

accurate at each tolerance level. This makes sense as it has less parameters than the second

fully connected layer option. Additionally, the filter sizes in each block and pooling layer had

a significant effect on the accuracy as well. Larger filter sizes reduced the accuracy of the

model, on average, by up to 2%. This is thought to be due to the additional zero padding

required to maintain the dimensions of the input, allowing each block to approximate its

residuals. Thus, filter sizes of three in each block, and four in each pooling layer were

chosen.

Despite the architecture of the model being invariant among the databases, different

learning rates were found to work best for each of them. Learning rates of the form 10−m

where m = [1, 2, 3, 4, 5, 6] were tested. Upon testing these, a bisection method of sorts

was performed between the top two values for two iterations, until the selected value was

found. Performing further bisections was not found to impact the accuracy significantly.

This resulted in the learning rates shown in Table 6.2

A batch size of 100 was chosen for the purpose of it being the largest even number that

is a divisor of the total dataset size. The number being the largest possible was chosen to

reduce the training time through the multiprocessing capabilities of the GPU, which already

takes approximately an hour and a half per epoch. An even number was required because

of how pytorch implements the use of multiple GPUs. Essentially, two identical models are

created, and stored on the separate GPUs, each possessing half the batch. After feeding the
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data through the network, the outputs are concatenated and treated as one.

To summarize, our models have the following hyperparameters:

• A fully connected layer of width 1,000 between the output of the convolutional layers

and the model outputs.

• Chunk sizes of 3, 5, 7, 11, 29, 23, and 17.

• Filters of size 3 in each block.

• Filters of size 4 in each pooling layer.

• Learning rates shown in Table 6.2.

• A momentum coefficient of 0.9 in the parameter update, and 0.999 in the learning rate

scaling factor

• A batch size of 100.

• A regularization coefficient of 0.01.

6.2 Model Training, Analysis, And Performance

In order to fully train the models, we used the entire previously generated datasets of 250,000

images as the training set for each model. A validation set of size 10,000, and a testing set of

size 10,000 were subsequently created and used to assess when to stop training, and measure

the accuracy of the model. Despite the implementation of the Adam optimization algorithm,

it was found that the learning rates had to be manually adjusted throughout the training

process. In order to modify the learning rate at the appropriate time, the model was saved

after each epoch of training. Then, when the loss increased, or the validation accuracy
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Figure 6.2: The loss and validation accuracy of the model trained on IFSs possessing two
functions. The x-axis for both of these images is the epoch, and the y-axis is the loss and
accuracy percentage for the image on the left and right, respectively.

decreased for several epochs, we returned to a previous state of the model and decreased the

learning rate by a factor of ten.

Example 6.2. The clearest depiction of when the learning rate had to be adjusted is found

in the model for two-function IFSs. The loss and validation accuracy throughout training are

shown in Fig. 6.2. As we can see from these images, the loss of the model begins increasing,

and the accuracy of the model begins decreasing at approximately epoch 32. Hence at this

point in the training process, we returned to epoch 32, decreased the learning rate by a factor

of ten, and kept training. This allowed the model to progress further.

The learning rate had to be decreased at different epochs for each model; these epochs

can be found in Table 6.3, along with the total number of epochs for which each model was

trained. Note that the first time the learning rate was scaled for the two-function IFS model

is much later than the others. This could in part be due to the fact that the initial learning

rate was much smaller, though it could also be a result of the distance from the network

parameter initialization to the found solution. To go with this information, graphs of the

loss and validation accuracy of each model throughout the full training period are given in

Fig. 6.3.
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Figure 6.3: The loss and validation accuracy of each model during training. Going from top
to bottom, each row corresponds to the model trained on IFSs possessing two, four, six, and
eight functions, respectively. The x-axis for all images is the epoch, and the y-axis is the
loss and accuracy percentage for the images on the left and right, respectively.
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Functions in the IFS 2 4 6 8
Learning Rate Decrease Epoch 33, 54 6,77 3, 23, 42 9, 17, 33, 42

Total Epochs 58 84 59 51

Table 6.3: Here we show for each model at which epochs the learning rate was decreased by
a factor of ten, and the total number of epochs for which the model was trained.

Indeed we did not train the models to zero loss. Instead, we stopped the learning process

whenever either the accuracy began to diminish, the loss began to increase, or a combination

of both occurred, and decreasing the learning rate had relatively no effect.

There are several other aspects for each model that we can analyse from the graphs in

Fig. 6.3. To begin with, the initial accuracy of the model for each database increased the

more functions there were in the IFS. This is likely not a cause of the model, but the data.

Specifically, due to the scaling of the fractals, the distribution of the additive parameters;

those not part of the matrix in the affine transformation, did not follow a normal distribution.

Examples of these distributions are shown in Fig. 6.4. We can see from these images that on

average, the magnitude of these parameters decreases with more functions. Hence, a neural

network attempting to predict these parameters can do much better on IFSs consisting of

more functions by simply producing a smaller value.

Despite the increase in initial validation accuracy, it is seen in Fig. 6.3 that the more

functions in the IFS, the less the loss decreased, and validation accuracy increased, through-

out training. This is likely due to both the data, and the model complexity. For instance,

since the model complexity is constant, apart from the last fully connected layer leading to

the outputs, it makes sense that it would not model a function mapping an attractor to an

eight-function IFS as well as it would to a two-function IFS. This is because the complexity

of the attractor itself is increased as there are more parameters required to create it; empir-

ical evidence of this is given at the end of this section. The data plays a role in this effect

as well. Recall that as we increase the functions in an IFS, we go from obtaining attractors
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Figure 6.4: Distribution of the additive parameters of an IFS. The top-left, top-right, bottom-
left, and bottom-right correspond to the databases of IFSs consisting of two, four, six, and
eight functions, respectively.

represented by fewer pixels that are more spread out, to ones with more pixels that are

closer to the fractal centroid. This essentially means that, on average, those attractors with

more functions in their corresponding IFS are more similar to one another than those gen-

erated from an IFS with fewer functions. Hence, it is more difficult for the neural network

to distinguish important features, and requires a more complex model.

The final model accuracies at each tolerance level averaged over their entire respective

10,000 fractal testing sets are given in Table 6.4. These accuracies quantify numerically

the difference between the model output and the true parameters, however, they do not

necessarily reflect the similarity of the attractor predicted by the model to that of the input.

Thus, we will reconstruct the attractors of the IFSs produced from the model. We cannot

reconstruct just any output that the model calculates, though. We must once again ensure

that the functions are contractive. That being said, after calculating the model outputs for

133



Tolerance
Accuracy (%)

2 function IFS 4 function IFS 6 function IFS 8 function IFS
0.1 43.17 26.74 26.53 26.46
0.2 67.96 49.52 50.76 51.04
0.3 80.81 66.60 68.07 68.06
0.4 87.92 78.10 78.83 78.00
0.5 92.26 86.02 85.99 84.79

Table 6.4: The accuracy of each model at various tolerance levels

the testing set, almost all of them are contractive. This may be attributed to the fact that

the set of matrices A, such that ||A||2 < 1, is convex. Since each model was trained only

on values within this convex set, it follows that it should mostly produce values within it as

well. Additionally, note the the attractors of the model produced IFSs are not necessarily

in [−1, 1]2. Despite this, we kept the viewing region as [−1, 1]2 so as to ensure consistency

when comparing with the input.

In Fig. 6.5 we compare the model input to the attractor of the model produced IFS

for an element in each test set. The images chosen were characteristic of many of the

reconstructions. As we can see, the model produced IFSs possess quite sparse attractors,

though for fewer functions in the IFS, this is more a feature of the dataset rather than the

model. Another attribute represented in these images is that each of the models displayed

the ability to match the centroid of the input quite well.

In Fig. 6.6 we show some of the attractors of model produced IFSs compared to their

input where the model fractals were selected from some of the least sparse outputs. We

can see that the two and four function IFS models retain some of the features of the input

attractor. While there is only a handful of non-sparse attractors that possess this attribute

for the four function model, the network trained on IFSs consisting of two function has

numerous such cases, for more, see the appendix. Additionally, notice that as the number

of functions in the IFS increases, the sparsity of the least sparse model produced attractors
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Figure 6.5: Attractors of model produced IFSs compared to the model input. The first and
third column are the are images of the input, and to their right are the model produced IFS
attractors. The top-left, top-right, bottom-left, and bottom-right input and reconstruction
correspond to the two, four, six, and eight function models respectively.

increases. This can likely be attributed to the distribution of the additive parameters once

again, as well as insufficient model complexity. Since the model was only trained on those

IFSs that have small additive parameters, it will likely only produce IFSs with small additive

parameters. See the future work chapter for a possible method of overcoming this.

A question that one may ask with a mapping from an attractor to IFS parameters is

whether or not there exists two similar attractors that correspond to IFSs with an unequal

amount of functions. Further, whether or not one can approximate non-fractal sets with

this mapping. Fig. 6.7 provides examples of applying the two-function IFS model to images

of the other databases, as well as an image that is not a fractal. We only show results for

the network trained on IFSs consisting of two functions as this network approximated the

true mapping from an image to IFS parameters best. Additionally, note that the images in

Fig. 6.7 are selected from the lowest sparsity reconstructions, and do not reflect how well
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Figure 6.6: Some of the least sparse attractors of model produced IFSs compared to their
model input. The first and third column are the are images of the input the produced the IFS
with the attractor to its right. The top-left, top-right, bottom-left, and bottom-right input
and reconstruction correspond to the two, four, six, and eight function models respectively.

it approximated each fractal from the other databases. However, it does give an estimate

of the best the model can approximate these alternative inputs. As we can see, the model

produced attractor becomes a worse approximation of the input, the greater the number

the functions in the input attractors IFS. For the non-fractal image, the approximation is

yet worse. Thus, this is empirical evidence that attractors created from IFSs with a greater

number of functions have a greater complexity in the sense that it requires more parameters

to model them. Non-fractal images are then akin to the attractor of an IFS with a very large

amount of functions.
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Figure 6.7: Some of the least sparse attractors of the two-function IFS model when the input
is not an attractor from a two-function IFS. The first and third column are the are images
of the input that produced the IFS with the attractor to its right. The top-left, top-right,
and bottom-left, input and reconstruction correspond to attractors with four, six, and eight
functions, respecitvely, and the bottom-right is an example of inputing a non-fractal image.
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Chapter 7

Future Work

We restricted ourselves at many points throughout this thesis, reducing the areas we explored

in both IFSs constructed from nonaffine functions, and neural network implementations of

IFS parameter estimation. Additionally, there are many extensions from this work that

could be implemented. Here, we briefly describe some of these methods.

IFSs Constructed From Nonaffine Functions

When exploring the area of IFSs comprised of functions with bounded derivatives, we re-

stricted ourselves to transformations in which g1 = g3 and g2 = g4. Relaxing this restriction

could produce interesting results. Additionally, there are many more bounded derivative

functions that could be tested. For instance, the function g =
√
|x|+ a has a derivative

bounded by

M = sup
x
|g′(x)| = lim

x→0

∣∣∣∣ x

2|x|
√
|x|+ a

∣∣∣∣ =
1

2
√
a
.

Many interesting methods of colouring fractals have been found. One could apply these

to both IFSs constructed from bounded derivative functions, and piecewise IFSs.

There are many concepts left untested for the piecewise affine IFSs as well. More complex
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piecewise boundaries, such as sin(ax) = b, cos(ay) = b, or some combination such that

a ∈ R, b ∈ (0, 1) could produce interesting results, particularly for |a| > 1. One could also

implement more than two branches for an IFS, or construct an IFS where each function has

a different piecewise boundary. All of these have unknown results.

For both types of alternative functions we only examined those IFSs constructed from

four functions. One could generate databases, as we did for affine functions, and examine

some properties of these IFS attractors as the number of functions is varied.

Another possibility with piecewise IFSs is to use nonaffine transformations in each branch.

That is, construct a piecewise IFS from bounded derivative functions. One could also have

one branch being a bounded derivative transformation, while the other is affine. Similarly,

one could construct an IFS possessing any combination of affine functions, bounded derivative

functions, and piecewise functions.

There were many concepts left unexplored in terms of piecewise functions as well: Is

the change in an attractor set continuous for continuous changes in the piecewise bound-

ary? That is, if the piecewise boundary is defined by x = a, for example, and a is varied

continuously, how does the attractor change?

In terms of fractal splicing, there are some additionally untouched ideas. When splicing

two IFSs with unequal amounts of functions, how does the attractor change when varying

which functions are kept affine? One could also explore more specific boundaries with fractal

splicing. In other words, splice two fractals with a piecewise boundary specifically defined

so that only particular regions of each branches attractor crosses the boundary.

Bounded Range Functions

During the explorations detailed in section 4.1, a similar exploration was performed on

functions with a bounded range; that is, functions satisfying |gi(x)| ≤ B. Such IFSs also
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produced attractor sets which strongly suggest convergence under the Hausdorff metric.

Empirical evidence of this is shown in Fig. 7.1 for the functions gi = cos(bix), sin(bix,

and tanh(bix), where each bi was randomly selected from [−4, −1] ∪ [1, 4]. For additional

examples, see the appendix. Determining precisely under what conditions this occurs would

be an interesting point of investigation.

Predicting IFS Parameters

There are many ways in which we could extend our neural network implementation to predict

IFS parameters. Of course, different model configurations could always be tested, those with

a higher complexity would likely produce the best results, should one have the memory for

it. However, one could also attempt transfer learning. This is the idea of taking a model

already trained to perform a given task, and retraining it to perform a similar task. Since the

model trained on two-function IFSs had a higher accuracy than the other models, perhaps

we could take this pre-trained two-function model and attempt to train it on four-function

IFSs. The majority of the learning would then only occur in the last layer as there is a

different number of outputs.

Since scaling the additive parameters was likely the cause of increased sparsity in the

attractors of the model produced IFSs, one could train a model only on fractals that have

not been scaled. This is feasible if one adopts a larger viewing region.

One could also add features to the loss function, such as including an extra component

found from reconstructing the attractor of the model produced IFS. This additional value

could then be calculated multiple ways. For example, one could calculate the pixel-wise

difference between the input and the reconstructed attractor, or calculate the Hausdorff

distance between the approximated attractor sets, amongst others. Though, implementing

these methods would be extremely computationally expensive.

140



Figure 7.1: Examples of attractors created from bounded range functions. The row represents
the g1 function, and the column represents the g2 function. The first row and column
corresponds to cosine, the second to sine, and the third to the hyperbolic tangent function.
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To increase the visual similarity between the input of the model with the attractor of the

model produced IFS, one could also use the network output to generate an initial population

of a swarm intelligence method, or genetic algorithm. This could be done by either perturbing

the output, or using various saved points of the model throughout the learning process.

Implementing this could then refine the values, as well as significantly reduce the time

necessary for the swarm intelligence method, or genetic algorithm to converge.
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Appendix A

Supplementary Fractals

Here we provide some supplementary images of attractors to give a more well-rounded de-

piction of what those created from nonaffine functions can look like.

A.1 Bounded Derivative Function Attractors

Supplementary images of attractors made from IFSs consisting of functions with a derivative

of M = 1 are given here. These can be found in Fig. A.1, Fig. A.2, and Fig. A.3.

A.2 Bounded Range Function Attractors

Additional examples of attractors corresponding to IFSs possessing range bounded functions

are given in this section. These can be found in Fig. A.4, Fig. A.5, and Fig. A.6.

A.3 Piecewise Affine Function Attractors

More examples of randomly initialized, piecewise affine function consisting IFS attractors can

be found in Fig. A.7. Each row of images in this figure has a different piecewise boundary.

A.4 Model Produced IFS Attractors

Additional examples of model produced IFS attractors that approximate the input image

quite well for the two-function IFS neural network can be found in Fig. A.8.
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Figure A.1: Supplementary images of attractors pertaining to IFSs consisting of derivative
bounded functions. Each of the IFSs in this figure have g1 = g3 = cos(bix)bi. Additionally,
each row going from top to bottom has g2 = g4 such that g2 = cos(bix)/bi, g2 = sin(bix)/bi,
and g2 = tanh(bix)/bi, respectively.
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Figure A.2: Supplementary images of attractors pertaining to IFSs consisting of derivative
bounded functions. Each of the IFSs in this figure have g1 = g3 = cos(bix)bi. Additionally,
each row going from top to bottom has g2 = g4 such that g2 = cos(bix)/bi, g2 = sin(bix)/bi,
and g2 = tanh(bix)/bi, respectively.
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Figure A.3: Supplementary images of attractors pertaining to IFSs consisting of derivative
bounded functions. Each of the IFSs in this figure have g1 = g3 = cos(bix)bi. Additionally,
each row going from top to bottom has g2 = g4 such that g2 = cos(bix)/bi, g2 = sin(bix)/bi,
and g2 = tanh(bix)/bi, respectively.
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Figure A.4: Supplementary images of attractors pertaining to IFSs consisting of range
bounded functions. Each of the IFSs in this figure have g1 = g3 = cos(bix). Addition-
ally, each row going from top to bottom has g2 = g4 such that g2 = cos(bix), g2 = sin(bix),
and g2 = tanh(bix), respectively.
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Figure A.5: Supplementary images of attractors pertaining to IFSs consisting of range
bounded functions. Each of the IFSs in this figure have g1 = g3 = sin(bix). Addition-
ally, each row going from top to bottom has g2 = g4 such that g2 = cos(bix), g2 = sin(bix),
and g2 = tanh(bix), respectively.
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Figure A.6: Supplementary images of attractors pertaining to IFSs consisting of range
bounded functions. Each of the IFSs in this figure have g1 = g3 = tanh(bix). Addition-
ally, each row going from top to bottom has g2 = g4 such that g2 = cos(bix), g2 = sin(bix),
and g2 = tanh(bix), respectively.
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Figure A.7: Supplementary images of attractors pertaining to IFSs consisting of piecewise
functions. Each row has the piecewise boundary defined by x = 0 when y > 0 and y = 0
when x > 0, x+y = 0, |x|+ |y| = 1, and x2 +y2 = 1, going from top to bottom, respectively.

153



Figure A.8: Supplementary images of model produced IFS attractors compared to their
input for the two-function IFS neural network. The first and third column are the input
images to the attractor to the right, respectively.

154



Appendix B

Source Code

B.1 Generating Fractal Databases

In this section we present some code that can be compiled and used to generate databases of

fractals. Note that this is a subset of the original code; many additional features have been

removed in order to shorten the length of the files. Additionally, there are some sections

pertaining to concepts that were not discussed. This code was written in the C programming

language and requires the libpng library.

/∗Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: Frac ta l s . h

∗/
#define HEIGHT 640

#define WIDTH 640

struct Frac ta l {
double dimension , stddevx , stddevy , ∗xs , ∗ys , ∗∗genome ;

int fracnum , numfuncs , numpoints , numb, d i s t , avgx , avgy , ∗∗bm, ∗ co lour s , co loured ;

} ;

double f (double ∗val , double point , double functype ) ;

int func ind ( int funcnum , double ∗∗genome ) ;

int funcaddind ( int funcnum , double ∗∗genome ) ;

int multindjump ( int functype ) ;

int addindjump ( int functype ) ;

int piecewi second (double x , double y ) ;

void func (double ∗x , double ∗y , double ∗∗genome , int funcnum , double functype ) ;

double va l idranddouble (double functype ) ;

void generatemults (double ∗∗genome , double functype , int ∗multparams ) ;

void generateadds (double ∗∗genome , double functype , int ∗addparams ) ;
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void generategenome ( struct Frac ta l ∗ f rac , int ∗ r e s t r i c t i o n s , int numres t r i c t i ons , int

d i s p e r s e ) ;

void ordergenome ( int numfuncs , double ∗∗genome ) ;

double funcdeterminant (double a , double b , double c , double d) ;

int va l i d a t e f unc (double a , double b , double c , double d) ;

double ∗∗ mallocgenome ( int numfuncs ) ;

void i n i t i a l i z e f r a c ( struct Frac ta l ∗ f rac , int numfuncs , int numpoints ) ;

double gene ra t epo in t s ( struct Frac ta l ∗ f r a c ) ;
int g en e r a t e f r a c ( struct Frac ta l ∗ f r a c ) ;
int ∗ po int tocoord (double x , double y , double minx , double maxx , double miny , double maxy) ;

void generatematr ix ( struct Frac ta l ∗ f rac , double ∗window) ;

void freegenome ( struct Frac ta l ∗ f r a c ) ;
void f r e e f r a c ( struct Frac ta l ∗ f r a c ) ;
int l e n f i l e (char ∗ f i l ename ) ;

/∗Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: Frac ta l s . c

∗
∗ This f i l e conta in s f unc t i on s that are used to

∗ generate f r a c t a l s , both a f f i n e and non−a f f i n e

∗/

#include <s t d i o . h>

#include <s t d l i b . h>

#include <time . h>

#include <math . h>

#include <s t r i n g . h>

#include ” Frac t a l s . h”

#include ” vec i o . h”

#include ”matvec read . h”

#define DOTSIZE 1 //must be an odd p o s i t i v e i n t e g e r

double f (double ∗val , double point , double functype ) {
/∗ This func t i on i s used to compute non−a f f i n e t rans f o rmat i ons

∗ on a s i n g l e coo rd inate po int . ( i e . only x f o r the po int (x , y ) )

∗ where the t rans fo rmat ion type i s r ep r e s en t ed as an in t ege r ,

∗ functype , computed with a randomly generated value , val ,

∗ s to r ed in the IFS genome

∗/
double newval ;

i f ( functype == 1) {
newval = va l [ 0 ] ∗ tanh ( va l [ 1 ] ∗ point ) ;

}
i f ( functype == 2) {

newval = va l [ 0 ] ∗ s i n ( va l [ 1 ] ∗ point ) ;
}
i f ( functype == 3) {

newval = va l [ 0 ] ∗ tanh ( va l [ 1 ] ∗ point ) ;
}
return newval ;
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}

int func ind ( int funcnum , double ∗∗genome ) {
/∗ This func t i on r e tu rn s the s t a r t i n g index

∗ o f funcnumth ( l i k e nth ) func t i on in the

∗ f r a c t a l s genome . This func t i on i s c a l c u l a t e s

∗ the s t a r t i n g index o f the mu l t i p l i c a t i v e

∗ parameters

∗/
int i ;

int ind = 0 ;

int j ;

for ( i = 0 ; i < funcnum ; i++){
j = genome [ 3 ] [ i ] ;

i f ( j == 0) ind += 4 ;

else i f ( j <11) ind += 8 ;

}
return ind ;

}

int funcaddind ( int funcnum , double ∗∗genome ) {
/∗ This func t i on r e tu rn s the s t a r t i n g index

∗ o f funcnumth ( l i k e nth ) func t i on in the

∗ f r a c t a l s genome . This func t i on i s c a l c u l a t e s

∗ the s t a r t i n g index o f the add i t i v e

∗ parameters

∗/
int i ;

int ind = 0 ;

int j ;

for ( i = 0 ; i < funcnum ; i++){
j = genome [ 3 ] [ i ] ;

i f ( j < 10) ind += 2 ;

else ind += 4 ;

}
return ind ;

}

int multindjump ( int functype ) {
/∗ This func t i on i s s im i l a r to func ind ∗/
i f ( functype == 0) return 4 ;

else i f ( functype < 11) return 8 ;

else return 0 ;

}

int addindjump ( int functype ) {
/∗ This func t i on i s s im i l a r to funcindadd ∗/
i f ( functype < 10) return 2 ;

else i f ( functype == 10) return 4 ;

else return 0 ;

}
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int piecewi second (double x , double y ) {
/∗ This func t i on i s used f o r p i e c ew i s e a f f i n e IFSs

∗ I t c a l c u l a t e s whether a po int i s on one s i d e o f

∗ the p i e c ew i s e boundary , or the other , r e tu rn ing

∗ e i t h e r 0 or 1

∗ With the cur rent i f statement the p i e c ew i s e

∗ boundary i s the c i r c l e o f rad iu s 1/2 cente red at 0

∗/
i f ( f abs ( x ) + fabs (y ) < 0 . 5 ) return 1 ;

else return 0 ;

}

void func (double ∗x , double ∗y , double ∗∗genome , int funcnum , double functype ) {
/∗ This func t i on computes the t rans fo rmat ion o f a po int (x , y ) by a

∗ f unc t i on in an IFS . The s p e c i f i c f unc t i on in the IFS i s g iven by

∗ an in t ege r , funcnum , then the parameters o f that func t i on are obtained

∗ from the IFS genome . The func t i on type i s then used to compute the

∗ t rans fo rmat ion .

∗
∗ i f functype i s 0 : a f f i n e t rans fo rmat ion new x = ax + by + c

∗ 1 : 2 to 1 t r i g mapping new x = acos (bx ) + ccos (dy ) + e

∗ 2 : 2 to 1 t r i g mapping new x = acos (by ) + c s i n (dy ) + e

∗ 3 : 2 to 1 t r i g mapping new x = acos (by ) + ctanh (dy ) + e

∗ 4 : 2 to 1 t r i g mapping new x = as in (bx ) + ccos (dy ) + e

∗ 5 : 2 to 1 t r i g mapping new x = as in (bx ) + c s i n (dy ) + e

∗ 6 : 2 to 1 t r i g mapping new x = as in (bx ) + ctanh (dy ) + e

∗ 7 : 2 to 1 t r i g mapping new x = atanh (bx ) + ccos (dy ) + e

∗ 8 : 2 to 1 t r i g mapping new x = atanh (bx ) + c s i n (dy ) + e

∗ 9 : 2 to 1 t r i g mapping new x = atanh (bx ) + ctanh (dy ) + e

∗ 10 : p i e c ew i s e a f f i n e new x = {ax+by + c , x < 0

∗ dx+ey + f , x >= 0

∗
∗/

double oldx = ∗x ;

double oldy = ∗y ;

int ind = func ind ( funcnum , genome ) ;

int addind = funcaddind ( funcnum , genome ) ;

i f ( functype == 0) {
(∗x ) = genome [ 0 ] [ ind ] ∗ oldx + genome [ 0 ] [ ind+1] ∗ oldy + genome [ 1 ] [ addind ] ;

(∗y ) = genome [ 0 ] [ ind+2] ∗ oldx + genome [ 0 ] [ ind+3] ∗ oldy + genome [ 1 ] [ addind +1] ;

}
else i f ( functype == 1) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 1) + f (&(genome [ 0 ] [ ind +2]) , oldy , 1) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 1) + f (&(genome [ 0 ] [ ind +6]) , oldy , 1) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 2) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 1) + f (&(genome [ 0 ] [ ind +2]) , oldy , 2) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 1) + f (&(genome [ 0 ] [ ind +6]) , oldy , 2) + genome
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[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 3) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 1) + f (&(genome [ 0 ] [ ind +2]) , oldy , 3) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 1) + f (&(genome [ 0 ] [ ind +6]) , oldy , 3) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 4) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 2) + f (&(genome [ 0 ] [ ind +2]) , oldy , 1) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 2) + f (&(genome [ 0 ] [ ind +6]) , oldy , 1) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 5) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 2) + f (&(genome [ 0 ] [ ind +2]) , oldy , 2) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 2) + f (&(genome [ 0 ] [ ind +6]) , oldy , 2) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 6) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 2) + f (&(genome [ 0 ] [ ind +2]) , oldy , 3) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 2) + f (&(genome [ 0 ] [ ind +6]) , oldy , 3) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 7) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 3) + f (&(genome [ 0 ] [ ind +2]) , oldy , 1) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 3) + f (&(genome [ 0 ] [ ind +6]) , oldy , 1) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 8) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 3) + f (&(genome [ 0 ] [ ind +2]) , oldy , 2) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 3) + f (&(genome [ 0 ] [ ind +6]) , oldy , 2) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 9) {

(∗x ) = f (&(genome [ 0 ] [ ind ] ) , oldx , 3) + f (&(genome [ 0 ] [ ind +2]) , oldy , 3) + genome [ 1 ] [

funcnum ∗ 2 ] ;
(∗y ) = f (&(genome [ 0 ] [ ind +4]) , oldx , 3) + f (&(genome [ 0 ] [ ind +6]) , oldy , 3) + genome

[ 1 ] [ funcnum ∗2+1] ;

}
else i f ( functype == 10) {

i f ( p i ecewi second ( oldx , oldy ) ) {
(∗x ) = genome [ 0 ] [ ind ] ∗ oldx + genome [ 0 ] [ ind+1] ∗ oldy + genome [ 1 ] [ addind ] ;

(∗y ) = genome [ 0 ] [ ind+2] ∗ oldx + genome [ 0 ] [ ind+3] ∗ oldy + genome [ 1 ] [ addind +1] ;

}
else {

(∗x ) = genome [ 0 ] [ ind+4] ∗ oldx + genome [ 0 ] [ ind+5] ∗ oldy + genome [ 1 ] [ addind +2] ;

(∗y ) = genome [ 0 ] [ ind+6] ∗ oldx + genome [ 0 ] [ ind+7] ∗ oldy + genome [ 1 ] [ addind +3] ;
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}
}

}

double va l idranddouble (double functype ) {
/∗ This func t i on gene ra t e s random va lue s

∗ with in a s p e c i f i c range f o r IFS parameters

∗/
double min ;

double range ;

// f o r most parameters :

i f ( functype >= 0) {
min = −1.;

range = 2 . ;

}
// f o r the b va lues in bounded d e r i v a t i v e f unc t i on s

else i f ( functype == −1){
min = 1 . ;

range = 4 . ;

}
double va l = (double ) rand ( ) /RANDMAX∗ range + min ;

i f ( functype == −1){
min = (double ) rand ( ) /RANDMAX;

i f (min < 0 . 5 ) va l ∗= −1.;

}
return va l ;

}

void generatemults (double ∗∗genome , double functype , int ∗multparams ) {
/∗ This func t i on gene ra t e s the mu l t i p l i c a t i v e parameters

∗ o f each func t i on in an IFS . i e . , the parameters that are not

∗ the +c or +e in the f unc t i on s de f ined in the func ( ) func t i on

∗
∗ The parameters are generated us ing va l idranddouble func t i on

∗ and the func t i on i s checked i f i t s a t i s f i e s c o n t r a c t i v i t y

∗ cond i t i on s . I f the func t i on does not s a t i s f y the c o n t r a c t i v i t y

∗ cond i t i ons , a l l parameters f o r that func t i on are regenerated .

∗/
int numparams , i ;

int pass = 1 ;

i f ( functype == 0) numparams = 4 ;

else numparams = 8 ;

i = ∗multparams ;

i f ( functype == 0) {
while ( pass != 0) {

for ( int j = i ; j < i + 4 ; j++){
genome [ 0 ] [ j ] = va l idranddouble ( functype ) ;

}
pass = va l i d a t e f un c ( genome [ 0 ] [ i ] , genome [ 0 ] [ i +1] , genome [ 0 ] [ i +2] , genome [ 0 ] [ i

+3]) ;

}
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pass = 1 ;

}
else i f ( functype < 10) {

while ( pass != 0) {
for ( int j = 0 ; j < 4 ; j++){

genome [ 0 ] [ i + 2∗ j ] = va l idranddouble ( functype ) ;

}
pass = va l i d a t e f un c ( genome [ 0 ] [ i ] , genome [ 0 ] [ i +2] , genome [ 0 ] [ i +4] , genome [ 0 ] [ i

+6]) ;

}
for ( int j = 0 ; j < 4 ; j++){

genome [ 0 ] [ i + 2∗ j +1] = va l idranddouble (−1) ;
}
pass = 1 ;

}
else i f ( functype == 10) {

while ( pass != 0) {
for ( int j = i ; j < i + 4 ; j++){

genome [ 0 ] [ j ] = va l idranddouble ( functype ) ;

}
pass = va l i d a t e f un c ( genome [ 0 ] [ i ] , genome [ 0 ] [ i +1] , genome [ 0 ] [ i +2] , genome [ 0 ] [ i

+3]) ;

}
pass = 1 ;

while ( pass != 0) {
for ( int j = i +4; j < i + 8 ; j++){

genome [ 0 ] [ j ] = va l idranddouble ( functype ) ;

}
pass = va l i d a t e f un c ( genome [ 0 ] [ i +4] , genome [ 0 ] [ i +5] , genome [ 0 ] [ i +6] , genome [ 0 ] [ i

+7]) ;

}
pass = 1 ;

}
∗multparams += numparams ;

return ;

}

void generateadds (double ∗∗genome , double functype , int ∗addparams ) {
/∗ This func t i on gene ra t e s the add i t i v e parameters

∗ f o r each func t i on in the IFS . i e . , the +c or +e in the

∗ f un c t i on s de f ined in the func ( ) func t i on .

∗
∗ Since these parameters do not a f f e c t c on t r a c t i v i t y ,

∗ they are generated to be a random number between

∗ −1 and 1 .

∗/
int i ;

int numparams ;

i f ( functype < 10) numparams = 2 ;

else numparams = 4 ;

for ( i = ∗addparams ; i < ∗addparams + numparams ; i++){
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genome [ 1 ] [ i ] = (double ) rand ( ) /RANDMAX∗2 . − 1 . ;

}
∗addparams += numparams ;

return ;

}

void generategenome ( struct Frac ta l ∗ f rac , int ∗ r e s t r i c t i o n s , int numres t r i c t i ons , int

d i s p e r s e ) {
/∗ This func t i on gene ra t e s the genome o f a f r a c t a l , i e . , the s e t o f v e c t o r s that

∗ that conta in s a l l the parameters used to generate the f r a c t a l .

∗ NOTE: This func t i on assumes that i n i t i a l i z e f r a c has been c a l l e d

∗
∗ INPUTS:

∗ f r a c − the f r a c t a l s t r u c t f o r which the genome i s be ing

∗ generated and s to r ed in

∗ r e s t r i c t i o n s − a vec to r conta in ing func t i on types f o r which the

∗ f r a c t a l can ’ t have based on the func t i on types

∗ de f ined in the func ( ) func t i on . Eg . , i f r e s t r i c t i o n s

∗ were the vec to r {2 ,3 ,4} then the f r a c t a l can have

∗ functypes {0 ,1 ,5 , 6 , 7 , 8 , 9 , 10}
∗ numre s t r i c t i on s − an i n t e g e r cor re spond ing to the l ength o f the

∗ r e s t r i c t i o n s vec to r .

∗ d i s p e r s e − an i n t e g e r d e f i n i n g the d i s p e r s i o n o f the f unc t i on s

∗ accord ing to the r e s t r i c t i o n s .

∗ i f d i s p e r s e i s 0 : the re are no r e s t r i c t i o n s , f unc t i on types are randomly

∗ generated so long as they ’ re not in the r e s t r i c t i o n s

∗ vec to r . There i s no guaruntee that a s p e c i f i c f unc t i on

∗ type w i l l be pre sent in the r e s u l t i n g f r a c t a l .

∗ 1 : t h i s opt ion r e qu i r e s at l e a s t 2 d i f f e r e n t types o f

∗ f un c t i on s . However , i f the re are more than 2 al lowed

∗ types o f f unc t i on s then i t i s not guarunteed to conta in

∗ each type .

∗ 2 : t h i s opt ion w i l l en f o r c e that at l e a s t one o f each

∗ f unc t i on type w i l l be in the r e s u l t i n g f r a c t a l .

∗/
int i , j ;

int multparams = 0 ;

int addparams = 0 ;

int pass = 1 ;

int premade = 0 ;

int numfunctypes = 11 ;

double ∗∗genome = f r a c −> genome ;

i f ( d i s p e r s e == 1) {
premade = 2 ;

for ( i = 0 ; i < 2 ; i++){
while ( pass != 0) {

pass = 0 ;

genome [ 3 ] [ i ] = rand ( )%numfunctypes ;

for ( j = 0 ; j < numre s t r i c t i on s ; j++){
i f ( genome [ 3 ] [ i ] == r e s t r i c t i o n s [ j ] ) pass = 1 ;

i f ( ( i == 1) && (genome [ 3 ] [ i ] == genome [ 3 ] [ i −1]) ) pass = 1 ;

}
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}
}

}
i f ( d i s p e r s e == 2) {

for ( i = 0 ; i < numfunctypes ; i++){
pass = 0 ;

for ( j = 0 ; j < numre s t r i c t i on s ; j++){
i f ( i == r e s t r i c t i o n s [ j ] ) pass = 1 ;

}
i f ( pass == 0) {

genome [ 3 ] [ premade ] = i ;

premade++;

}
}
pass = 1 ;

}
for ( i = premade ; i < f r a c −> numfuncs ; i++){

while ( pass != 0) {
pass = 0 ;

genome [ 3 ] [ i ] = rand ( )%numfunctypes ;

for ( j = 0 ; j < numre s t r i c t i on s ; j++){
i f ( genome [ 3 ] [ i ] == r e s t r i c t i o n s [ j ] ) pass = 1 ;

}
}
pass = 1 ;

}
dsor tvec ( f r a c −> numfuncs , genome [ 3 ] ) ;

for ( i = 0 ; i < f r a c −> numfuncs ; i++){
generatemults ( genome , genome [ 3 ] [ i ] , &multparams ) ;

generateadds ( genome , genome [ 3 ] [ i ] , &addparams ) ;

genome [ 2 ] [ i ] = 1 . / (double ) f r a c −> numfuncs ;

}
return ;

}

void ordergenome ( int numfuncs , double ∗∗genome ) {
/∗ This func t i on i s used to order the f unc t i on s in the

∗ f r a c t a l genome . This i s done by s o r t i n g rows o f a

∗ matrix where each row r ep r e s en t s a func t i on

∗/
int i , j , curind , i nd f ;

double ∗∗ genomefuncs = dmatmem( numfuncs , 22) ;

/∗ Se t t i ng va lue s in the genomefuncs matrix ∗/
for ( i = 0 ; i < numfuncs ; i++){

genomefuncs [ i ] [ 0 ] = genome [ 3 ] [ i ] ; // p lace functype f i r s t

cur ind = 1 ;

i nd f = func ind ( i , genome ) ;

for ( j = 0 ; j < multindjump ( genome [ 3 ] [ i ] ) ; j++){
genomefuncs [ i ] [ cur ind ] = genome [ 0 ] [ i nd f + j ] ;

cur ind++;

}
i nd f = funcaddind ( i , genome ) ;
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for ( j = 0 ; j < addindjump ( genome [ 3 ] [ i ] ) ; j++){
genomefuncs [ i ] [ cur ind ] = genome [ 1 ] [ i nd f + j ] ;

cur ind++;

}
genomefuncs [ i ] [ cur ind ] = genome [ 2 ] [ i ] ;

}
dsortmatrows ( numfuncs , 4 , 1 , genomefuncs ) ;

/∗ Converting back to genome o f the f r a c t a l ∗/
for ( i = 0 ; i < numfuncs ; i++){

genome [ 3 ] [ i ] = genomefuncs [ i ] [ 0 ] ;

}
for ( i = 0 ; i < numfuncs ; i++){

cur ind = 1 ;

i nd f = func ind ( i , genome ) ;

for ( j = 0 ; j < multindjump ( genomefuncs [ i ] [ 0 ] ) ; j++){
genome [ 0 ] [ i nd f + j ] = genomefuncs [ i ] [ cur ind ] ;

cur ind++;

}
i nd f = funcaddind ( i , genome ) ;

for ( j = 0 ; j < addindjump ( genomefuncs [ i ] [ 0 ] ) ; j++){
genome [ 1 ] [ i nd f + j ] = genomefuncs [ i ] [ cur ind ] ;

cur ind++;

}
genome [ 2 ] [ i ] = genomefuncs [ i ] [ cur ind ] ;

}
return ;

}

double funcdeterminant (double a , double b , double c , double d) {
/∗ This func t i on i s used to c a l c u l a t e the determinant

∗ o f an a f f i n e t rans fo rmat ion matrix in order to

∗ check c o n t r a c t i v i t y .

∗/
return a∗d − c∗b ;

}

int va l i d a t e f unc (double a , double b , double c , double d) {
/∗ This func t i on checks i f an a f f i n e t rans fo rmat ion

∗ s a t i s f i e s c o n t r a c t i v i t y cond i t i on s . This func t i on

∗ r e tu rn s 0 i f con t rac t i v e , 1 o therw i se .

∗
∗ i f an a f f i n e t rans fo rmat ion i s g iven by :

∗
∗ [ x ] [ a b ] [ x ] [ e ]

∗ [ y ] = [ c d ] [ y ] + [ f ]

∗
∗ then these c o n t r a c t i v i t y cond i t i on s are

∗ aˆ2 + cˆ2 < 1

∗ bˆ2 + dˆ2 < 1

∗ aˆ2 + bˆ2 + cˆ2 + dˆ2 − det (A) ˆ2 < 1

∗/
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double val1 , va l2 ;

double det = funcdeterminant (a , b , c , d ) ;

i f ( ( va l1 = a∗a + c∗c )>=1) return 1 ;

else i f ( ( va l2 = b∗b + d∗d)>=1) return 1 ;

else i f ( ( va l1 + val2 − det ∗det ) >= 1) return 1 ;

else return 0 ;

}

double ∗∗ mallocgenome ( int numfuncs ) {
/∗ This func t i on a l l o c a t e s memory f o r the genome o f an IFS

∗ The genome c o n s i s t s o f 4 v e c t o r s

∗ genome [ 0 ] i s the vec to r o f mu l t i p l i c a t i v e parameters

∗ genome [ 1 ] i s the vec to r o f add i t i v e parameters

∗ genome [ 2 ] i s the vec to r o f p r o b a b i l i t i e s f o r each func t i on

∗ genome [ 3 ] i s the vec to r o f functypes

∗/
double ∗∗genome ;

i f ( ( genome = (double ∗∗) mal loc (4∗ s izeof (double ∗) ) ) == NULL) {
f p r i n t f ( s tde r r , ”Malloc f a i l e d ( generate genome ) \n” ) ;
e x i t (1 ) ;

}
i f ( ( ( genome [ 0 ] = (double ∗) mal loc (8∗ numfuncs∗ s izeof (double ) ) ) == NULL) | |

( ( genome [ 1 ] = (double ∗) mal loc (4∗ numfuncs∗ s izeof (double ) ) ) == NULL) | |
( ( genome [ 2 ] = (double ∗) mal loc ( numfuncs∗ s izeof (double ) ) ) == NULL) ) {

f p r i n t f ( s tde r r , ”Malloc f a i l e d ( i n i t i a l i z e f r a c ) \n” ) ;
e x i t (1 ) ;

}
i f ( ( genome [ 3 ] = (double ∗) mal loc ( numfuncs∗ s izeof (double ) ) ) == NULL) {

f p r i n t f ( s tde r r , ”Malloc f a i l e d ( i n i t i a l i z e f r a c 3) \n” ) ;
e x i t (1 ) ;

}
return genome ;

}

void i n i t i a l i z e f r a c ( struct Frac ta l ∗ f rac , int numfuncs , int numpoints ) {
/∗ This func t i on i n i t i a l i z e s a f r a c t a l s t r u c tu r e . The number o f

∗ po in t s and number o f f un c t i on s has to be de f ined be f o r e i t

∗ can be c a l l e d . This func t i on then a l l o c a t e s memory f o r the

∗ x and y po in t s that w i l l be generated as we l l as a l l o c a t i n g

∗ memory f o r the matrix r ep r e s en t i ng the p i c tu r e o f the f r a c t a l .

∗
∗ Al l va lue s cor re spond ing to the f r a c t a l other than numfuncs ,

∗ numpoints , and whether the f r a c t a l i s c o l ou r s or not

∗ are i n i t i a l i z e d to −1
∗/

int i ;

f r a c −> fracnum = −1;
f r a c −> numfuncs = numfuncs ;

f r a c −> numpoints = numpoints ;

f r a c −> numb = −1;
f r a c −> avgx = −1;
f r a c −> avgy = −1;
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f r a c −> stddevx = −1;
f r a c −> stddevy = −1;
f r a c −> dimension = −1;
f r a c −> d i s t = −1;
f r a c −> co loured = 1 ; //dont co l ou r f r a c t a l s by func t i on by de f au l t

// to make them co loured by func t i on by de f au l t

// change t h i s to 0

/∗ i n i t i a l i z e genome ∗/
double ∗∗genome = mallocgenome ( numfuncs ) ;

f r a c −> genome = genome ;

/∗ i n i t i a l i z e xs , ys , and co lour vec to r ∗/
i f ( ( f r a c −> xs = (double ∗) mal loc ( numpoints ∗ s izeof (double ) ) ) == NULL) {

f p r i n t f ( s tde r r , ”Malloc Fa i l ed . ( i n i t i a l i z e po in t s ) \n” ) ;
e x i t (1 ) ;

}
i f ( ( f r a c −> ys = (double ∗) mal loc ( numpoints ∗ s izeof (double ) ) ) == NULL) {

f p r i n t f ( s tde r r , ”Malloc Fa i l ed . ( i n i t i a l i z e po in t s ) \n” ) ;
e x i t (1 ) ;

}
i f ( ( f r a c −> c o l ou r s = ( int ∗) mal loc ( numpoints ∗ s izeof ( int ) ) ) == NULL) {

f p r i n t f ( s tde r r , ”Malloc Fa i l ed . ( i n i t i a l i z e po in t s ) \n” ) ;
e x i t (1 ) ;

}
/∗ i n i t i z l i z e the p i x e l map ∗/
int ∗∗bm;

i f ( (bm = ( int ∗∗) mal loc (HEIGHT∗ s izeof ( int ∗) ) ) == NULL) {
f p r i n t f ( stdout , ”Malloc Fa i l ed . (makematrix ) \n” ) ;
e x i t (1 ) ;

}
for ( i = 0 ; i < HEIGHT; i++){

i f ( (bm[ i ] = ( int ∗) mal loc (WIDTH∗ s izeof ( int ) ) ) == NULL) {
f p r i n t f ( s tde r r , ”Malloc Fa i l ed . (makematrix ) \n” ) ;
e x i t (1 ) ;

}
}
f r a c −> bm = bm;

return ;

}

double gene ra t epo in t s ( struct Frac ta l ∗ f r a c ) {
/∗ This func t i on gene ra t e s the po in t s cor re spond ing

∗ to a f r a c t a l . That i s , i t randomly p i ck s a func t i on

∗ in the f r a c t a l and uses i t to trans form a random

∗ point . A new func t i on i s then picked and trans forms

∗ the output from the l a s t po int . This cont inues un t i l

∗ numpoints po in t s are generated . Addi t iona l ly , the

∗ f i r s t 100 po in t s are thrown away to ensure that a l l

∗ ( or c l o s e to a l l ) po in t s correspond to the f r a c t a l .

∗/
int i , j ;
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int funcnum ;

double p , num;

double max = 0 ;

double x = (double ) rand ( ) /RANDMAX;

double y = (double ) rand ( ) /RANDMAX;

double maxx = 0 ;

double maxy = 0 ;

for ( i = 0 ; i < 100 ; i++){
funcnum = rand ( )%f r a c −> numfuncs ;

func(&x , &y , f r a c −> genome , funcnum , f r a c −> genome [ 3 ] [ funcnum ] ) ;

}
for ( i = 0 ; i < f r a c −> numpoints ; i++){

num = (double ) rand ( ) /RANDMAX;

p = 0 . 0 ;

funcnum = 0 ;

for ( j = 0 ; j < f r a c −> numfuncs ; j++){
p += f r a c −> genome [ 2 ] [ j ] ;

i f (num < p) {
func(&x,&y , f r a c −> genome , funcnum , f r a c −> genome [ 3 ] [ j ] ) ;

f r a c −> xs [ i ] = x ;

f r a c −> ys [ i ] = y ;

// note : c o l ou r s get put to p i x e l s in generatebm ( below )

// and co l ou r s chosen are in PNGio . c

f r a c −> c o l ou r s [ i ] = funcnum ;

i f ( f abs (x ) > max) max = fabs (x ) ;

i f ( f abs (y ) > max) max = fabs (y ) ;

i f ( f abs (x ) > maxx) maxx = fabs (x ) ;

i f ( f abs (y ) > maxy) maxy = fabs (y ) ;

break ;

}
else funcnum ++;

}
}
return max ;

}

int g en e r a t e f r a c ( struct Frac ta l ∗ f r a c ) {
/∗ This func t i on c a l l s the generate po in t s func t i on .

∗ The commented s e c t i o n i s used to r e s i z e d the a f f i n e

∗ f r a c t a l s i f they were too l a r g e to f i t i n to the −1 to 1

∗ square , however , t h i s i s no l onge r used as non−a f f i n e

∗ IFSs are not as s imple to r e s i z e

∗/
double max = gene ra t epo in t s ( f r a c ) ;

int r e s i z e d = 0 ;

/∗
i n t i = 0 ;

i f (max > 1 . 0 ) {
f o r ( i n t i = 0 ; i < 2 ∗ f r a c −> numfuncs ; i++){

f r a c −> genome [ 1 ] [ i ] /= max ;

}
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max = gene ra t epo in t s ( f r a c ) ;

r e s i z e d = 1 ;

i++;

}
∗/
max += 1 ; // so the compi le r doesn ’ t g ive a warning f o r not us ing max

return r e s i z e d ;

}

int ∗ po int tocoord (double x , double y , double minx , double maxx , double miny , double maxy) {
/∗ This func t i on i s used to convert a po int (x , y ) to p i x e l c oo rd ina t e s

∗ on a sc r e en with viewing r eg i on [ minx ,maxx ] x [ miny ,maxy ]

∗/
int ∗ coords = ivecmem (2) ;

coords [ 0 ] = ( int ) (WIDTH/2 + WIDTH/2 ∗ ( ( x − minx ) /(maxx − minx ) ∗2 − 1) ) ;

coords [ 1 ] = ( int ) (HEIGHT/2 − HEIGHT/2 ∗ ( ( y − miny ) /(maxy − miny ) ∗2 − 1) ) ;

return coords ;

}

void generatematr ix ( struct Frac ta l ∗ f rac , double ∗window) {
/∗ This func t i on i s used to trans form the po in t s o f a f r a c t a l

∗ to a matrix o f s i z e HEIGHT x WIDTH which w i l l be used to

∗ generate an image o f the f r a c t a l .

∗/
int i , j , k , x , y ;

int do t s i z e = DOTSIZE; // p o s i t i v e odd i n t e g e r − d e f i n e s the s i z e o f a po int

int white = 255 ;

int ∗∗bm = f r a c −> bm;

// s t a r t o f f with a f u l l y white image

for ( i = 0 ; i < HEIGHT; i++){
for ( j = 0 ; j < WIDTH; j++){

bm[ i ] [ j ] = white ;

}
}
//numb i s the number o f p i x e l s cor re spond ing to the a t t r a c t o r

//avgx and avgy are the p i x e l c en t r o id coo rd ina t e s

int numb = 0 ;

int avgx = 0 ;

int avgy = 0 ;

int ∗ coords ;
for ( i = 0 ; i < f r a c −> numpoints ; i++){

coords = po int tocoord ( f r a c −>xs [ i ] , f r ac−>ys [ i ] , window [ 0 ] ,

window [ 1 ] , window [ 2 ] , window [ 3 ] ) ;

x = coords [ 0 ] ;

y = coords [ 1 ] ;

i f ( d o t s i z e %2 != 0) {
for ( j = −1 ∗ ( d o t s i z e −1) /2 ; j <= ( do t s i z e − 1) /2 ; j++){

for ( k = −1 ∗ ( d o t s i z e −1) /2 ; k <= ( do t s i z e −1) /2 ; k++){
i f ( x >= WIDTH − do t s i z e /2 − 1) x = WIDTH − do t s i z e /2 − 1 ;

i f ( y >= HEIGHT − do t s i z e /2 − 1) y = HEIGHT − do t s i z e /2 − 1 ;

i f ( x <= do t s i z e /2) x = do t s i z e ;
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i f ( y <= do t s i z e /2) y = do t s i z e ;

i f (bm[ y+j ] [ x+k ] == 255) {
avgx += x+k ;

avgy += y+j ;

numb += 1 ;

}
bm[ y+j ] [ x+k ] = f r a c −> c o l ou r s [ i ] ;

}
}

}
}
f r a c −> avgx = avgx /( int )numb ;

f r a c −> avgy = avgy /( int )numb ;

f r a c −> numb = numb ;

return ;

}

void freegenome ( struct Frac ta l ∗ f r a c ) {
/∗ This func t i on f r e e s the genome memory ∗/
f r e e ( f r a c −> genome [ 0 ] ) ;

f r e e ( f r a c −> genome [ 1 ] ) ;

f r e e ( f r a c −> genome [ 2 ] ) ;

f r e e ( f r a c −> genome [ 3 ] ) ;

f r e e ( f r a c −> genome ) ;

return ;

}

void f r e e f r a c ( struct Frac ta l ∗ f r a c ) {
/∗ This func t i on f r e e s the memory o f a f r a c t a l s t r u c tu r e ∗/
for ( int i = 0 ; i < HEIGHT; i++){

f r e e ( f r a c −> bm[ i ] ) ;

}
f r e e ( f r a c −> bm) ;

freegenome ( f r a c ) ;

f r e e ( f r a c −> xs ) ;

f r e e ( f r a c −> ys ) ;

return ;

}

int l e n f i l e (char ∗ f i l ename ) {
/∗ Thise func t i on c a l c u l a t e s the l ength o f a f i l e ∗/
int l en = 0 ;

char ch ;

FILE ∗ fp = fopen ( f i l ename , ” r ” ) ;

i f ( fp == NULL) {
f p r i n t f ( s tde r r , ” Fa i l ed to open f i l e ( l e n f i l e ) : %s (%c ) \n” , f i l ename , ’ r ’ ) ;

e x i t (1 ) ;

}
while ( ! f e o f ( fp ) ) {

ch = f g e t c ( fp ) ;

i f ( ch == ’ \n ’ ) {
l en++;
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}
}
f c l o s e ( fp ) ;

return l en ;

}

/∗Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: f r a c f un c s . h

∗/
struct Frac ta l ;

struct Frac ta l ∗ makerandfrac ( int numpoints , int numfuncs , int ∗ r e s t r i c t i o n s , int

numres t r i c t i ons , int d i spe r s e , double ∗window) ;

void dimension ( struct Frac ta l ∗ f r a c ) ;
void stddev ( struct Frac ta l ∗ f r a c ) ;

/∗ Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: f r a c f un c s . c

∗
∗ This f i l e conta in s f unc t i on s that are used to

∗ c a l c u l a t e p r op e r t i e s from f r a c t a l s as we l l as

∗ manipulate / mutate them f o r g en e t i c a lgor i thms

∗/

#include <s t d i o . h>

#include <s t d l i b . h>

#include <math . h>

#include <time . h>

#include ” Frac t a l s . h”

#include ” f r a c f un c s . h”

struct Frac ta l ∗ makerandfrac ( int numpoints , int numfuncs , int ∗ r e s t r i c t i o n s , int

numres t r i c t i ons , int d i spe r s e , double ∗window) {
/∗ This func t i on gene ra t e s a random f r a c t a l . See Frac t a l s . c −> generategenome ( ) f o r an

∗ exp lanat ion o f the input parameters

∗/
struct Frac ta l ∗ f r a c ;

i f ( ( f r a c = ( struct Frac ta l ∗) mal loc ( s izeof ( struct Frac ta l ) ) ) == NULL) {
f p r i n t f ( s tde r r , ”Malloc f a i l e d . ( makerandfrac ) \n” ) ;
e x i t (1 ) ;

}
i n i t i a l i z e f r a c ( f rac , numfuncs , numpoints ) ;

// f r a c −> co loured = 0 ;

generategenome ( f rac , r e s t r i c t i o n s , numres t r i c t i ons , d i s p e r s e ) ;

g en e r a t e f r a c ( f r a c ) ;

generatematr ix ( f rac , window) ;

return f r a c ;

}
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void dimension ( struct Frac ta l ∗ f r a c ) {
/∗ This func t i on c a l c u l a t e s an es t imate o f the

∗ f r a c t a l dimension f o r a f r a c t a l , based on i t s

∗ cor re spond ing number o f p i x e l s , and s t o r e s i t

∗ in the f r a c t a l s t r u c t .

∗/
f r a c −> dimension = ( log ( ( ( double ) f r a c −> numb) ) / log ( ( ( double )WIDTH) ) ) ;

return ;

}

void stddev ( struct Frac ta l ∗ f r a c ) {
/∗ This func t i on c a l c u l a t e s the standard dev i a t i on o f the

∗ p i x e l s cor re spond ing to a f r a c t a l , in both the x and y

∗ d i r e c t i on , based on the image o f the f r a c t a l . I t then

∗ s t o r e s the se va lue s in the f r a c t a l s t r u c t .

∗/
int i , j ;

double stddevx = 0 ;

double stddevy = 0 ;

for ( i = 0 ; i < HEIGHT; i++){
for ( j = 0 ; j < WIDTH; j++){

i f ( ( f r a c −> bm[ i ] [ j ] ) == 0) {
stddevx += ( j − f r a c −> avgx ) ∗ ( j − f r a c −> avgx ) ;

stddevy += ( i − f r a c −> avgy ) ∗ ( i − f r a c −> avgy ) ;

}
}

}
f r a c −> stddevx = sq r t ( stddevx /( (double ) ( f r a c −> numb −1) ) ) ;
f r a c −> stddevy = sq r t ( stddevy /( (double ) ( f r a c −> numb −1) ) ) ;
return ;

}

/∗Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: vec i o . h

∗/
void ds t r t ovec (char ∗ s t r , double ∗ vector , int ∗ l en ) ;

void i s t r t o v e c (char ∗ s t r , int ∗ vector , int ∗ l en ) ;

int ∗ ivecmem( int m) ;

double ∗∗ dmatmem( int m, int n) ;

void dsor tvec ( int m, double ∗vec ) ;
void dsortmatrows ( int m, int p , int co l , double ∗∗mat) ;

/∗Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: vec i o . c

∗
∗ This f i l e conta in s some s imple f unc t i on s

∗ f o r vec to r manipulat ion

∗/
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#include <s t r i n g . h>

#include <s t d i o . h>

#include <s t d l i b . h>

void ds t r t ovec (char ∗ s t r , double ∗ vector , int ∗ l en ) {
char ∗ptr ;
∗ l en = 0 ;

ptr = s t r t ok ( s t r , ” , ” ) ;

while ( ptr != NULL) {
vec to r [∗ l en ] = a to f ( ptr ) ;

ptr = s t r t ok (NULL, ” , ” ) ;

∗ l en += 1 ;

}
}

void i s t r t o v e c (char ∗ s t r , int ∗ vector , int ∗ l en ) {
char ∗ptr ;
∗ l en = 0 ;

ptr = s t r t ok ( s t r , ” , ” ) ;

while ( ptr != NULL) {
vec to r [∗ l en ] = a to f ( ptr ) ;

ptr = s t r t ok (NULL, ” , ” ) ;

∗ l en += 1 ;

}
}

int ∗ ivecmem( int m) {
int ∗vec ;
vec = ( int ∗) mal loc (m ∗ s izeof ( int ) ) ;

return vec ;

}

double ∗∗ dmatmem( int m, int n) {
int i ;

double ∗∗A;

A = (double ∗∗) mal loc (m ∗ s izeof (double ∗) ) ;
for ( i =0; i<m; i++){

A[ i ] = (double ∗) mal loc (n ∗ s izeof (double ) ) ;

}
return A;

}

void dsor tvec ( int m, double ∗vec ) {
/∗ Sor t s a l i s t from lowest to he i ghe s t ∗/
int i , swapped , n , tmp ;

for ( i = 0 ; i < m; i++){
swapped = 0 ;

n = 0 ;

while (n < (m − 1) ) {
i f ( vec [ n ] > vec [ n+1]){

tmp = vec [ n ] ;

vec [ n ] = vec [ n+1] ;
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vec [ n+1] = tmp ;

swapped = 1 ;

}
n += 1 ;

}
i f ( swapped == 0) break ;

}
return ;

}

/∗ Sor t ing func t i on f o r ordergenome in Frac t a l s . c ∗/
void dsortmatrows ( int m, int p , int co l , double ∗∗mat) {

/∗ Sor t s a matrix by from sma l l e s t to l a r g e s t in column co l ∗/
int i , swapped , n ;

double ∗tmp ;

for ( i = 0 ; i < m; i++){
swapped = 0 ;

n = 0 ;

while (n < (m − 1) ) {
i f (mat [ n ] [ c o l ] > mat [ n+1] [ c o l ] ) {

tmp = mat [ n ] ;

mat [ n ] = mat [ n+1] ;

mat [ n+1] = tmp ;

swapped = 1 ;

}
else i f (mat [ n ] [ c o l ] == mat [ n+1] [ c o l ] ) {

i f ( ( c o l + 1) <= p) dsortmatrows (m, p , c o l + 1 , mat) ;

}
n += 1 ;

}
i f ( swapped == 0) break ;

}
return ;

}

/∗Created by : Liam Graham

∗ Date : Oct . 2018

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: PNGio . h

∗/

struct Frac ta l ;

void funcnumtocolours ( int co lour , int ∗ r , int ∗g , int ∗b) ;
void WritePNG(char ∗ f i l ename , struct Frac ta l ∗ f r a c ) ;

/∗ Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME PNGio . c

∗
∗ This f i l e conta in s f unc t i on s that are used to
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∗ f o r f r a c t a l image input and output . S p e c i f i c a l l y ,

∗ to convert p i x e l maps o f f r a c t a l s to a png , e i t h e r

∗ co loured or not

∗/

#include <s t d i o . h>

#include <s t d l i b . h>

#include <png . h>

#include <math . h>

#include ”PNGio . h”

#include ” Frac t a l s . h”

void funcnumtocolours ( int co lour , int ∗ r , int ∗g , int ∗b) {
/∗ This func t i on i s used to convert a func t i on number

∗ to a s p e c i f i c co l ou r so that you can v i s u a l i z e which

∗ f unc t i on made what part o f a f r a c t a l

∗
∗ f unc t i on 0 : red

∗ 1 : orange

∗ 2 : ye l low

∗ 3 : green

∗ 4 : b lue

∗ add more co l ou r s i f you want to co l our an a t t r a c t o r

∗ that has more than 4 func t i on s in i t s IFS

∗/

i f ( co l ou r == 0) {
∗ r = 255 ;

∗g = 0 ;

∗b = 0 ;

}
else i f ( co l ou r == 1) {

∗ r = 255 ;

∗g = 128 ;

∗b = 0 ;

}
else i f ( co l ou r == 2) {

∗ r = 255 ;

∗g = 255 ;

∗b = 0 ;

}
else i f ( co l ou r == 3) {

∗ r = 0 ;

∗g = 255 ;

∗b = 0 ;

}
else i f ( co l ou r == 4) {

∗ r = 0 ;

∗g = 128 ;

∗b = 255 ;

}
return ;
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}

void WritePNG(char ∗ f i l ename , struct Frac ta l ∗ f r a c ) {
/∗ This func t i on conver t s a p i x e l map o f a f r a c t a l ,

∗ s to r ed in the f r a c t a l s t ruc ture , to a png image

∗ s to r ed in the g iven f i l ename .

∗
∗ The f r a c t a l s t r u c tu r e a l s o conta in s an i n t e g e r

∗ named coloured , i f co loured i s 0 , the f r a c t a l i s

∗ co loured based on which func t i on output what po int

∗ accord ing to the co l ou r s a s s i gned in funcnumtocolours .

∗ I f co loured i s 1 then the f r a c t a l i s b lack .

∗/
FILE ∗ fp = fopen ( f i l ename , ”wb” ) ;

i f ( ! fp ) abort ( ) ;

png s t ructp png = png c r e a t e w r i t e s t r u c t (PNG LIBPNG VER STRING, NULL, NULL, NULL) ;

i f ( ! png ) abort ( ) ;

png in fop i n f o = png c r e a t e i n f o s t r u c t ( png ) ;

i f ( ! i n f o ) abort ( ) ;

i f ( setjmp ( png jmpbuf ( png ) ) ) abort ( ) ;

p n g i n i t i o (png , fp ) ;

png set IHDR (

png ,

in fo ,

WIDTH,

HEIGHT,

8 ,

PNG COLOR TYPE RGB,

PNG INTERLACE NONE,

PNG COMPRESSION TYPE DEFAULT,

PNG FILTER TYPE DEFAULT

) ;

png wr i t e i n f o (png , i n f o ) ;

png bytep ∗ row po in t e r s = ( png bytep ∗) mal loc (HEIGHT ∗ s izeof ( png bytep ) ) ;

for ( int i = 0 ; i < HEIGHT; i++){
row po in t e r s [ i ] = ( png bytep ) mal loc (3 ∗ WIDTH ∗ s izeof (unsigned char ) ) ;

}
int r , g , b ;

for ( int i = 0 ; i < HEIGHT; i++){
for ( int j = 0 ; j < WIDTH; j++){

i f ( f r a c −> bm[ i ] [ j ] != 255 && f r a c −> co loured == 0) {
funcnumtocolours ( f r a c −> bm[ i ] [ j ] , &r , &g , &b) ;

row po in t e r s [ i ] [ 3 ∗ j +0] = (unsigned char ) r ;

r ow po in t e r s [ i ] [ 3 ∗ j +1] = (unsigned char ) g ;

r ow po in t e r s [ i ] [ 3 ∗ j +2] = (unsigned char ) b ;

}
else i f ( f r a c −> bm[ i ] [ j ] != 255 && f r a c −> co loured == 1) {

row po in t e r s [ i ] [ 3 ∗ j +0] = (unsigned char ) 0 ;

r ow po in t e r s [ i ] [ 3 ∗ j +1] = (unsigned char ) 0 ;

r ow po in t e r s [ i ] [ 3 ∗ j +2] = (unsigned char ) 0 ;

}
else {
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row po in t e r s [ i ] [ 3 ∗ j +0] = (unsigned char ) 255 ;

row po in t e r s [ i ] [ 3 ∗ j +1] = (unsigned char ) 255 ;

row po in t e r s [ i ] [ 3 ∗ j +2] = (unsigned char ) 255 ;

}
}

}
png wr i te image (png , row po in t e r s ) ;

png wr i te end (png , NULL) ;

f c l o s e ( fp ) ;

i f ( png && in f o ) png d e s t r o y wr i t e s t r u c t (&png , &i n f o ) ;

return ;

}

/∗ FILE NAME: matvec read . h ∗/
double ∗∗matr ix read (char ∗ f i l ename , int ∗rows , int ∗ c o l s ) ;

/∗ This f i l e was c rea ted by Allan Willms

∗ and i s be ing used with h i s permis s ion

∗
∗ FILE NAME: matvec read . c

∗
∗ The func t i on in t h i s f i l e reads in a matrix

∗ s to r ed in the f i l e f i l ename , and c a l c u l a t e s

∗ the number o f rows and columns as i t does so

∗/
#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>

#include ”matvec read . h”

double ∗∗matr ix read (char ∗ f i l ename , int ∗rows , int ∗ c o l s ) {
/∗ Read a text f i l e that d e f i n e s a matrix .

∗ Each row should have the same number o f e n t r i e s as the f i r s t row .

∗ Addit iona l e n t r i e s are ignored ; miss ing e n t r i e s are t r ea t ed as zero .

∗ Entr i e s in a row are separated by whitespace or commas .

∗
∗ Arguments :

∗ input f i l e name ,

∗ po in t e r to i n t to s t o r e number o f rows

∗ po in t e r to i n t to s t o r e number o f columns

∗
∗ Returns :

∗ NULL po in t e r on f a i l u r e

∗ Pointer to po in t e r to double o the rw i s e . The matrix i s

∗ s to r ed cont i guous ly in memory .

∗/

int m, n , rowlen ;

double ∗∗matrix ;

char b ;

char ∗ l i n e ,∗ tok ;

char d e l im i t e r s [ 5 ] = ” , \ t \n” ;
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FILE ∗ i n f i l e ;

i f ( ( i n f i l e = fopen ( f i l ename , ” r ” ) ) == NULL) {
f p r i n t f ( s tde r r , ” Fa i l ed to open f i l e %s .\n” , f i l ename ) ;

return NULL;

}
/∗ F i r s t read cha ra c t e r s u n t i l the f i r s t newl ine cha rac t e r i s encountered . ∗/
rowlen = 0 ;

b = f g e t c ( i n f i l e ) ;

while (b != EOF && b != ’ \n ’ ) {
rowlen++;

b = f g e t c ( i n f i l e ) ;

}
rowlen += 2 ;

rewind ( i n f i l e ) ;

/∗ Al l o ca t e space for , and read the f i r s t l i n e in to a s t r i n g . ∗/
l i n e = (char ∗) mal loc ( rowlen ∗ s izeof (char ) ) ;
f g e t s ( l i n e , rowlen , i n f i l e ) ;

/∗ Count the number o f e n t r i e s in t h i s l i n e . ∗/
tok = s t r t ok ( l i n e , d e l im i t e r s ) ;

∗ c o l s = 0 ;

while ( tok != NULL) {
(∗ c o l s )++;

tok = s t r t ok (NULL, d e l im i t e r s ) ;

}
f r e e ( l i n e ) ;

/∗ Count the remaining l i n e s , keeping t rack o f the l ong e s t l i n e . ∗/
∗ rows = 1 ;

n = 0 ;

b = f g e t c ( i n f i l e ) ;

while (b != EOF) {
i f (b == ’ \n ’ ) {

(∗ rows )++;

i f (n > rowlen ) rowlen = n ;

}
else

n++;

b = f g e t c ( i n f i l e ) ;

}
/∗ Al l o ca t e space f o r l ong e s t l i n e . ∗/
l i n e = (char ∗) mal loc ( ( rowlen+2)∗ s izeof (char ) ) ;
/∗ Al l o ca t e space f o r the row po in t e r s . ∗/
i f ( ( matrix = (double ∗∗) mal loc (∗ rows∗ s izeof (double ∗) ) ) == NULL) {

f p r i n t f ( s tde r r , ”mal loc f a i l e d \n” ) ;
f c l o s e ( i n f i l e ) ;

return NULL;

}
/∗ Rewind f i l e and read l i n e s . ∗/
rewind ( i n f i l e ) ;

/∗ Al l o ca t e space f o r a l l rows in cont iguous r eg i on in memory . ∗/
i f ( ( matrix [ 0 ] = (double ∗) c a l l o c ( (∗ rows ) ∗(∗ c o l s ) , s izeof (double ) ) ) == NULL) {

f p r i n t f ( s tde r r , ” c a l l o c f a i l e d \n” ) ;
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f c l o s e ( i n f i l e ) ;

return NULL;

}
/∗ Read each l i n e o f f i l e and record va lue s . ∗/
for (m=0; m<∗rows ; m++) {

/∗ Assign the row po in t e r to the appropr ia te l o c a t i o n in the a l l o c a t e d space . ∗/
matrix [m] = matrix [ 0 ] + ∗ c o l s ∗m;

/∗ Get the l i n e from the f i l e . ∗/
i f ( f g e t s ( l i n e , rowlen , i n f i l e ) == NULL) {

f p r i n t f ( s tde r r , ”Error read ing input f i l e l i n e %d .\n” ,m+1) ;

f c l o s e ( i n f i l e ) ;

return NULL;

}
/∗ Break the l i n e by white space . ∗/
tok = s t r t ok ( l i n e , d e l im i t e r s ) ;

for (n=0; n<∗c o l s ; n++) {
i f ( tok == NULL) break ; /∗ miss ing columns t r ea t ed as z e ro s ∗/
i f ( s s c an f ( tok , ”%l f ” , matrix [m]+n) != 1) {

f p r i n t f ( s tde r r , ”Error on l i n e %d column %d o f input f i l e %s :%s%s .\n” ,

m+1,n+1, f i l ename , ” Trying to read : ” , tok ) ;

f c l o s e ( i n f i l e ) ;

return NULL;

}
tok = s t r t ok (NULL, d e l im i t e r s ) ;

}
}
f r e e ( l i n e ) ;

f c l o s e ( i n f i l e ) ;

return matrix ;

}

/∗Created by : Liam Graham

∗ Last updated : Jun . 2020

∗
∗ FILE NAME: generatedata . c

∗
∗ This i s the main f i l e that , when run ,

∗ gene ra t e s databases o f f r a c t a l s

∗/
#include <s t d i o . h>

#include <s t d l i b . h>

#include <math . h>

#include <time . h>

#include <s t r i n g . h>

#include ” Frac t a l s . h”

#include ” vec i o . h”

#include ”PNGio . h”

#include ” f r a c f un c s . h”

int main ( int argc , char ∗argv [ ] ) {
int i , j , numpoints , numfuncs , numrows , numtogenerate , numres t r i c t i ons , d i spe r s e , tmpint

;
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int ∗ r e s t r i c t i o n s = ivecmem (20) ;

int pcomp = 0 ;

double window [ 4 ] ;

char f i l ename [ 5 0 ] , dirname [ 5 0 ] , fracname [ 1 2 4 ] , f i l e p a t h [ 1 0 0 ] , tmp [ 5 0 ] ;

FILE ∗ fp ;

struct Frac ta l ∗ f r a c ;

srand ( time (NULL) ) ;

f p r i n t f ( stdout , ”How many f r a c t a l s would you l i k e to generate : ” ) ;

s can f ( ”%d” , &numtogenerate ) ;

f p r i n t f ( stdout , ”\n” ) ;
s p r i n t f ( f i l ename , ” f r a cda ta . dat” ) ;

f p r i n t f ( stdout , ”What i s the d i r e c t o r y c a l l e d (Note : i t should a l r eady be c rea ted ) : ” ) ;

s can f ( ”%s ” , dirname ) ;

f p r i n t f ( stdout , ”\nHow many po in t s would you l i k e to p l o t f o r each f r a c t a l : ” ) ;

s can f ( ”%d” , &numpoints ) ;

s t r cpy ( f i l e p a t h , dirname ) ;

f p r i n t f ( stdout , ”\nHow many func t i on s in each IFS : ” ) ;

s can f ( ”%d” , &numfuncs ) ;

f p r i n t f ( stdout , ”\nEnter a vec to r r ep r e s en t i ng the viewing window ( eg . minx ,maxx , miny ,

maxy) : ” ) ;

s can f ( ”%s ” , tmp) ;

d s t r t ovec (tmp , window , &tmpint ) ;

f p r i n t f ( stdout , ”\n0 − Af f i n e \n” ) ;
f p r i n t f ( stdout , ”1 − x −> acos (bx ) + ccos (dy )+e\n” ) ;
f p r i n t f ( stdout , ”2 − x −> acos (bx ) + c s i n (dy )+e\n” ) ;
f p r i n t f ( stdout , ”3 − x −> acos (bx ) + ctanh (dy )+e\n” ) ;
f p r i n t f ( stdout , ”4 − x −> a s in (bx ) + ccos (dy )+e\n” ) ;
f p r i n t f ( stdout , ”5 − x −> a s in (bx ) + c s i n (dy )+e\n” ) ;
f p r i n t f ( stdout , ”6 − x −> a s in (bx ) + ctanh (dy )+e\n” ) ;
f p r i n t f ( stdout , ”7 − x −> atanh (bx ) + ccos (dy )+e\n” ) ;
f p r i n t f ( stdout , ”8 − x −> atanh (bx ) + c s i n (dy )+e\n” ) ;
f p r i n t f ( stdout , ”9 − x −> atanh (bx ) + ctanh (dy )+e\n” ) ;
f p r i n t f ( stdout , ”10 − Piecewi se A f f i n e \n” ) ;
f p r i n t f ( stdout , ”\nEnter a vec to r conta in ing the maps you would l i k e to r e s t r i c t : ” ) ;

s can f ( ”%s ” , f i l e p a t h ) ; // f i l e p a t h i s j u s t a temporary p l a c eho ld e r

f p r i n t f ( stdout , ”\n” ) ;
i s t r t o v e c ( f i l e p a t h , r e s t r i c t i o n s , &numre s t r i c t i on s ) ;

f p r i n t f ( stdout , ”\n0 − No r e s t r i c t i o n s \n” ) ;
f p r i n t f ( stdout , ”1 − Ensure the re are at l e a s t 2 d i f f e r e n t t rans fo rmat ion types \n” ) ;
f p r i n t f ( stdout , ”2 − Ensure the re i s at l e a s t 1 o f each t rans fo rmat ion type\n” ) ;
f p r i n t f ( stdout , ”\nWhat d i s p e r s i o n o f t rans f o rmat i ons would you l i k e : ” ) ;

s can f ( ”%d” , &d i s p e r s e ) ;

f p r i n t f ( stdout , ”\n” ) ;
s p r i n t f ( f i l e p a t h , ”%s%s” , dirname , f i l ename ) ;

i f ( ( fp = fopen ( f i l e p a t h , ” r ” ) ) == NULL) {
numrows = 0 ;

}
else {

numrows = l e n f i l e ( f i l e p a t h ) ;

}
i f ( ( fp = fopen ( f i l e p a t h , ”a” ) ) == NULL) {
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f p r i n t f ( s tde r r , ”Error , you must c r e a t e the d i r e c t o r y f i r s t \n” ) ;
e x i t (1 ) ;

}
f p r i n t f ( stdout , ”Generating f r a c t a l s %d to %d\n” , numrows , numrows+numtogenerate ) ;

for ( i = 0 ; i < numtogenerate ; i++){
f r a c = makerandfrac ( numpoints , numfuncs , r e s t r i c t i o n s , numres t r i c t i ons , d i spe r s e ,

window) ;

stddev ( f r a c ) ;

dimension ( f r a c ) ;

int params = 0 ;

/∗ f r a c t a l number , numfuncs , numpoints , numb, avgx , avgy , stddevx , stddevy ,

dimension , genome ∗/
f p r i n t f ( fp , ”%d\ t%d\ t%d\ t%d\ t%d\ t%d\ t%.15 l f \ t%.15 l f \ t%.15 l f \ t ” ,

numrows+i , f rac−>numfuncs , f rac−>numpoints , f rac−>numb,

f rac−>avgx , f rac−>avgy , f rac−>stddevx , f rac−>stddevy , f r a c −> dimension ) ;

for ( j = 0 ; j < f r a c −> numfuncs ; j++){
for ( int k = 0 ; k < multindjump ( f rac−>genome [ 3 ] [ j ] ) ; k++){

f p r i n t f ( fp , ”%.15 l f \ t ” , f r a c −> genome [ 0 ] [ params + k ] ) ;

}
params += multindjump ( f rac−>genome [ 3 ] [ j ] ) ;

}
params = 0 ;

for ( j = 0 ; j < f r a c −> numfuncs ; j++){
for ( int k = 0 ; k < addindjump ( f rac−>genome [ 3 ] [ j ] ) ; k++){

f p r i n t f ( fp , ”%.15 l f \ t ” , f r a c −> genome [ 1 ] [ params + k ] ) ;

}
params += addindjump ( f rac−>genome [ 3 ] [ j ] ) ;

}
for ( j = 0 ; j < f r a c −> numfuncs ; j++){

f p r i n t f ( fp , ”%.15 l f \ t ” , f r a c −> genome [ 2 ] [ j ] ) ;

}
for ( j = 0 ; j < f r a c −> numfuncs−1; j++){

f p r i n t f ( fp , ”%.15 l f \ t ” , f r a c −> genome [ 3 ] [ j ] ) ;

}
f p r i n t f ( fp , ”%.15 l f \n” , f r a c −> genome [ 3 ] [ f r a c −> numfuncs −1]) ;

s p r i n t f ( fracname , ”%s f r a c%d . png” , dirname , numrows+i ) ;

WritePNG( fracname , f r a c ) ;

f r e e f r a c ( f r a c ) ;

i f ( numtogenerate >= 100 && ( i %(( int ) ( numtogenerate /100 . ) ) == 0) ) {
pcomp += 1 ;

i f (pcomp < 10) {
f p r i n t f ( stdout , ”\ rPercent Complete :\ t%d%%” , pcomp) ;

}
else i f (pcomp < 100) {

f p r i n t f ( stdout , ”\ rPercent Complete :\ t \b%d%%” , pcomp) ;

}
else {

f p r i n t f ( stdout , ”\ rPercent Complete :\ t \b\b%d%%” ,pcomp) ;

}
f f l u s h ( stdout ) ;

}
}
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f p r i n t f ( stdout , ”\n” ) ;
f c l o s e ( fp ) ;

e x i t (0 ) ;

}

To compile this code, one can run the following in the terminal:

$ gcc −Wall −o generatedata generatedata . c F ra c t a l s . c f r a c f un c s . c PNGio . c vec i o . c

matvec read . c −lm −lpng

An example of running the compiled code to create a 100 fractal database of IFSs created

with the functions g1 = g3 = tanh(x) and g2 = g4 = sin(x) is given below.

$ mkdir Test

$ . / generatedata

How many f r a c t a l s would you l i k e to generate : 100

What i s the d i r e c t o r y c a l l e d (Note : i t should a l r eady be c rea ted ) : . / Test /

How many po in t s would you l i k e to p l o t for each f r a c t a l : 1000000

How many func t i on s in each IFS : 4

Enter a vec to r r ep r e s en t i ng the viewing window ( eg . minx ,maxx , miny ,maxy) : −3 ,3 ,−3 ,3

0 − Af f i n e

1 − x −> acos (bx ) + ccos (dy )+e

2 − x −> acos (bx ) + c s i n (dy )+e

3 − x −> acos (bx ) + ctanh (dy )+e

4 − x −> a s in (bx ) + ccos (dy )+e

5 − x −> a s in (bx ) + c s i n (dy )+e

6 − x −> a s in (bx ) + ctanh (dy )+e

7 − x −> atanh (bx ) + ccos (dy )+e

8 − x −> atanh (bx ) + c s i n (dy )+e

9 − x −> atanh (bx ) + ctanh (dy )+e

10 − Piecewi se A f f i n e

Enter a vec to r conta in ing the maps you would l i k e to r e s t r i c t : 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 10

0 − No r e s t r i c t i o n s

1 − Ensure the re are at l e a s t 2 d i f f e r e n t t rans fo rmat ion types

2 − Ensure the re i s at l e a s t 1 o f each t rans fo rmat ion type

What d i s p e r s i o n o f t rans f o rmat i ons would you l i k e : 0

Generating f r a c t a l s 0 to 100

Percent Complete : 100%

$

Note that this code will only create data, not overwrite it. In the above example it generated

fractals 0 to 100. If we were to run it again with the exact same inputs, it would create
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fractals 100 to 200. The purpose of this was to make it easier to generate large databases.

We recommend not generating more than 10, 000 at a given time.

B.2 Neural Network Implementation

Below we provide code from four seperate files that were used to create and train the neural

networks on the fractal databases. These programs are written in version 3.7 of the Python

programming language, and make use of the matplotlib, Pytorch, and numpy libraries.

In the file FracDataset.py:

# This f i l e conta in s the c l a s s d e f i n i t i o n o f the datase t

# Created by : Liam Graham

# Last Updated : June 2020

import os

import numpy as np

import torch

import torch . u t i l s . data as d a t a u t i l s

from PIL import Image

class Fracta lDataset ( d a t a u t i l s . Dataset ) :

# The c l a s s d e f i n i t i o n o f the datase t − t h i s i s not to be

# confused with the data l oade r which segments the data in to

# batches

#

# NOTE: Al l images o f an N−f unc t i on IFS were s to r ed in one

# d i r e c t o r y along with a d a t a f i l e conta in ing t h e i r

# p r op e r t i e s . Each f r a c t a l was s to r ed as f r a c {} . png
# where {} i s i t s c r e a t i on number and corresponds to

# the l i n e number in the data f i l e . In the data f i l e

# the data was s to r ed in the order o f :

# − c r e a t i on number

# − number o f f unc t i on s in the IFS

# − number o f po in t s

# − number o f p i x e l s cor re spond ing to the f r a c t a l

# − x coord ina te o f c en t r o id

# − y coord ina te o f c en t r o id

# − standard dev i a t i on in the x d i r e c t i o n

# − standard dev i a t i on in the y d i r e c t i o n

# − f r a c t a l dimension est ime

# − IFS parameters

#

# INITIALIZATIONS :

# f i l ename : the name o f the d a t a f i l e

# r o o t d i r : the d i r e c t o r y conta in ing the images and d a t a f i l e

# inv e r t : i f 0 , load images normally , e l s e , i n v e r t the images

# transform : a t rans fo rmat ion that can be app l i ed to the data as

# i t i s loaded
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def i n i t ( s e l f , f i l ename , r o o t d i r , i n v e r t = 0 , trans form=None ) :

f r a cda ta = np . l oadtx t ( f i l ename )

numfuncs = int ( ( len ( f r a cda ta [ 0 , : ] ) −9)/7)
s e l f . outputs = f racda ta [ : , 9:9+6∗numfuncs ]

s e l f . len = len ( s e l f . outputs )

s e l f . r o o t d i r = r o o t d i r

s e l f . t rans form = transform

s e l f . i n v e r t = inv e r t

# re tu rn s the amount o f e lements in the datase t

def l e n ( s e l f ) :

return s e l f . len

# retu rn s an item linenum of the datase t as a python d i c t i ona ry

# conta in ing the image o f an a t t r a c t o r and i t s IFS parameters

def g e t i t em ( s e l f , l inenum ) :

img name = os . path . j o i n ( s e l f . r o o t d i r ,

” f r a c {} . png” . format ( linenum ) )

image = ( Image .open( img name ) ) . getdata ( )

data = s e l f . outputs [ linenum , : ]

sample = { ’ image ’ : image , ’ data ’ : data}

i f s e l f . t rans form :

sample = s e l f . t rans form ( sample , s e l f . i n v e r t )

return sample

class ToTensor ( object ) :

# The c l a s s d e f i n i t i o n o f the trans form the conver t s

# the data to a pytorch tenso r ob j e c t

def c a l l ( s e l f , sample , i n v e r t ) :

data = torch . Tensor ( sample [ ’ data ’ ] )

image = sample [ ’ image ’ ]

image = ( torch . Tensor ( image ) ) . reshape (−1 , 640)

image . unsqueeze (0 )

i f ( i nv e r t != 0) :

image = −1∗( image − 255)

return { ’ data ’ : data ,

’ image ’ : image}

In the file Networks.py:

# This f i l e conta in s the d e f i n i t i o n o f the network used to p r ed i c t IFS parameters

# Created by : Liam Graham

# Last Updated : June 2020

import torch

183



import torch . nn as nn

import os

import numpy as np

def convbr ( in channe l s , out channe l s , k e r n e l s i z e = 3 , s t r i d e = 1 , padding = 0) :

# Pre−de f ined concvo lu t i ona l l a y e r that i n c o rpo r a t e s batch norma l i za t i on and

# the leaky−ReLU ac t i v a t i o n func t i on

#

# INPUTS:

# in channe l s : the number o f f e a t u r e maps o f the input

# out channe l s : the number o f output f e a tu r e maps

# k e r n e l s i z e : the width or he ight o f the ke rne l in the convo lu t i ona l l a y e r

# s t r i d e : the s t r i d e o f the ke rne l

# padding : the number o f l a y e r s o f ze ro padding

#

# OUTPUTS:

# conv : a convo lu t i ona l l a y e r ob j e c t

conv = nn . Sequent i a l (

nn . Conv2d ( in channe l s , out channe l s , k e r n e l s i z e = k e r n e l s i z e , s t r i d e = s t r i d e ,

padding = padding ) ,

nn . BatchNorm2d ( out channe l s ) ,

nn . LeakyReLU ( ) )

return conv

def f cbrd ( in channe l s , out channe l s , dropout = 0) :

# Pre−de f ined f u l l y connected l ay e r that i n c o rpo r a t e s batch normal i zat ion , the

# leaky−ReLU ac t i v a t i o n funct ion , and dropout ( though i t i s not used )

#

# INPUTS:

# in channe l s : the l ength o f the input vec to r

# out channe l s : the l ength o f the output vec to r

# dropout : the dropout p r obab i l i t y

#

# OUTPUTS:

# f c : a f u l l y connected l ay e r ob j e c t

f c = nn . Sequent i a l (

nn . Dropout (p = dropout ) ,

nn . Linear ( in channe l s , out channe l s ) ,

nn . BatchNorm1d ( out channe l s ) ,

nn . LeakyReLU ( )

)

return f c

class block (nn . Module ) :

# The block c l a s s d e f i n i t i o n used in the neura l network

#

# INITIALIZATIONS :

# channe l s : the number o f f e a t u r e s maps o f the input and output l a y e r s

# reduce : the number o f f e a tu r e maps o f the middle l a y e r

# k s i z e : the s i z e o f the ke rne l in the middel l a y e r
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def i n i t ( s e l f , channels , reduce , k s i z e ) :

super ( block , s e l f ) . i n i t ( )

s e l f . conv1 = convbr ( channels , reduce , k e r n e l s i z e = 1)

s e l f . conv2 = convbr (reduce , reduce , k e r n e l s i z e = ks i z e , padding = int ( k s i z e /2) )

s e l f . conv3 = convbr (reduce , channels , k e r n e l s i z e = 1)

#Pass ing the data forward through the block

#

# INPUTS:

# x : the output o f the prev ious l ay e r

#

# OUTPUTS:

# out : the output o f the block

def forward ( s e l f , x ) :

out = s e l f . conv1 (x )

out = s e l f . conv2 ( out )

out = s e l f . conv3 ( out )

out += x

return out

class FracNet (nn . Module ) :

# The c l a s s d e f i n i t i o n o f the neura l network used to model IFS parameters

#

# INITIALIZATIONS :

# num classes : the number o f outputs o f the network

# dropout : the dropout p r obab i l i t y ( t h i s was not used )

# chunks : a l i s t o f s i z e 7 r ep r e s en t i ng the chunk s i z e s

# k s i z e : a l i s t o f s i z e 7 r ep r e s en t i ng the ke rne l s i z e

# f o r the l ay e r in each chunk

# note : k s i z e should only be odd numbers

# ps i z e : a l i s t o f s i z e 7 r ep r e s en t i ng the ke rne l s i z e

# in each poo l ing l ay e r

# note : p s i z e should only be even numbers

def i n i t ( s e l f , num classes , dropout , chunks , k s i z e , p s i z e ) :

# ATTRIBUTES:

# Accurac i e s : a numpy array keeping t rack o f the accuracy at

# to l e r an c e l e v e l s 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 ,

# measured a f t e r each epoch

# l o s s e s : a numpy array keeping t rack o f the l o s s

# at each step

# to t a l e po ch s : the t o t a l epochs f o r which the model has been

# tra ined

# num maps : the number o f f e a t u r e maps in a given chunk

super ( FracNet , s e l f ) . i n i t ( )

s e l f . Accurac i e s = [ [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] ]

s e l f . l o s s e s = np . array ( [ ] )

s e l f . t o t a l e po ch s = 0

s e l f . num classes = num classes

num maps = [8 , 16 , 32 , 64 , 128 , 256 , 512 ]
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#the dimensions a f t e r each chunk :

#640 x 640

s e l f . pool0 = convbr (1 , num maps [ 0 ] , k e r n e l s i z e = p s i z e [ 0 ] , s t r i d e = 2 , padding =

int ( p s i z e [ 0 ] / 2 )−1)
#320 x 320

s e l f . chunk0 = s e l f . make chunk (num maps [ 0 ] , chunks [ 0 ] , int (num maps [ 0 ] / 4 ) , k s i z e [ 0 ] )

#320 x 320

s e l f . pool1 = convbr (num maps [ 0 ] , num maps [ 1 ] , k e r n e l s i z e = p s i z e [ 1 ] , s t r i d e = 2 ,

padding = int ( p s i z e [ 1 ] / 2 )−1)
#160 x 160

s e l f . chunk1 = s e l f . make chunk (num maps [ 1 ] , chunks [ 1 ] , int (num maps [ 1 ] / 4 ) , k s i z e [ 1 ] )

#160 x 160

s e l f . pool2 = convbr (num maps [ 1 ] , num maps [ 2 ] , k e r n e l s i z e = p s i z e [ 2 ] , s t r i d e = 2 ,

padding = int ( p s i z e [ 2 ] / 2 )−1)
#80 x 80

s e l f . chunk2 = s e l f . make chunk (num maps [ 2 ] , chunks [ 2 ] , int (num maps [ 2 ] / 4 ) , k s i z e [ 2 ] )

#80 x 80

s e l f . pool3 = convbr (num maps [ 2 ] , num maps [ 3 ] , k e r n e l s i z e = p s i z e [ 3 ] , s t r i d e = 2 ,

padding = int ( p s i z e [ 3 ] / 2 )−1)
#40 x 40

s e l f . chunk3 = s e l f . make chunk (num maps [ 3 ] , chunks [ 3 ] , int (num maps [ 3 ] / 4 ) , k s i z e [ 3 ] )

#40 x 40

s e l f . pool4 = convbr (num maps [ 3 ] , num maps [ 4 ] , k e r n e l s i z e = p s i z e [ 4 ] , s t r i d e = 2 ,

padding = int ( p s i z e [ 4 ] / 2 )−1)
#20 x 20

s e l f . chunk4 = s e l f . make chunk (num maps [ 4 ] , chunks [ 4 ] , int (num maps [ 4 ] / 4 ) , k s i z e [ 4 ] )

#20 x 20

s e l f . pool5 = convbr (num maps [ 4 ] , num maps [ 5 ] , k e r n e l s i z e = p s i z e [ 5 ] , s t r i d e = 2 ,

padding = int ( p s i z e [ 5 ] / 2 )−1)
#10 x 10

s e l f . chunk5 = s e l f . make chunk (num maps [ 5 ] , chunks [ 5 ] , int (num maps [ 5 ] / 4 ) , k s i z e [ 5 ] )

#10 x 10

s e l f . pool6 = convbr (num maps [ 5 ] , num maps [ 6 ] , k e r n e l s i z e = p s i z e [ 6 ] , s t r i d e = 2 ,

padding = int ( p s i z e [ 6 ] / 2 )−1)
#5 x 5

s e l f . chunk6 = s e l f . make chunk (num maps [ 6 ] , chunks [ 6 ] , int (num maps [ 6 ] / 4 ) , k s i z e [ 6 ] )

s e l f . f c 0 = fcbrd (num maps [ 6 ] ∗ 5 ∗ 5 , 1000 , dropout = dropout )

s e l f . f c ou t = nn . Linear (1000 , num classes )

def make chunk ( s e l f , channels , chunks , reduce , k s i z e ) :

# This c l a s s func t i on c r e a t e s the chunks in the network by

# us ing the block c l a s s above

#
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# INPUTS:

# channe l s : the number o f f e a t u r e s maps o f the input and output l a y e r s

# o f each block in each chunk

# chunks : the s i z e o f the chunk to be made

# reduce : the number o f f e a tu r e maps o f the middle l a y e r o f each block

# k s i z e : the s i z e o f the ke rne l in the middel l a y e r o f each block

l a y e r s = [ ]

for i in range ( chunks ) :

l a y e r s . append ( block ( channels , reduce , k s i z e ) )

return nn . Sequent i a l (∗ l a y e r s )

def forward ( s e l f , x ) :

#Pass ing the data forward through the block

#

# INPUTS:

# x : the output o f the prev ious l ay e r

#

# OUTPUTS:

# out : the output o f the block

out = s e l f . pool0 ( x )

out = s e l f . chunk0 ( out )

out = s e l f . pool1 ( out )

out = s e l f . chunk1 ( out )

out = s e l f . pool2 ( out )

out = s e l f . chunk2 ( out )

out = s e l f . pool3 ( out )

out = s e l f . chunk3 ( out )

out = s e l f . pool4 ( out )

out = s e l f . chunk4 ( out )

out = s e l f . pool5 ( out )

out = s e l f . chunk5 ( out )

out = s e l f . pool6 ( out )

out = s e l f . chunk6 ( out )

out = out . reshape ( out . s i z e (0 ) , −1)
out = s e l f . f c 0 ( out )

out = s e l f . f c ou t ( out )

return out

In the file Networkfuncs.py:

# This f i l e conta in s f unc t i on s p e r t a i n i ng to the neura l network model

# Created by : Liam Graham

# Last Updated : June 2020
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import torch

import torch . nn as nn

import numpy as np

import matp lo t l i b . pyplot as p l t

from Networks import ∗ # The f i l e conta in ing the network c l a s s d e f i n i t i o n

import t o r c hv i s i o n

from PIL import Image

import os

def t r a i n (model , t r a i n l o ad e r , device , opt imizer , c r i t e r i o n , p r i n tpc t = 5 , graphpct = 10 ,

graphheight = 0 . 3 ) :

# This func t i on can be used to t r a i n a neura l network on mul t ip l e GPUs

#

# INPUTS:

# model : the network ob j e c t that w i l l be t r a in ed

# t r a i n l o a d e r : the ob j e c t that l oads data in to batches

# dev i ce : the dev i ce that the model w i l l be t r a in ed on

# Note : t h i s func t i on i s f o r mu l t ip l e GPUs.

# I f t r a i n i n g on the CPU or a s i n g l e GPU,

# change a l l model . module .∗ i n s t an c e s to

# model .∗
# opt imize r : the opt imize r that i s used in con junct ion with

# grad i en t descent to update network parameters

# c r i t e r i o n : the l o s s func t i on o f the network

# pr in tpc t : the percentage f requency that a l o s s update i s

# pr in ted . Eg . , 5 p r i n t s every 5% complet ion o f

# an epoch

# graphpct : the percentage f requency that a l o s s update i s

# graphed . Eg . , 10 graphs the l o s s every 10%

# complet ion o f an epoch

# graphheight : the he ight o f the graph o f the l o s s pr in ted

# whenever graphpct o f an epoch i s complete

model . t r a i n ( )

t o t a l s t e p = len ( t r a i n l o a d e r )

print ( ”Beginning Train ing ” )

model . module . t o t a l e po ch s += 1

for i , sample in enumerate( t r a i n l o a d e r ) :

# Move batch to the dev i c e

images = sample [ ’ image ’ ] . to ( dev i c e )

l a b e l s = sample [ ’ data ’ ] . to ( dev i c e )

# Feeding the input forward

outputs = model ( images )

l o s s = c r i t e r i o n ( outputs , l a b e l s )

model . module . l o s s e s = np . append (model . module . l o s s e s , l o s s . item ( ) )

# Backpropagation

opt imize r . z e ro g rad ( )

l o s s . backward ( )

opt imize r . s tep ( )
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# pr in t an update every p r i n tpc t percentage complet ion o f an epoch

i f ( i +1) % int ( p r i n tpc t ∗ t o t a l s t e p /100) == 0 :

print ( ’ Step [{}/{} ] , Loss : { : . 4 f } ’
. format ( i +1, t o t a l s t e p , l o s s . item ( ) ) )

# graph the l o s s every graphpct percentage complet ion o f an epoch

i f ( i +1) % int ( graphpct ∗ t o t a l s t e p /100) == 0 :

# Note : the d i v i s i o n by 2500 i s due to a datase t o f s i z e 250 ,000

# with a step s i z e o f 100

xs = np . l i n s p a c e (0 , len (model . module . l o s s e s ) /2500 , len (model . module . l o s s e s ) )

p l t . p l o t ( xs , model . module . l o s s e s )

p l t . yl im (0 , graphheight )

p l t . g r i d (True )

p l t . show ( )

print ( ”Epoch Complete ! ” )

def t e s t (model , t e s t l o ad e r , device , ba t ch s i z e , t e s t i t em s = 10000) :

#This func t i on can be used to t e s t a neura l network on a datase t

#

# INPUTS:

# model : the network ob j e c t that w i l l be t e s t ed

# t e s t l o a d e r : the ob j e c t that l oads in to batches

# dev i ce : the dev i c e that the model w i l l be t e s t ed on

# Note : t h i s f unc t i on i s f o r mu l t ip l e GPUs.

# I f t r a i n i n g on the CPU or a s i n g l e GPU,

# change a l l model . module .∗ i n s t an c e s to

# model .∗
# ba t ch s i z e : the batch s i z e o f the data l oade r

# t e s t i t em s : the number o f e lements in the t e s t s e t

model . eval ( ) # th i s i s to switch batch norma l i za t i on from moving

# average to t o t a l average

t e s t t o t a l = t e s t i t em s ∗ model . module . num classes

t o t a l t e s t s t e p = len ( t e s t l o a d e r )

with torch . no grad ( ) :

acc1 , acc2 , acc3 , acc4 , acc5 = 0 , 0 , 0 , 0 , 0

to l1 , to l2 , to l3 , to l4 , t o l 5 = 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5

for i , sample in enumerate( t e s t l o a d e r ) :

# move batch to dev i ce

image = sample [ ’ image ’ ] . to ( dev i ce )

data = sample [ ’ data ’ ] . to ( dev i c e )

# feed the data forward

outputs = model ( image )

# c a l c u l a t e the d i f f e r e n c e between the t rue va lue s and outputs

d i f s = (abs ( outputs [ : , : ] − data [ : , : ] ) )

acc1 += ( d i f s < t o l 1 ) .sum( ) . item ( )

acc2 += ( d i f s < t o l 2 ) .sum( ) . item ( )

acc3 += ( d i f s < t o l 3 ) .sum( ) . item ( )

acc4 += ( d i f s < t o l 4 ) .sum( ) . item ( )

acc5 += ( d i f s < t o l 5 ) .sum( ) . item ( )
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#pr in t percentage complet ion

i f ( i +1) % 1 == 0 :

print ( ’ Step [{}/{} ] ’
. format ( i +1, t o t a l t e s t s t e p ) , end = ”\ r ” )

#append to model accuracy a t t r i b u t e

model . module . Accurac i e s [ 0 ] . append (100∗ acc1 / t e s t t o t a l )

model . module . Accurac i e s [ 1 ] . append (100∗ acc2 / t e s t t o t a l )

model . module . Accurac i e s [ 2 ] . append (100∗ acc3 / t e s t t o t a l )

model . module . Accurac i e s [ 3 ] . append (100∗ acc4 / t e s t t o t a l )

model . module . Accurac i e s [ 4 ] . append (100∗ acc5 / t e s t t o t a l )

print ( ”Within {} :\ t { : . 2 f}% [{}/{} ] ” . format ( to l1 , 100∗ acc1 / t e s t t o t a l , acc1 , t e s t t o t a l

) )

print ( ”Within {} :\ t { : . 2 f}% [{}/{} ] ” . format ( to l2 , 100∗ acc2 / t e s t t o t a l , acc2 , t e s t t o t a l

) )

print ( ”Within {} :\ t { : . 2 f}% [{}/{} ] ” . format ( to l3 , 100∗ acc3 / t e s t t o t a l , acc3 , t e s t t o t a l

) )

print ( ”Within {} :\ t { : . 2 f}% [{}/{} ] ” . format ( to l4 , 100∗ acc4 / t e s t t o t a l , acc4 , t e s t t o t a l

) )

print ( ”Within {} :\ t { : . 2 f}% [{}/{} ] ” . format ( to l5 , 100∗ acc5 / t e s t t o t a l , acc5 , t e s t t o t a l

) )

def save (model , l e a r n i n g r a t e , opt imizer , device , f i l ename ) :

#This func t i on can be used to save a neura l network

#

# INPUTS:

# model : the network ob j e c t that w i l l be t e s t ed

# l e a r n i n g r a t e : the cur rent l e a rn i ng ra t e used

# opt imize r : the opt imize r that i s used in con junct ion with

# grad i en t descent to update network parameters

# dev i ce : the dev i c e the model i s cu r r en t l y on

# f i l ename : the name o f the f i l e the model w i l l be saved as

# Note : a common f i l e ex tens i on type i s . t a r

cpudevice = torch . dev i c e ( ’ cpu ’ )

model . to ( cpudevice )

s t a t e = {
’ l o s s e s ’ : model . l o s s e s ,

’ num classes ’ : model . num classes ,

’ Accurac i e s ’ : model . Accurac ies ,

’ l e a rn i ng ra t e ’ : l e a r n i n g r a t e ,

’ t o t a l epochs ’ : model . t o ta l epochs ,

’ dropout ’ : model . dropout ,

’ s t a t e d i c t ’ : model . s t a t e d i c t ( ) ,

’ opt imize r ’ : opt imize r . s t a t e d i c t ( ) ,

}
torch . save ( s ta te , f i l ename )

model . to ( dev i ce )

def load ( f i l ename device , chunks , k s i z e s , p s i z e s , s c a l e l r = 1) :

# This func t i on can be used to load a neura l network
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#

# INPUTS:

# f i l ename : the name o f the f i l e the model w i l l be saved as

# dev i ce : the dev i ce the model w i l l be loaded to

# Note : t h i s func t i on i s f o r mu l t ip l e GPUs.

# I f t r a i n i n g on the CPU or a s i n g l e GPU,

# change a l l model . module .∗ i n s t an c e s to

# model .∗
# The f o l l ow i ng must match that o f the saved model :

# chunks : a l i s t o f s i z e 7 r ep r e s en t i ng the chunk s i z e s

# k s i z e : a l i s t o f s i z e 7 r ep r e s en t i ng the ke rne l s i z e

# f o r the l ay e r in each chunk

# note : k s i z e should only be odd numbers

# ps i z e : a l i s t o f s i z e 7 r ep r e s en t i ng the ke rne l s i z e

# in each poo l ing l ay e r

# note : p s i z e should only be even numbers

#

# s c a l e l r : the f a c t o r by which the l e a rn i ng ra t e w i l l be

# sca l ed

checkpo int = torch . load ( f i l ename , map locat ion = ’ cpu ’ )

num classes = checkpoint [ ’ num classes ’ ]

dropout = checkpoint [ ’ dropout ’ ]

model = FracNet ( num classes , dropout , chunks , k s i z e s , p s i z e s )

i f torch . cuda . dev i c e count ( ) > 1 :

model = nn . DataPara l l e l (model )

model . to ( dev i ce )

l e a r n i n g r a t e = checkpoint [ ’ l e a rn i ng ra t e ’ ]∗ s c a l e l r

opt imize r = torch . optim .Adam(model . parameters ( ) , l r = l e a r n i n g r a t e )

model . module . l o s s e s = checkpoint [ ’ l o s s e s ’ ]

model . module . Accurac i e s = checkpoint [ ’ Accurac i e s ’ ]

model . module . t o t a l e po ch s = checkpoint [ ’ t o t a l epochs ’ ]

model . module . l o a d s t a t e d i c t ( checkpo int [ ’ s t a t e d i c t ’ ] )

opt imize r . l o a d s t a t e d i c t ( checkpo int [ ’ opt imize r ’ ] )

opt imize r . param groups [ 0 ] [ ’ l r ’ ]∗= s c a l e l r

print ( ”Model loaded s u c c e s f u l l y :\ tEpoch : ” ,model . module . t o ta l epochs , ” loaded onto” ,

dev i c e )

return model , opt imizer , l e a r n i n g r a t e

To create a model and train it we can run the following Python script:

# This f i l e conta in s can be used to load data , c r e a t e a network , t r a i n the model , and save

i t

# Created by : Liam Graham

# Last Updated : June 2020

import os

import torch

import torch . nn as nn

import t o r c hv i s i o n

import t o r c hv i s i o n . t rans forms as t rans forms

from PIL import Image
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import torch . u t i l s . data as d a t a u t i l s

import matp lo t l i b . pyplot as p l t

import numpy as np

from FracDataset import Fracta lDataset , ToTensor # The f i l e conta in ing the Frac ta l datase t

c l a s s d e f i n i t i o n

from Networks import ∗ # The f i l e conta in ing the network c l a s s d e f i n i t i o n

from Networkfuncs import ∗ # The f i l e conta in ing the network func t i on such as t ra in , t e s t ,

e t c .

i f name == ” main ” :

b a t ch s i z e = 100

num workers = 6 # The number o f cpus used to load data

# Loading the Frac ta l datase t

# This f i l e w i l l load the t r a i n i n g s e t from the d i r e c t o r y

# /home/ lgraha07 / s c ra t ch / Frac l i bn f 2 /

#

# The va l i d a t i o n s e t from

# /home/ lgraha07 / s c ra t ch /Va l i dFrac l i bn f 2 /

#

# and the t e s t s e t from

# /home/ lgraha07 / s c ra t ch /Tes tFrac l i bn f2 /

dirname = ” Frac l i bn f 2 ”

testd i rname = ”Tes tFrac l i bn f2 ”

val iddirname = ”Va l i dFrac l i bn f 2 ”

path = ”/home/ lgraha07 / s c ra t ch /”

d i rpath = path+dirname

t e s t d i r p a th = path+testd i rname

va l i dd i rpa th = path+val iddirname

f i l ename = ”/ f racda ta . dat”

f i l e p a t h = dirpath+f i l ename

t e s t f i l e p a t h = t e s t d i r p a th+f i l ename

v a l i d f i l e p a t h = va l i dd i rpa th+f i l ename

t r a i n s e t = Fracta lDataset ( f i l ename = f i l e p a t h ,

r o o t d i r = dirpath ,

trans form = ToTensor ( ) )

t e s t s e t = Fracta lDatase t ( f i l ename = t e s t f i l e p a t h ,

r o o t d i r = te s td i rpa th ,

trans form = ToTensor ( ) )

v a l i d s e t = Fracta lDataset ( f i l ename = va l i d f i l e p a t h ,

r o o t d i r = va l idd i rpath ,

trans form = ToTensor ( ) )

# Put each datase t i n to a pytorch data l oade r which d i v i d e s i t i n to batches

f r a c t r a i n l o a d e r = d a t a u t i l s . DataLoader ( t r a i n s e t ,

b a t ch s i z e = bat ch s i z e ,

s h u f f l e = True ,
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num workers = num workers )

f r a c t e s t l o a d e r = d a t a u t i l s . DataLoader ( t e s t s e t ,

b a t ch s i z e = bat ch s i z e ,

s h u f f l e = False ,

num workers = num workers )

f r a c v a l i d l o a d e r = d a t a u t i l s . DataLoader ( v a l i d s e t ,

b a t ch s i z e = bat ch s i z e ,

s h u f f l e = False ,

num workers = num workers )

# I n i t i a l i z a t i o n s and Hyperparameters

dev i ce = torch . dev i c e ( ’ cuda : 0 ’ i f torch . cuda . i s a v a i l a b l e ( ) else ’ cpu ’ )

num classes = t r a i n s e t [ 0 ] [ ’ data ’ ] . s i z e (0 )

dropout = 0

l e a r n i n g r a t e = 0.0000075

chunks = [3 , 5 , 7 , 1 1 , 2 9 , 2 3 , 1 7 ]

k s i z e s = [ 3 , 3 , 3 , 3 , 3 , 3 , 3 ]

p s i z e s = [ 4 , 4 , 4 , 4 , 4 , 4 , 4 ]

betas = ( 0 . 9 , 0 . 9 9 9 )

num epochs = 10

# Create the model

model = FracNet ( num classes , dropout , chunks , k s i z e s , p s i z e s )

i f torch . cuda . dev i c e count ( ) > 1 :

model = nn . DataPara l l e l (model )

model . to ( dev i ce )

opt imize r = torch . optim .Adam(model . parameters ( ) , l r = l e a r n i n g r a t e , betas = betas ,

weight decay = 0 .01 )

# Train , t e s t and save the model . Note : dur ing t r a i n i n g i t i s t e s t ed on the va l i d a t i o n

s e t

# Once a l l t r a i n i n g i s complete i s when i t i s t e s t ed on the t e s t s e t

for i in range ( num epochs ) :

t r a i n (model , f r a c t r a i n l o a d e r , device , opt imizer , c r i t e r i o n = nn .MSELoss ( ) )

t e s t (model , f r a c v a l l o a d e r , device , b a t ch s i z e )

modelname = ”modelnf2 ”+str ( i )+” . ta r ”

save (model , l e a r n i n g r a t e , opt imizer , device , modelname )

# To go back and load epoch 8 and s c a l e the l e a rn i ng ra t e by 1/10 , we could then run

model , opt imizer , l e a r n i n g r a t e = load ( ”modelnf2 8 . ta r ” , device , chunks , k s i z e s , p s i z e s ,

s c a l e l r = 1/10 . )
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