THE HISTORICAL EVOLUTION OF THE LANDSCAPE ARCHITECTURE BUILDING AT THE UNIVERSITY OF GUELPH

by

AMIRHOSSEIN SADEGHIESFAHANI

A Thesis
Presented to
The University of Guelph

In partial fulfillment of requirements
for the degree of
Master of Landscape Architecture
in
Landscape Architecture

Guelph, Ontario, Canada

© Amirhossein Sadeghiesfahani 2019, December, 2019
Abstract

The University of Guelph Landscape Architecture building is the home of the first landscape architecture program in Canada and has been continuously used since 1969. While many studies have been conducted on the performance of the building, few have examined the evolution of the building over 50 years and how physical change has been affected by the socio-cultural and design milieu. To better explore this, a landscape biography approach was used to understand how the landscape architecture building became what it is today. A comprehensive literature review, archival search, and interviews with key people were used to develop a historical record that was compared with design education movements over five decades. The results are intended to document the history of an outstanding education facility and inform future development.
ACKNOWLEDGMENTS

I like to thank my family and friends for encouraging and helping me constantly during my studies.

I would also like to extend my appreciation to my advisor, Nathan Perkins for his great support during my studies and thesis process. This wasn’t possible without your fantastic help, support, and ideas. Also, I would like to thank my committee members, Nadia Amoroso and Martin Holland who also helped me in the process.

I also wish to thank the faculty and graduates of the landscape architecture program for sharing their amazing memories and stories.
TABLE OF CONTENTS

ABSTRACT ...ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... vii

CHAPTER ONE: Introduction ... 1

Overview ... 1
ProBLEM Statement ... 3
Research Goal and Objectives .. 4
Organization of the Thesis .. 5

CHAPTER TWO: Literature Review .. 6

Overview ... 6
History of the Design Education ... 6
Individuality .. 8
Types of Architecture Schools’ Buildings .. 9
Courtyard (campus as a city): ... 9
Open-Plan Studios: .. 11
Shifting the Paradigm (modern approaches to design education) ... 12
Modern Approaches to Design Education .. 13
Social Interactions ... 14
Flexibility ... 15
Use of Multimedia ... 16

Virtual Spaces (the effects of social media on education) ... 17

Landscape Biography .. 18

Summary ... 21
LIST OF FIGURES

Figure 1: Sketch of a complex courtyard campus model (Sketch by Author) 11
Figure 2: Open Plan Design Studio model (Sketch by Author) .. 12
Figure 3: Location of the Seed Building (Highlighted in Red) ... 32
Figure 4: Columns Layout (drawn by the Author based on University of Guelph physical Resources Drawings) ... 33
Figure 5: Seed Building Front View Visualization (Rendered by Author) 37
Figure 6: Seed Building Courtyard Visualization (Rendered by Author) 37
Figure 7: Seed Research Building Basement Plan (Drawing by Author Based on the University of Guelph Physical Resources) ... 38
Figure 8: Seed Research Building, first-floor plan (Drawing by Author Based on the University of Guelph Physical Resources) ... 39
Figure 9: Figure 6: Seed Research Building, second-floor plan (Drawing by Author Based on the University of Guelph Physical Resources) ... 40
Figure 10: Landscape Architecture Building 1969 photo (University of Guelph Archives) 43
Figure 11: Landscape Architecture Building Opening Ceremony. Professor victor Chanasyk on the right (Photo from University of Guelph Archives) 44
Figure 12: Entrance Lobby (Author’s Sketch) ... 47
Figure 13: The Lobby as an Exhibition Space (University of Guelph Archives) 47
Figure 14: 1969 First Floor Plan (Drawing by Author based on U of Guelph Physical Resources plans) ... 48
Figure 15: 1969 Second Floor Plan (based on U of G Physical Resources plans) 52
Figure 16: 1969 courtyard visualization by the author .. 53
Figure 17: 1969 courtyard plan (drawing by the author) .. 54
Figure 18: East end Studio division (University of Guelph Physical Resources) 58
Figure 19: Alterations to Room 204 (University of Guelph Physical Resources) 60
Figure 20: 1970's and 80's East wing Rearrangements (Drawn by the author based on University of Guelph Physical Resources Drawings) .. 60

Figure 21: First Floor Addition Diagram and Courtyard view (Model and Render by Author) 64

Figure 22: 1989 Studio Addition (University of Guelph Physical Resources) .. 65

Figure 23: Second-floor studio addition (top) and the North facade of the building after the addition (Drawings by Author) .. 68

Figure 24: The Image of the Courtyard after the 2nd Floor Studio Addition (Image by the Author) .. 69

Figure 25: 1992 second floor studio and Stair addition .. 70

Figure 26: 2001 Major Renovation Areas (Drawn by Author based on University of Guelph Physical Resources Plans) ... 73

Figure 27: 2001 Faculty Wing Rearrangement (Drawing by the Author based on U of G physical Resources Plans) .. 74

Figure 28: 2001 Area 2 Renovations (Drawing by the Author based on U of G Physical Resources Plans) ... 76

Figure 29: LA building first floor. Phase two and three of the 2001 renovation plans (U of G Landscape Architecture School Archives) .. 77

Figure 30: Exterior changes to the LA building (Diagram by the Author) ... 78

Figure 31: LA Building Density Graph (generated by the author) ... 80

Figure 32: The proposed structure adds another level with a separate structure from the original building that underpins the existing foundation. (Diagram by Author) ... 86

Figure 33: Glazing structure Diagram (by Author) .. 87

Figure 34: New Courtyard Space Rendering (Rendered by Author) ... 87

Figure 35: Proposed Courtyard Plan with three social gathering spaces and an elevator. The arrows show the places of the removed walls to improve access to the area. (designed by author) .. 88

Figure 36: Addition of a green roof to the 1992 studio to make a more insulated environment underneath while conveying the green approach of the project. .. 89
Figure 37: The facade on the East side is shaped by fence-like meshes with Ivy plants covering it. The foldable partition enables the students to expand the space to the edge of the facade when the weather is good. (Author’s Sketches)... 89

Figure 38: The mesh facade borrows its pattern from the existing windows (Author, 2019)..... 90

Figure 39: East and Front View Rendering (By the Author)... 90
CHAPTER ONE: Introduction

Overview

Physical environments are designed, by necessity, to respond to the context of place, people, and the activities that they are meant to host (Thoring, Desmet, & Badke-Schaub, 2018). While designers have to account for current use in programming, it is also imperative that designers consider for future use. Often this projected use is uncertain in the details, and over time the occupants or users of the designed facility or space will modify the original design (Fernandez, 2004).

Facilities can also change informally over time by the actions of the users, or in case of architecture, by successive modifications that reflect the need for new technologies or the current needs of the occupants (Bryson, 2010). When these changes are considered, the cycle begins anew as the design is always influenced by newer means of building technologies, fashion, and aesthetics (Fernandez, 2004). When seen through the lens of ‘cycles of modification’ that reflect the period needs of the occupants and the fashion of design, there is an opportunity to study the influence of culture and people for a specific period. In short, examining the changes to a building that occur over time can yield insight into the evolution, not only of the physical structure but the cultural influences that led to that modification. This de-layering of historical change or ‘palimpsest analysis’ has value in understanding not only the what but the why of change or evolution in a built structure.
Rarely is it easy to de-layer a building without extensive historical documentation as successive modifications often destroy earlier forms, but when such documentation is available, the opportunity to shed light on consecutive periods of use and culture is enticing. It is hard to think of an example where linking a building and its modifications over time could be more exciting than in studying where designers, specifically architects and landscape architects, learn (Warden & Woodcock, 2005).

Design education buildings are unique, purpose-built, or modified. Structures intended to fulfill the specific learning needs of design students (Nasar, Preiser, & Fisher, 2007). Many factors such as pedagogy, technology, and culture, are responsible for the design and the subsequent evolution of the original design. For example, studios for teaching and learning are the norm, as well as extended hours of access for students. Historical technology often still includes large drafting tables assigned to individuals while newer technology utilizes projection monitors, 3D modeling machines, etc. Finally, the culture of design education influences the physical structure, an example being exceptional flexibility of space (open space design) that is easily altered to suit the task at hand.

Studying the evolution of design spaces reveals how these spaces may have fulfilled the educational needs of students at a given point in time and how these methods performed in the past. Also, it can be a good lead for future developments in the design education facilities field.
The Landscape Architecture program at Guelph University was launched in 1965 in a purpose modified building. The first cohort of graduates was in 1969 (Bulletin, University of Guelph, 1969). As the home of Landscape Architecture in Canada, this building has undoubtedly had a significant effect on the education of landscape architects. Due to this fact, the history of the building and how it has evolved responding to the time and people is of great value. In this research, I am analyzing the evolution of the building and its history and discussing how the structure was modified to adapt to the changes during its history. In addition, I will attempt to demonstrate how these changes influenced by external and internal factors might have affected the students and graduates of the program. In the end, I will try to conclude on how current trends such as social media and digital technologies have affected the functioning of the LA building and how this could act as a case study for the development of other design education spaces.

Problem Statement

In design education, students have traditionally spent most of their time in the studio, and hence, the building that it is located in (Emam, Taha, & ElSayad, 2019). As a result, the Guelph landscape architecture building is where a significant number of graduates have spent their time during their studies. However, as the first and largest landscape architecture program in Canada, there is a surprising lack of documentation of the building – its origins and evolution over sixty years – and the culture of its use by generations of faculty and students. Therefore, the problem this research addresses is to create a ‘biography of the building’ to better understand why the present form is what it is and perhaps to guide future development.
Research Goal and Objectives

The main goal of the research is to create a narrative history of the Landscape Architecture building at the University of Guelph and the cultural influences that may have shaped the evolution of the building. This goal has many elements that can also contribute to a better understanding of the history of landscape architecture education at the University of Guelph.

To meet this goal, I created the following objectives:

Outline and describe the chronological history of the landscape architecture building by using archival documents and architectural plans.

Identify and describe the significant external events that may have shaped the appearance of the building, such as student numbers, architectural fashion, and university budgets by key informant interviews and archival records.

Examine how the built form may influence human behavior with respect to institutional and educational settings by reviewing the literature in areas such as environment and behavior and architectural programming.

As with any historical scholarship, this study is exploratory and descriptive. It is not the intent to create hypothesis-driven research, but there are opportunities to suggest that changes to the physical space of the building over the last half-century do have a cause and a built expression.
These causes and effects, while not tested, can be presented to inform the historical
description.

Organization of the Thesis

The thesis is organized into five chapters. Chapter One states the goal and objectives of the research. Chapter Two summarizes the literature into two major components. The first summarizes the social and historical evolution of design education, and the second introduces the new paradigms of design education. At the end of this chapter, there is also a brief introduction to the Landscape Biography method. Chapter Three presents the methods used and how a ‘landscape biographical’ approach was used. Chapter Four presents the results, and Chapter Five is a general discussion of the results and how they might be used to design future facilities.
CHAPTER TWO: Literature Review

Overview

The research aims to first and foremost build comprehensive documentation of the Landscape Architecture building at the University of Guelph and explore the context of design education that it has been responding to. This literature review helps to understand the evolution of design education spaces, how they were developed through history, and how new trends in technology and education will affect these learning environments. Also, it discusses how documentation of the history of physical spaces through the Landscape Biography method can result in a productive educational environment.

History of the Design Education

For much of its history, architectural education was based on an apprenticeship method of learning through doing. Since architecture design has always been a multifaceted process, the students are taught a broad array of subjects to be successful in the field (Kurt, 2009). From medieval times, students interested in the design field would work for different masters with knowledge in various areas like construction, surveying, and geometry, to gain experience in those areas (Nasar, Preiser, & Fisher, 2007).

In the 18th century, the beginnings of a more formal and recognizable system of design education began to emerge. Similar to the traditional way of training, working under the supervision of professionals with different areas of expertise, new designers would develop skills useful for the profession. The Beaux-Arts in Paris was arguably the first architecture school
that used this method to educate designers (Nasar, Preiser, & Fisher, 2007). The pedagogy in Beaux-Arts was focused on the craftsmanship and workshop method of training where students gathered with tutors in one place to make an efficient learning environment for architects-in-training (Nasar, Preiser, & Fisher, 2007).

Until the early 20th century, the Beaux-Arts teaching model was the dominant studio method in design education. In the 20th century, the Bauhaus school of design refined the Beaux-Arts method and developed a newer studio pedagogy. Although Bauhaus methods were mainly based on Beaux-Arts traditions, they were heavily influenced by the aesthetics and technological aspects of modernism and the industrial revolution (Salama, Wilkinson, Habraken, & Sanoff, 2007). The Bauhaus school subculture promoted the idea of learning environments that were also living environments. Students lived, worked, and learned together, and it is likely this method was inspired by the traditional medieval apprenticeship where trainees learned from constant contact with their masters and peers. The significance of this pedagogical approach cannot be overstated in that not only were students living and working together in an environment designed to facilitate their education, but they were also socialized (some might say indoctrinated) into a culture different than other university disciplines. The Bauhaus philosophy of education remains today in the emphasis on immersion in the studio, which is both a physical space and a lifestyle (Perkins, Physical and Social-Psychological Environments of Design Schools, 2000).

North American pedagogy for training architects was adapted from the European design schools of Bauhaus and Beaux-Arts. However, for the first time, these European educational
principles of design schools were first located and implemented in academic university environments (Nasar, Preiser, & Fisher, 2007). The studio methods of education haven’t changed significantly since the mid 19th century. Even new design schools are deeply tied with the same problem-solving techniques of learning as in Beaux-Arts and Bauhaus (Anthony, 1991). This process was highly instructor-oriented, and an essential aspect of the studios was the desk critiques in which students would get feedback from their instructors (Kurt, 2009). Usually, in this method, the ratio of students to professors was low (about 12 students for each professor) to provide enough time to evaluate every student’s work at least twice a week (Kurt, 2009). Although desk critiques are generally considered to have a significant and positive learning outcome, the criticism can sometimes have a negative effect on the learning process by killing the creativity and self-confidence of students. (Anthony, 1991)

Individuality

The focus of traditional working studios was on individuality and learning through personal working experience (Emam, Taha, & ElSayad, 2019). The purpose was to develop skills such as sketching and model-making. In addition, the privacy of work and space was the most critical aspect of the traditional design environment (Kurt, 2009). Individual desks assigned to each student presented an opportunity to personalize one’s space and develop a sense of privacy and territoriality. (Perkins, Physical and Social-Psychological Environments of Design Schools, 2000) These studio cultures of individuality in common space promoted the idea of originality and peer to peer learning in the studios, sometimes creating tension between personal ideas
and originality and group learning. (Perkins, Physical and Social-Psychological Environments of Design Schools, 2000)

Although in contemporary design professions, the participatory approach and teamwork are essential (Emam, Taha, & ElSayad, 2019), there should be a balance in private and interaction spaces in the studio buildings. It is argued that even in the modern approach towards design education, the availability of these personal spaces is vital. Personal space is a space for concentration and privacy. Students can work on tasks that require no distraction like research and reading or have their privacy when they need it. The lack of such space in a modern design environment can result in a preference for working at home (Thoring, Desmet, & Badke-Schaub, 2018).

Types of Architecture Schools’ Buildings

Throughout the history of design education, physical spaces have responded to the ideology of the design pedagogy incorporated by schools (Thoring, Desmet, & Badke-Schaub, 2018). Every approach to design education should be supported by the building layout. As the two most important styles to design schools, the Bauhaus and Beaux-Arts have building types associated with them. The most important patterns are the campus-based courtyard and the Workshop (Atelier) style (Nasar, Preiser, & Fisher, 2007).

Courtyard (campus as a city):
This building type originated in the Ecole des Beaux-Arts school, where the buildings were grouped around a courtyard. Imitating a hub, the courtyard acts like a communication and
activity area in the middle of a city (Nasar, Preiser, & Fisher, 2007). Nassar has divided this category into two different scales (building with a courtyard and the campus scale plaza), but the main idea behind both is a social center with communal activity in the center of the complex (Nasar, Preiser, & Fisher, 2007). The most beneficial feature of this type is its ability to build a sense of community. A courtyard is a place for social interactions and communal gatherings, a place to do workshops, and an opportunity for peers to socialize and learn from their peers and tutors (Nasar, Preiser, & Fisher, 2007).

Two major drawbacks of this type are:

- First, it creates an introverted environment that isolates communication with those outside of the building. This approach contradicts the ideology of relationships and communication in the design professions (Nasar, Preiser, & Fisher, 2007, p. 49).
- Second, although single-loaded corridors along the courtyard create a well-lit, socially pleasant space, it is not the most efficient use of space (Nasar, Preiser, & Fisher, 2007).

There is some thought, however, that the classical architecture of interior focused courtyards enforces a sense of identity and exclusiveness for the occupants, and often this is accomplished with an identifiable building or place on campus (personal communication).
Open-Plan Studios:

The second generalized building type relies mostly on the tradition of Bauhaus school, which promotes a lived-in design environment. In this tradition, students are supposed to spend time in an open large atelier day and night interacting and working with each other. These workshops/ studios are a set of interwoven and visually connecting spaces that mimic the medieval approach of small segregated workshops to larger, interdisciplinary, and industrial areas suited to modernistic ideas (Nasar, Preiser, & Fisher, 2007). Physically, these studios are large rooms with partitions dividing different classes or students in other design fields, but the theory behind it is that all design students should be living and working in proximity to interact.

Figure 1: Sketch of a complex courtyard campus model (Sketch by Author)
with each other or their tutors. Later, this approach led to a popular concept for many design studios in the world called Open-Plan studios.

Figure 2: Open Plan Design Studio model (Sketch by Author)

Shifting the Paradigm (modern approaches to design education)

With the shift of design work to more complex and integrated tasks involving many actors and acts outside the design fields, the process of design education has begun to adjust a collaborative approach that changes the physical work environment (Emam, Taha, & ElSayad, 2019). The traditional studio has many features that do not conform to today’s collaborative approach to design and design education. A lack of suitable space for discussion between peers, insufficient multimedia infrastructure, and focus on the end product of design rather than the progressive development of a design activity involving many people can be drawbacks of the traditional design method and design space (Kurt, 2009).
Modern Approaches to Design Education

As discussed, modern design studios create a broader and multi-faceted educational perspective with the focus on innovation and problem solving rather than just simple form generating (Thoring, Desmet, & Badke-Schaub, 2018). As a result, design education has changed to a more collaborative task where students receive feedback not only from their instructors but also from their peers. Kurt argues that modern design education should be inclusive and should encourage participation among students (Kurt, 2009). This method helps students to share their skills and resources. Hence the learning process is accelerated (Livia, 2012). This is especially important in the modern learning context since the focus of the process is shifting from the quality of the final design to the progressive improvement of students (Kurt, 2009).

Another focus of modern design education is to improve students’ creativity (Soliman, 2017). The built environment is a significant factor in increasing creativity and performance. The more the building supports instructive actions, the more productive the users can be. Studies have shown that the built environment should help specific characteristics to be more effective (Brill, Keable, & Fabiniak, 2000) in the creative development of students. These characteristics include enhancing social interactions, (Maier, Meinel, F. Wagner, & Voigt, 2017) maximizing work-space flexibility, (Thoring, Desmet, & Badke-Schaub, 2018) and supporting multimedia applications (Kurt, 2009). These features can enhance creativity when applied to the course material or in a physical space (Meinel, Maier, F. Wagner, & Voigt, 2017). Based on the characteristics of creative places, Thornig et al. (2018) divide the space of a design environment into five categories of Personal Spaces, Making Spaces, Collaboration Spaces, intermission Spaces, and
Presentation Spaces. The first two are the main characteristics of conventional studios and were discussed earlier. Collaboration and intermission spaces are associated with the social interactions and presentation spaces and represent the application of multimedia in contemporary education (Thoring, Desmet, & Badke-Schaub, 2018). Flexibility is also an aspect that could affect the course curriculum or physical space (Kurt, 2009). With the emergence of new online social media, a new type of space that can support online interaction and help people to interact effectively from different locations will undoubtedly change the physical space used for design education (Brill, Keable, & Fabiniak, 2000). This new concept is discussed in a separate section since it is becoming an essential issue in the education topic.

Social Interactions

Social interactions are fundamental in increasing creativity and can influence the learning process and design outcomes. Critiques from teachers, classmates, and colleagues are means of transferring knowledge in the learning place and can be supported by meticulous attention to the design of the space (Thoring, Desmet, & Badke-Schaub, 2018). Recent research shows that students who engage in social interaction with their peers learn faster than their isolated peers (Emam, Taha, & ElSayad, 2019). As a result, modern learning environments are changing from teacher-centered to learner-centered, where students are the primary sources of information for each other (Emam, Taha, & ElSayad, 2019).

Collaboration can happen in different types of spaces in a learning environment. Collaboration Space is a space that encourages people to work together in an inclusive, sharing context.
Types of interaction in a studio environment can be different. They can vary from more formal group works to non-work communications. These activities should happen in balance in a studio environment. The working environment should support formal group meetings and be loaded with high-tech infrastructure that supports the projects. Non-work-related spaces, on the other hand, are where the casual hangouts happen between students and are a significant factor in improving creativity. It is where students can relax and have a mental and physical respite by engaging in casual conversations or have fun playing games, having a coffee, and bonding with peers (Meinel, Maier, F. Wagner, & Voigt, 2017).

The last social space type mentioned by Thoring et al. (2018) is intermission space. This space is also intended for taking breaks with the chance of encountering other people from outside of the main working community. Hallways, outdoor places, and cafeterias are some examples of these spaces where creative work and conversation can occur.

Flexibility

Another feature of a modern design education environment is flexibility (Kurt, 2009). Flexibility is achieved in two ways in design education. First is the flexibility of tasks and assignments that gives the students the option to choose between various projects available through the course (Kurt, 2009). The second is the spatial flexibility. Spatial flexibility is the capacity of the space to convert into different types to host multiple activities. Flexibility is considered as one of the most critical aspects of contemporary learning spaces. It is important that a place can transform
for a different event in a short time and with minimum effort (Thoring, Desmet, & Badke-Schaub, 2018). This ability to change can happen by implementing movable walls and furniture and is a key source of creativity (Meinel et al., 2017). Spaces for lectures and presentations, which can serve as exhibitions when needed, are good examples of these flexible spaces (Thoring, Desmet, & Badke-Schaub, 2018).

Since changes to old buildings are often very expensive, the original design should anticipate the need to expand with minimal cost and effort. Monahan describes this feature as “Scalability.” The scalability of a structure is a characteristic that makes it suited for expansion when needed (Monahan, 2002).

Use of Multimedia

The effective use of multimedia resources is another character of modern studios. Multimedia can facilitate the teaching and learning process (Kurt, 2009). Moreover, this kind of studio equipment can increase creativity in students. ‘Low-tech’ features such as images, books, posters, and ‘high-tech’ multimedia such as internet connectivity and audio-visual equipment can both be sources of stimulation in a learning environment (Meinel, Maier, F. Wagner, & Voigt, 2017).

In terms of digital multimedia, many schools are dealing with a limited range of facilities, mostly because of old and incompatible layouts or insufficient budgets. An inadequate number of electric outlets, low-quality projectors and computers, and a lack of fast broadband internet connections are just some of these limits. These deficiencies restrict the flexibility and quality of
the studios as they force students to, for example, sit near power outlets or work in dedicated ‘labs’ (Monahan, 2002). While this is less of a problem in recent years with the advent of more mobile technology, aging facilities still must be upgraded at a high cost.

Virtual Spaces (the effects of social media on education)

The paradigm of design education has changed dramatically with the advent of computers and technology (Livia, 2012). These developments can benefit design education in many ways if used correctly. The access to endless sources of data, and their ability to connect people regardless of location and time makes them very useful for designers. Online platforms are also viral among the younger generation due to their capability for smooth and constant communication, the fulfillment of popularity, and curiosity about peers (Güler, 2015). These enable social media space to be an ideal supporting space for a design environment because of the dynamic capacity of collaboration and social engagement.

Online platforms also enable students to have expanded access to resources and have interactions with their peers and instructors regardless of time and location. Furthermore, the ability to archive and access the information previously presented in the course can make the design process more efficient (Güler, 2015). This is particularly important because the design process is not a linear process and generally requires going back and forth between various stages (Soliman, 2017). In addition to these, virtual space offers an exceptional level of flexibility at every level. It can be expanded, changed, or modified quickly and at a minimal
expense (Monahan, 2002). Also, it gives the students the opportunity to work at a desired location and time (Güler, 2015).

On the other hand, virtual spaces are not perfect. One of the drawbacks of virtual communication is its failure to create the qualities of real social connections (Monahan, 2002). This superficial social interaction is usually due to the inability of the online platform to express facial expressions, body language, and tone of speech (Güler, 2015). Although it is thought that the quantity of virtual communications is more than face-to-face discussions in real classrooms, the limited types of interactions such as a ‘like’ or a short comment, might negatively affect learning and the products of group work (Monahan, 2002). As a result, it is critical to know that the educational purpose of virtual spaces and social media are not intended to completely cover for the traditional physical presence of students in the studio and are just meant to enrich them (Livia, 2012).

Landscape Biography

As discussed before, physical environments in design schools can affect the quality of education. Since the ideals and methods of the design schools have changed over time, space should adapt itself to them. Documenting these environmental changes can be a very effective way to understand the critical events and turns and the responses of the physical space to those changes. It can also provide a good example of how new designs have been received by the users. One of the methods to document a physical space is by the Landscape Biography method. Founded in human geography, the Landscape Biography method describes the
physical environment in an interdisciplinary way that is shaped by various cultural, social and economic forces (Valadares, 2013). For any design approach to be successful, the analysis of the current space, interactions between users, and how they act as a whole is fundamental. If any approaches are to be considered in contemplating a building’s future, there is a need to consider how the building has evolved gradually to cope with the issues of the time. This method of generative formation of space with the consideration of its past results in a more livable space (Alexander, 1979).

Samuels (1979) argues that all stories and history that have formed landscapes are assigned to specific social, economic, political, and cultural forces. However, humans and specific individuals don’t play a part in shaping places in western culture (Samuels, 1979). As Samuel says: in western culture, “the landscape was virtually engineered by things” (Samuels, 1979, p. 62). The loss of individual meaning and the who behind the facts should be considered in the history of landscapes. The literal term ‘biography’ signifies the role of human participants in an environment (Valadares, 2013).

In the late 19th century, many landscape history studies were conducted as a result of a growing need for reflection of the past and exploring the relationship of history with the qualities of physical environments. Authors such as Meitzen in Germany, Maitfield in England, Vidal de la Blanche in France, and Carl Sauer in America sought to extend the frame of historical studies beyond the landscape to the people and events that shaped the landscape itself (Palang, Spek, & Stenseke, 2011). However, until the 1980s, studies mainly focused on quantitative patterns and morphological aspects of the land because the interaction between
society and cultural landscape was so complicated (Palang, Spek, & Stenseke, 2011). In the 1980s, the idea of landscape as a “social construct” of the relationship between people and landscape was developed (Valadares, 2013). The idea was promoted by social anthropologists Appadurai and Kopytoff. In a cultural biography of things, similar questions are asked as would be of a biography of people (Kopytoff, 1986). The biography of landscape considers the role of individuals in shaping landscapes yet has at its nexus the landscape itself. Samuel argues that the important role of key individuals should not be underestimated, and as a result, the biography of space is an authored history of individuals in their context (Samuels, 1979). In short, individuals are responsible for historical, socio-economic, environmental, and political movements that affect the environment. Samuels stated this most succinctly by writing, “The Landscape is the product of these processes” (Samuels, 1979, p. 62).

The biographical approach was also a part of long-term archeological research in the Netherlands. An interrelated approach to the archeological and historic Dutch landscapes led by the Netherlands Organisation for Scientific Research (NOW) which considered the effects of human authorship in landscape formation in a long-term approach and considering future developments (Roymans, Gerritsen, Van Der Heijden, Bosma, & Kolen, 2009). Inspired from Samuels, this approach takes into account the ‘landscapes of impression’ which is the cultural and social projection of the environment and leads to creating a setting for the future landscapes (Roymans, Gerritsen, Van Der Heijden, Bosma, & Kolen, 2009).

It is argued that this approach can contribute to creating a landscape of memory. Since things that survived for generations are valued by the users, the focus of this research is seeking a
reason to appreciate the buildings (Roymans, Gerritsen, Van Der Heijden, Bosma, & Kolen, 2009). This can be done by analyzing the history of it through a biographical method, which helps to understand the character and dynamics of the space. This comprehensive documentation of the past with an in-depth approach generates a valuable understanding, which can result in better and more long term and sustainable management in the future (Palang, Spek, & Stenseke, 2011). In the specific case of the landscape architecture building, this study analyzes the relationship of the building with the students and faculty and how the relationships and the building itself changed over time.

Summary

Design courses are arguably the most vital aspect of landscape architecture education. The evolution of design education shows that studios in design schools should resemble real-work conditions to prepare the students for future working experiences (Emam, Taha, & ElSayad, 2019). Although traditionally design studios focused on improving individual skills in students and made them independent, it is now evident that with more complex problems and working conditions in today’s world, collaboration and creativity are two essential aspects that can prepare students for future working conditions (Emam, Taha, & ElSayad, 2019). Modern design studios create a broader and multi-faceted perspective. They focus on innovation and problem solving rather than just simple form generating (Thoring, Desmet, & Badke-Schaub, 2018). In order to achieve this innovation and creativity, designers need to have a good understanding of people and their behavioral information (Dong, McGinley, Nickpour, & Cifter, 2015). As a result, social interactions are of great importance in new teaching methods. Also, the design of the
environment in which the creative learning process takes place needs to support communication (Thoring, Desmet, & Badke-Schaub, 2018).

Computers and new technology can improve the learning process and creativity among students. This is due to the social environment and archiving features of the online platform. Students can engage in collaborative activities without any limits, which would help to achieve the goal of the design. However, with these new virtual spaces, participation in the physical studio environment is becoming limited (Güler, 2015). There is little literature about how this is going to affect design education in the future. It is imperative to understand the different effects of virtual studios in our context and how they are going to alter the feeling of ownership towards the learning space.

Design education methods have changed significantly over time. The environment must adapt itself to suit those changes. In order to shape a thriving educational space that supports today's needs, a clear vision of the past is crucial. The Landscape Biography method used in this thesis is a modern method of documenting physical environments with a thorough consideration of social, economic, and cultural events that affected those places. This method can set the foundation for future designs and approaches towards educational spaces.
CHAPTER THREE: Methods

Overview

Historic documentation of buildings is a great way to develop a deeper understanding of the influence of environment and culture in design (Warden & Woodcock, 2005). One of the means of collecting information about the historical development of a place is through a landscape biography method that examines how cultural and human factors affect the form of the physical environment (Roymans, Gerritsen, Van Der Heijden, Bosma, & Kolen, 2009). This method enables the research to do a better analysis of the socio-cultural interaction in an environment, which in this case can lead to a better understanding of the design education dynamics in the Landscape Architecture Building.

Archival Research

This research gathered information using archival research and analyzing historical documents and architectural drawings. Archival research was the primary method to collect information since there was no other published material available. The Office of Physical Resources at the University of Guelph, the University Library Archives, and University of Guelph publications, such as newspaper articles, were located and examined (Zarudny, 1996).

The archival drawings show that in terms of physical changes and renovations, there were four more identifiable periods of change in the history of the building. First and the most important was the 1964 transition from Seed Research Building to the existing Landscape Architecture Building (LA Building). The renovations of the 1970s, 1989 and 1993 studio additions, and the
2002 reformatting of the north side studio are the other substantial changes identified. What was not examined closely because of time and resource limitations were the changes that occurred adjacent to or in proximity to the LA Building. These almost certainly had some influence but must be the subject for additional studies.

Focused Interviews

Several casual and unstructured key informant interviews were held to support and complement the information gathered from the archival research. It was important that the interviews were conducted in an informal and casual situation so that the respondents could talk in-depth about the building and their feelings, perceptions, knowledge, and intentions (Zeisel, 2006). For the purposes of this research, it was determined that key informants did not need to be identified therefore when general observations or comments were given, these were treated as supplemental and are referred to in the results as ‘personal conversations.’

Selection Criteria

The interviewees were selected from the faculty and students of the program. First and foremost, all the chosen people should have been somehow involved with the building and have thorough knowledge about it. Professors and previous students were selected for interviews since they were likely to have different insights into the building. The other criteria for the respondents were:
• Student selection was dispersed between MLAs and BLAs since the experience might be different
• The choice of students was roughly two in each decade since each renovation or significant development and extension happened about every 10 years
• The convenience and availability of the respondents was also considered as a factor

The interview method and procedures were based on Zeisel (2006). Interviews were held in 30-minute sessions in an unstructured way beginning with general questions about the building and followed the flow of the conversation (Zeisel, 2006). In addition, to engage the participants, archival documents such as photos, Plan drawings, and data were used as stimuli (Zeisel, 2006).

Questions

The general questions created a structure guiding the interview process. Zeisel suggests that interviewees’ responses should *modify and refine* previous observations. So, it was anticipated that the interview was going to be adjusted spontaneously to the situations during the actual interview. However, the general questions were essential to lead the conversation and tended to cover the chief matters (Zeisel, 2006). The following questions were prepared based on the acquired knowledge of archival reviews and were asked to initiate and direct the interviews:

Questions for Professors:

1. What is your oldest memory of the building?
2. What were the main Problems of the building during this time?
3. What events do you think are the key players in defining the building the way it is?

4. In these years, has the ideology of the school changed significantly?

5. How do you predict the future of the building? Based on the past, what approach do you think should be taken regarding the building in order to improve educational enhancement?

Questions for Students:

1. What was your first impression from the building back in the day? (feelings, perceptions)

2. Do you often visit the building? Do you have any emotional attachment to it?

3. What has changed around the building since you graduated?

4. What were the main problems of the building during your study time?

5. How much the studio culture has changed since your graduation, and what do you think are the physical responses of the building to those changes?

Analysis

Traditional narrative and biographical techniques were used to analyze the data collected (Samuels, 1979). The goal of the analysis was to supplement information on the history of the Landscape Architecture Building and weave together the ‘culture of the times’ and architectural styles during the periods of major renovations established through a literature review. In addition, analytical 3D models were created based on the available documents to simulate and mark building changes in a graphical way.
Summary

A form of landscape biography was used to document the historical evolution of the Landscape Architecture Building. In this method, archival documents from the University of Guelph archives, physical resources, and students’ theses were analyzed and were supported by informal interviews with the professors and graduates of the school during the building’s existence. This approach helped to back up the study with the valuable point of view that describes how the impression of the building has gone through a significant change over time and how different individuals had different opinions from the same building over time. This provides an excellent context for a more viable and sustainable approach to the future of the program.

The biography of the building was then divided into four main ‘evolutionary periods’ of change. Besides, graphical diagrams were used to create visualizations of the LA Building history.
CHAPTER FOUR: Results

Overview

In this chapter, the collected data of the research is presented. The results for archival research and interviews are presented in chronological order:

Project Name: Landscape Architecture Building, University of Guelph

Location: 1 Stone Road, Guelph, Ontario, Canada

Dates of Design/Changes:

- 1954 Seed Research Building (21,050 sq. Ft.)
- 1964 Seed Building converted to the School of Landscape Architecture
- 1970’s (72-83) minor alterations (such as the new Photographic Darkroom, Assembly Room, etc.)
- 1989 Addition of ground floor graduate studio on the north side
- 1992 Second floor studio on the north side
- 2002 First floor studio alterations
Project Background and History

University of Guelph History

The University of Guelph originally began as the Ontario Agriculture College in 1874 (125 Years of Achievements OAC, 1999). 550 acres of land was purchased south of the City of Guelph and dedicated to agricultural studies to support the wealthy farmers of Wellington County (Zarudny, 1996). The Ontario Agricultural College was established in 1880 (University of Guelph History, 2019) and became associated with the University of Toronto so students could receive degrees (Ross, cited in Zarudny, 1996).

The OAC grew in popularity and student numbers in the early 20th century. The MacDonald Institute for female students was established in 1903, and following, the Ontario Veterinary College, founded in 1862 in Toronto, moved to the Guelph campus (University of Guelph History, 2019). According to the University of Guelph Act, the three colleges then merged together, and four new colleges of Art, Biological Science, Physical Science, and Social Science were combined together to start working as the University of Guelph in May 8, 1964. Professor J.D MacLachlan, the president of the old colleges, had an essential role in transforming the three colleges under the Ministry of Agriculture to the University of Guelph. He also had been assigned as the first president of the University (125 Years of Achievements OAC, 1999). In addition, MacLachlan had visions for the new university planning that were inspired by Cornell University, where he had studied. Despite some disagreements between Prof. MacLachlan’s views and the Province’s ideas, he had an undeniable influence on the first university master plan of 1964.
Brutalism

Due to a significant increase in the campus population, there was a need for a larger campus to fulfill the increase in enrolments. The 1964 master plan was created after the announcement of the University of Guelph as an institution and was started with a 100-million-dollar fund from the government (equal to 800 million in name the year dollars) (Zarudny, 1996). Project Planning Associates Limited developed the master plan with Richard P. Dober of Planning Consultants and Sert Jackson Associates as Review consultants for the design (Zarudny, 1996). The Master Plan proposed four axes of pedestrian walkways north, south, east, and, west which connected to blocks of student residences. The central core of the University was to be the hub with a community center (later named the University Centre). In general, the whole plan was to act as a small city with a focus on pedestrian connections. The vehicular network was restricted to the outer edges of the university, and there were limited service connections for vehicles where needed (personal conversations).

The architectural style of the new buildings was inspired by the ‘brutalist’ architecture prevalent in the 1960s (Zarudny, 1996). The term was based on Le Corbusier’s expression of concrete called *Beton brut*, meaning “raw concrete.” The brutal architecture used the materials, particularly concrete, in its natural form, without any embellishment or finishes. The evidence of brutal architecture can be seen around the 1964 campus in buildings, interior spaces, and the landscape. The rugged concrete surfaces, large glazing lines for the windows, monumental scale, and simple geometric forms were some of the factors of the buildings of this period. In terms of the interiors, the lighting was highlighting the concrete effects extended
from the exteriors. Also, the furniture was designed to show the simple, modular style of modernism while contributing to the functional arrangement of the space (Brutalism on Campus exhibition). Last but not least, the landscape was the central aspect harmonizing the campus and connect the older buildings to the new network (Zarudny, 1996). These brutalist elements were also added to the Landscape Architecture Building renovation, which was initially the Seed Research building constructed in 1954.

Seed Research Building:

What is now the Landscape Architecture Building, was originally built in 1954 to be the Seed Research Laboratory, and it was located between the arena and the horse barns. The original building was dedicated to field crop experiments, and it had a U-shaped plan structure. The main section was 133 ft x 45 ft (40x14 meters) with two wings of 33 ft x 105 ft (10x32 meters) attached to the sides. (The OAC Review, 1954)

The building was equipped with the most modern technologies and was designed to be very functional. The architecture style was also focused on the functionality of the building by promoting the maximum productivity of the space. Also, the design is similar to the surrounding structures such as the gymnasium (1958) and the vehicle services building to the north with brick façade and flat roof (The OAC Review, 1954). The courtyard in the building was designed to work with the U shape courtyard of the Vehicle Services building to its north, both functionally and visually. It was used as a parking for the staff and a drop off space for trucks when they wanted to bring crops of harvested materials to the building (The OAC Review, 1954).
the analysis of the archival plans shows that the building used a steel structure and framing with an isolated footing foundation resulting in a low load-bearing capacity due to the foundation type. The frames were made from wide beams with T joist slabs. The column arrangement in figure 4 shows the simple, functional layout of the building structure. The contractor of the project was Tobe Construction Company from Hamilton, Ontario (The OAC Review, 1954)
Figure 4: Columns Layout (drawn by the Author based on University of Guelph physical Resources Drawings)
The west wing side was allocated to crop growth chambers on the first floor and a greenhouse on the second floor. There were low and high-temperature driers on the east wing side (Figure 8). According to the 125 years of OAC achievements, the first studies on the field of low-temperature tolerance of the crops has been done here under the supervision of Prof. E.E. Gamble on the ability of corn germplasm to grow under severe conditions (125 Years of Achievements OAC, 1999).

Three threshing rooms were designed in the building, two on the east wing second floor and another on the first floor (Figures 8 and 9). The purpose of these large rooms was to facilitate the delivery of harvested materials. The threshing room on the first floor had two large doors to help the transportation of the harvested materials. This downstairs room also had access to the courtyard, which then was a paved central space used for parking vehicles. (The OAC Review, 1954)

The Courtyard: The courtyard was used primarily by delivery trucks. There were several doors to the yard from each room and one room (threshing room) that had doors opening to the street outside. A ramp was initially designed to connect the courtyard to the sliding door on the second central wing to allow tractors to access the second floor. This could enable the staff to load materials more efficiently. However, there is no evidence of this ramp being built. The ramp was supposed to be framed by the two sides of the building (The OAC Review, 1954). The courtyard had five other entrance doors for the staff since it also has been used for parking (Figure 8).
West Wing and the Greenhouse: The west wing had approximately the same partitioning as the east wing and was dedicated to the growth and cold storage chambers. Four root storage rooms were at the end of this wing, with a few offices and workrooms at the beginning of the hall, across the storage rooms. The function of these chambers was to test the hardiness of the plant varieties.

On the right side of the entrance, there was the main staircase and elevator, and the room behind them was a seed cleaning plant room. The east wing also had two low-temperature drying rooms and another storage room. At the end of the right-wing hall, there was a large threshing room with the doors for vehicles. On the second floor, this wing was occupied by two threshing rooms and a large drying room divided by the staircase (Figures 8 and 9).

The whole area of the second floor on the west wing was occupied by a greenhouse. It was designed to the modern standards to reduce the process of breeding certain plant varieties from 15 to 5 years (OAC review 1954).

The Stairs: There were four staircases located around the building, all of which were in a different location than the present Landscape Architecture Building. The main staircase was situated on the right side of the main entrance adjacent to an elevator. There were two stairs on the west wing, one going upstairs and one leading to the basement of the building. The last staircase was connecting the lower threshing room to the upstairs ones (Figures 8 and 9).
The Landscape: the main entrance of the building was at the southern side facing Reynold’s walk. In front of the building, there was a row of elm trees similar to much of the campus. The entrance was two steps above the walkway grade, and the steps were framed with two plant boxes beside the front door.

There were sliding doors to the courtyard where the existing staircase is now located. In addition, the harvest rooms on the first floor had garage doors for truck vehicles to unload harvested materials as well as parking for staff. The courtyard was paved and faced the courtyard from the vehicle services building so the trucks could be transported there easily after they had been used.
Figure 5: Seed Building Front View Visualization (Rendered by Author)

Figure 6: Seed Building Courtyard Visualization (Rendered by Author)
Figure 7: Seed Research Building Basement Plan (Drawing by Author Based on the University of Guelph Physical Resources)
Figure 8: Seed Research Building, first-floor plan (Drawing by Author Based on the University of Guelph Physical Resources)
Figure 9: Figure 6: Seed Research Building, second-floor plan (Drawing by Author Based on the University of Guelph Physical Resources)
Landscape Architecture Program:

Landscape architecture at the University of Guelph had a history before the official establishment of the School of Landscape Architecture in 1965. Before the University was established in 1964, courses in some aspects of landscape architecture such as landscape gardening and ornamental horticulture in landscape design were offered in the Horticulture Program, which was in the Ontario Agriculture College. A year after the establishment of the new University, the BLA program was created as Canada’s first Landscape Architecture program (Headquarters for Landscape Architecture, 1969). With societal issues of land-use design and environmental planning after 1945, there was a growing need for landscape architects. However, as the horticulture program did not meet the requirements for design programs, the students had to pursue their education in the United States (Hilton, October 13, 1964).

In 1962, Victor Chanasyk, a Harvard and University of California-Berkeley graduate, was hired to join the department of Horticulture to start a Landscape architecture program as no schools were offering such education in the country at the time (University of Guelph Archives, May 14th, 1965). With Chanasyk, the Horticulture Department developed a curriculum and a proposal for the new landscape architecture program and presented it to Dean N. R. Richards in 1962 (Hilton, October 13, 1964). After approval from the University of Guelph, plans for the proposed program were sent to the Canadian Society of Landscape Architecture and approved by the Committee of Education as the first Canadian School of Landscape Architecture (Landscape Architecture Proposal For Committee Consideration, 1964). When the school
opened in 1965, Professor Chanasyk was appointed as the first Director of the program (Hilton, October 13, 1964).

The BLA program offered an Interdisciplinary approach towards design by working in a close relationship with Fine Arts and Biological and Social Sciences programs at the University. Also, with the school’s agricultural and social/biological background, students had the advantage of having a more holistic curriculum covering rural and urban developments on farmlands, and ecological matters (Headquarters for Landscape Architecture, 1969). The focus of education was to encourage appropriate solutions for the land and appreciation of nature and imagination. The practicality of the design projects was often limited, as it was believed to restrict the students’ creativity. According to personal conversations (must cite), the main focus of the entire program was on the design studios where students spent days and nights interacting and learning from each other. The other courses were not nearly as important as the design studio in the beginning years (Personal conversations).
1968 Landscape Architecture Building:

Figure 10: Landscape Architecture Building 1969 photo (University of Guelph Archives)

Construction Cost: 677,700.00 CAD (Approximately 5.2 million CAD in 2019 Dollars)

Architects: Jack Campbell, Guelph

Consulting engineers: Yuska, Wenzel & Sehl, Kitchener

Client: University of Guelph
The Landscape Architecture program was housed on the top floor of the Horticulture Building in the beginning years (from 1965 to 1969), which provided the space for about 50 students and 9 professors and instructors in a four-year program. After the relocation of the Seed Research program to the new Crop Science building in 1964, it was decided to transform the old Seed Research Laboratory to accommodate the needs of the Landscape Architecture program. (Bulletin, University of Guelph, 1969). On March 15, 1969, Dr. Douglas Wright, the Chairman of the Advisory Committee on University Affairs, officially announced the opening of the new building. The opening ceremony of the building was held in the foyer of the building (At Guelph, 1969).

Figure 11: Landscape Architecture Building Opening Ceremony. Professor Victor Chanasyk on the right (Photo from University of Guelph Archives)
The new building had ten times more space than the Horticultural space with 33,649 sq. feet (3100 sq. meters) of gross space and 21,050 sq. feet (1950 sq. meters) of net, usable space. Although the original Landscape Architecture Building plans indicated that there was some shared space with agriculture engineering faculty in the beginning years, there is no evidence that the engineering faculty ever occupied building offices. In effect, the new building was mainly designed for the purpose of landscape architecture education. As Professor Chanasyk stated, this was the first building designed purely for such purpose (Headquarters for Landscape Architecture, 1969). The Decision of relocation and remodeling of the Seed Research Building was made because the renovation of the old building was considerably less costly than the construction of a new one. The design plan was also provided options for further extensions (Bulletin, University of Guelph, 1969).

The Structure

The main structure of the building was the existing steel structure of the Seed Building with a few additions like the west wing, staircases, and two penthouses for mechanical equipment on top of the building. New roof framings were Open Web Steel Joists (OWSJ) with steel decks on them. In the case of the assembly room and classes replacing the greenhouse, a matching steel frame structure with masonry block walls were built to make a seamless brick façade. Floor reinforcement was made to the roof of the existing first floor to help bearing forces of the new level (Archival Plans). Columns and footings were also strengthened and extended (Building 51 Structural Plans, University of Guelph Physical Resources)
First Floor

The building’s entrance is to the central core of the U-shaped building to the south with a row of tall windows to its right provided for view and light. The west wing of the building, which was used for crop storage, was changed to accommodate the faculty and staff offices and workspace. The west side was probably the best location for offices according to the old layout of the seed building. This space had large rooms at the beginning of the corridor for the director’s room, conference, faculty lounge, and storage.

Immediately to the right side of the entrance was the main lobby. This lobby was designed to be an exhibition place of students’ work or outside school projects. (Headquarters for Landscape Architecture, 1969) The foyer was also used as a presentation space for gatherings and guest lectures. The traces of the old seed building can be seen here as the support columns of the old staircase today blocks the view of the wall used in presentations (Figure 12, Author’s sketch).

Adjacent to the lobby was a large reading room (presently room 125) for the students to study. There was also a material library and model construction room next to the reading room for students to examine and experiment with various materials and models in their design projects (At Guelph 1969). At the end of the east wing, there were two rooms assigned to the agriculture engineering program for soil mechanics and hydrology, which turned to lecture rooms after the engineering program moved out (Personal conversations and drawing interpretations).
Figure 12: Entrance Lobby (Author’s Sketch)

Figure 13: The Lobby as an Exhibition Space (University of Guelph Archives)
Figure 14: 1969 First Floor Plan (Drawing by Author based on U of Guelph Physical Resources plans)
The main staircase is in front of the main entrance and overlooks the courtyard. There were also two staircases at the back of each wing used for emergency exits and connection with exits to the courtyard. For fire safety purposes, there was another staircase at the center of the faculty wing leading to the basement and had a door to the side of the courtyard.

Second Floor

South Studios: Perhaps the most significant feature of the building was the large upstairs studio on the south that could be sub-divided with large panels on floor tracks. The studios had an almost continuous band of clearstory windows facing south, which is not ideal for work. South-facing windows often produce glare and harsh natural lighting. To compensate, curtains were installed, and evidence still exists with curtain rings still attached (Personal Communications). The studios were intended as flexible spaces to allow interaction between guests, the faculty, and students from different years. This fits with the ‘open-plan’ studio ideal common then and now with the added possibility of creating smaller spaces by using the sliding walls.

East Wing: The room beside the studio on the east wing was for earthwork and drainage calculations, and it was equipped with many electrical calculators. Next to the calculation room, there were printing and photographic rooms. The Printing room was where the artist in residence stayed. The first artist in residence was Holly Middleton, and her task was to help students use fine arts in their design projects (Bulletin, University of Guelph, 1969). A photographic room was located between the printing room and the east wing studio and it was one of the states of the art facilities of the new building which let the students explore their
presentations beyond the traditional hand sketches and explore working with films, slides and use the darkroom inside the lab to produce their ideas (At Guelph, 1969). This room was equipped with a substantial mechanical air vent as it was intended for print reproduction, and these processes used noxious chemicals (Personal Communications).

At the north end of the east side, there was another studio with an open concept that was used by the 4th year students (Personal Conversations). Due to its more private and out of the sight place from the building’s entrance, this studio was the place for casual gathering and hangouts between the faculty and students back in the day (Personal conversations with students and faculty).

West Wing: The former greenhouse space on the west side of the second floor was replaced by a large assembly room and two square-shaped seminar rooms all equipped with tack board on walls for student projects. (Headquarters for Landscape Architecture, 1969) The Seminar rooms were carpeted and equipped with the most modern audio-visual media facilities to promote students’ education. The walls were covered with tack boards for putting up students’ projects during the juries. The assembly room was large enough for 100 people, and some off-campus gatherings and conferences were held here (At Guelph, 1969). Although the students used the assembly room space for some courses, this room was (and still is) managed by the university rather than the Landscape Architecture program (Personal Conversations). The Assembly room (now a Lecture Theatre) remains the only space in the building used by the rest of the university community.
There was a men’s washroom between the south studio and seminar rooms. This was the only washroom on the second floor. Since there were not any female washrooms on the second floor, eventually, this men’s restroom was used by the female students. It is not known if this was an official program decision at some point, but personal conversations suggest that the washroom used by women was, in the beginning, an informal choice. Only recently (2018) has this washroom been designated as a unisex washroom.
Figure 15: 1969 Second Floor Plan (based on U of G Physical Resources plans)
The Courtyard Landscape: All the spaces on the second floor were connected by a corridor with a view to the central courtyard. The Courtyard itself was a place for students to experience a variety of outdoor construction activities. Also, students were asked to propose design concepts for this area of the building as their design projects. The courtyard was later designed by Professor Jack Milliken, who was teaching in Landscape Architecture since the establishment of the program in 1965 (Guelph Mercury, 1993). Cast-in-place exposed aggregate concrete pads connected the exposed staircase to the two emergency exits. The concrete paths created two large green areas with one in the center and one along the edge of the west wing. There was a sitting area between the staircase and the west wing, which connects visually to the entrance space inside the building (Figures 16 and 17). The courtyard was furnished with wooden benches, also designed by Jack Milliken (University of Guelph Physical resources).

Figure 16: 1969 courtyard visualization by the author
Figure 17: 1969 courtyard plan (drawing by the author)
1970’s Renovations

The 1970s period included minor changes related to facilities improvement, maintenance, and space adjustments. These changes were mainly because of the addition of a master’s program and a 5-year BLA program. Additionally, after a few years, the Agricultural Engineering program, which was temporarily located at the building, moved out to the new engineering building. Although the faculty and students of the engineering program hardly used these spaces, it was officially assigned to that program. The relocation of the engineering program gave the LA school more space, especially at the end of the east wing on the first floor (Personal Conversations).

MLA Program

The Master of Landscape Architecture program started in 1974. In a report from the school in 1973, the graduate studies board stated that as a result of a outstanding performance of the existing BLA program and considering the fact that there were no accredited Master of Landscape Architecture programs in Canada, there was a need to include a graduate program to, not only prevent the need to study abroad, but also to fill the professional practice gap between conventional urban planning and the site scale design (Proposal for the Establishment of Master of Landscape Architecture Studies, 1973). The program was also meant to address the need for professional knowledge in solving more sophisticated environmental problems (Chanasyk, 1973).
The MLA program was designed to be as flexible as possible by accepting graduates from a variety of other programs such as Architecture, Planning, etc. Many courses were offered cooperatively with the other departments, such as engineering and agricultural economics, to support this interdisciplinary approach (Chanasyk, 1973).

The MLA program launched in 1974 and was the first graduate landscape architecture program in Ontario and the second in Canada after the University of Manitoba was established a year before (The First MLA Graduates in Ontario, 1977). Victor Chanasyk stated that based on the facilities of the school and the experience of the faculty, the school could handle the new graduate program (The First MLA Graduates in Ontario, 1977). The existing faculty were to teach in the Masters’ program supporting by several guest lecturers from different academic and international perspectives (Chanasyk, 1973). Based on the American Landscape Architecture Accreditation Board, the University of Guelph was the 16th university to offer the master’s program in North America. The board admired the reading materials provided by the school in addition to its fine but old facilities (A First for U of G, 1976). The library material was provided by the university and the Department of Horticultural Science and was planned to grow consistently (Chanasyk, 1973). The existing reading room and the material library next to it on the first floor became the master’s student studio, which had only five students in its first year (Personal conversations).
The Five Year BLA Program

Because of the hefty workload of the BLA program and the fact that the students didn’t have time to focus on extracurricular activities that could help their personal and professional development, a five-year option to the main 4-year program was added in 1980. The reasoning of this program addition was to lighten the student workload and to give students more time to explore various subjects related to landscape architecture. The program included a year (first year) of studying preparation courses in the college of fine arts with just two landscape courses and then followed by the regular LA courses. In addition, the students of this program had the opportunity to study abroad for a semester and had extensive elective courses to choose from (Alumni News, 1979). The five-year program ended in 1999 due to budget constraints and University pressure to fit the BLA curriculum into a regular four-year degree schedule (Personal Conversations).

East Wing Second Floor Studio Alterations (1974): Without University approval, this minor modification was carried out by students during a very short time. The alterations included the removal of partitions from the back studio, which was the fourth-year studio at the time. The semi-partitions in the studio divided the studio it into four areas. three small and more private spaces were being connected with a more public area (see figure 18). By removing the partitions, the studio was converted to a large open-plan studio, which later was used for social events and school gatherings (Personal Conversations).
Figure 18: East end Studio division (University of Guelph Physical Resources)

1975 Room 131 (the Engineering Hydrology Lab) to Photographic Darkroom: A photographic darkroom where students could print their projects was added to an existing room next to the washrooms on the first level. All the electrical and plumbing were re-arranged to the new layout (Figure 20).

In addition to the photographic darkroom and print reproduction room upstairs, a new computer package was also added to the building’s facilities to update the technological aspects of the program (Chanasyk, 1973). The new computer was located in the room north of the new MLA studios, where initially were occupied as a model construction room, and it was a very modern facility for the time and was supposed to support SYMAP and GRID software programs (Chanasyk, 1973).
1977 Assembly Room to Lecture Room 204: This change was for university purposes to add an additional lecture hall to what was available to university students. This room has never been ‘owned’ by the Landscape Architecture programs, but before the 1977 renovations, it was an assembly room with foldable partitions and was sometimes used by the LA program as a jury location (personal conversations). The new improvements included the addition of a Sloped floor framing and plywood with carpeting, the removal of the folding partitions, a stair at the backdoor to compensate the height difference caused by the sloped surface, and the addition of a projector room with the existing ducts connected to it. Existing tack boards for the assembly room walls were removed and replaced by a large new chalkboard in the front of the classroom (Figure 19).

1983 Engineering Room Changes: After the agricultural engineering program moved out of the building, the Hydrology lab at the end of the east hallway, which was assigned to that program, became usable by the LA program. The total area of 3850 sq. ft. (357 square meters) of space including three faculty offices and a classroom, were ready to be used by the Landscape Architecture program. The new improvements included the addition of a new window to the northern class and a partition removal of storage rooms next to the existing photographic darkroom (Figure 20).
Figure 19: Alterations to Room 204 (University of Guelph Physical Resources)

Figure 20: 1970's and 80's East wing Rearrangements (Drawn by the author based on University of Guelph Physical Resources Drawings)
1988 Massive Campus Construction

As a result of the strategy of the university to increase the number of graduate students in the late 1980’s, there was a significant shortage of space in many departments at the graduate level, including the Landscape Architecture building. As President Brian Segal had mentioned in 1988, “the university was experiencing a great shortage of space for graduate students.” This shortage of space was one of the most important reasons for the five-year Academic Building improvement plan started in 1988 (At Guelph, 1988). The program intended to build a better and improved academic space for the students for the overall budget of around 49 Million dollars. Most of the funding (approximately 28 million) was supposed to come from the Ministry of Colleges and Universities (MCU). The other portions of the budget, as president Segal asserted, were coming from the government and student funds (At Guelph, 1988). The improvements included the library extension, OVC phase 2 (which was a part of the 1983 OVC development plan), a new central services building, replacement of the Biological Science college, Food Science Building, War Memorial Hall, Massey Hall, Macdonald Hall, and the Dairy Barn. An extension of the Athletic Center and expanded parking was already being constructed prior to the campus renovations. Also, a new daycare building and student housing were anticipated to develop supported by student and government funding (Bradford, 1988).

Included in the same planning strategy were the studio additions of the Landscape Architecture building (At Guelph, 1988). The first-floor addition was made in 1989 for the cost of 350,000 dollars, and the second-floor studio was added in 1993 for approximately the same price (personal conversations).
1989 Extension

In 1989 graduate students in Landscape Architecture were still using the reading room adjacent to the foyer and the room beside it (initially the material library). With the increase in the number of graduate students, the reading room was becoming more cramped, and there was a need for a more spacious studio (personal conversations). As the university was improving its facilities for graduate studies, the addition of studio spaces was approved to deal with the shortage of space. A 42.5 ft. (12.98 meters) by 54 ft. (16.5-meters) studio was added to the northern side of the courtyard leaving only an 11.5 ft. (3.5 meters) corridor entrance to the courtyard from the north (Figures 21 and 22). This studio had seven windows and an emergency door that opened to the courtyard and provided space for 1st and 2nd year MLA students (about 20-30 students). The project was designed by FRYETT-SHIFLETT Associates from Guelph in 1988 (Plans).

The studio was built with load-bearing masonry walls and joists of the roof connecting through the width. The walls were made of concrete blocks with insulation and brick face matching the existing facade. There were four windows on the northern side and three on the south with another emergency door facing the courtyard. Wherever there was a joist above a window opening, there was a stronger lintel used to support the load. The entrance to the studio was in the place of a window frame at the end of the east wing hallway. Since it was blocking the emergency exit for the staircase, the exit door moved to the back of the building, and the existing opening filled with the matching materials (Physical Resources Plans).
With over 2260 sq. ft. (210 m²) net area and new facilities, the new studio gave a decent space for master’s students to have their own space. However, in contrast to the existing studios of the building, this studio was not providing ample windows and natural light (Huang, 1998). The reason for the poor design and simple construction details was the smaller budget that the department was dealing with. The entire studio had to be built with a budget of 350,000 dollars (personal conversations). The studio also made significant changes to the characteristics of the courtyard by enclosing it. Interviews with key informants implied that this turned the courtyard into more of a passive view from the hallways rather than a space for communications and interaction like it was before. Some of the outdoor furniture was also removed, and the two doors at the north side were either blocked or opened to a narrow corridor making it less inviting (University of Guelph Physical Resources Plans).
Figure 21: First Floor Addition Diagram and Courtyard view (Model and Render by Author)
1992 Second Floor Studio

With two cohorts of graduate students in the same large room, it was soon apparent there were conflicts over space and privacy. The reason for these conflicts was the poor arrangement of space, poor lighting strategies, and lack of privacy (Huang, 1998). All these conflicts resulted in the desire for another addition to the building in 1992 to deal with the shortage of studio space. The addition of this studio was also under the academic improvements initiated in 1988 (At Guelph, 1988). The budget for this addition based on personal talks and assumptions was approximately 300,000-400,000 Dollars. The architect of the project was Nolan Natale from NATALE-SCOTT-BROWNE Architects from Toronto.

The north side addition on the second floor connected the east and west wings, adding a studio space of over 2700 sq. ft. (250 square meters) (Figures 23 and 25). The framing structure is columns and joists that are placed over the existing load-bearing concrete block walls of the downstairs studio. Two columns on the west end are placed next to the original building, and their footing underpins the old seed building footings in the basement. The joists of the roof went to the width of the studio on the beams supporting by five columns on each north and south side. The structure of the roof is visible as there are no ceiling finishes.

Materials are fiberglass and the extension of the existing 1989 addition walls. This translucent material provides the studio with natural lighting. The glass areas from the stairs and the current studio connect the new space to the existing building visually (personal observations), although there is a slight downward ramp (12 cm) as the floor slabs are placed on the lower
deck structure of the new studio (Physical Resources Plans). The studio has an open plan style with a small partition also makes a connection between the existing east wing studio and the west wing corridor.

Despite a better design than the downstairs addition, the unfinished ceiling and inexpensive materials are not very welcoming in the studio space. Moreover, the air handling system is not satisfactory as the large volume of space relies on existing HVAC systems. Perhaps poor use of materials in quality and design (mainly as a result of the insufficient budgets) has reduced the studio addition’s performance and efficiency. Based on the personal conversations, the initial proposal was estimated to cost 8-900,000 dollars when less than 400,000 was approved (Personal Conversations).

The studio also lacks the qualities of the original studios of the building, such as accessible tack board walls, partitions for privacy purposes, and a casual sitting area. In general, it did not have the quality and attention to detail that the original building facilities had (Personal Observations).

1992 Stair Addition:

Another addition of 1992 was a stair connecting the lane between the LA building and the old Beef Barn building to the west wing staircase. This was to provide a new entrance to the building useful for the university to use the 204 classrooms without needing the students of other programs going inside the LA building.
Figure 23: Second floor studio addition (top) and the North facade of the building after the addition (Drawings by Author)

Changes in the Courtyard’s Characteristics:

With the trees and shrubs fully grown, and the addition of the second level studio, the courtyard felt smaller and more intimate. However, since it was meant to serve the building with a lower number of students, and with the number of students growing steadily, it was not large enough for the same purposes as outdoor construction lectures or major gatherings. Also, space was less accessible to students as the doors to it were and are locked.

Figure 24: The Image of the Courtyard after the 2nd Floor Studio Addition (Image by the Author)
Figure 25: 1992 second floor studio and Stair addition
Strategic planning Recommendation (SCUP, 1996):

In 1995, changes began to happen in terms of higher education funding. The provincial government was trying to decrease taxes by cutting government expenses (Jones, 2004). The Ontario Universities and Colleges grants were reduced by 15 percent, and as a result of these actions, student tuition rose dramatically (Jones, 2004). At the University of Guelph, these government actions were responded to by strategic planning to make education more accessible for students (Report Documents progress on SPC recommendations, 1996).

The Senate Committee of University Planning (SCUP) was assigned to prepare strategic planning recommendations to alleviate the effects of the budget cuts. (University of Guelph, 2001). President Mordechai Rozanski mentioned in 1995 that the strategic planning aimed to increase the flexibility of the institution, in part, by reducing hiring. Fifty-four Strategic Planning Recommendations were crafted. Among the more important were reforming the course and credit systems by reducing the quantity of the courses offered (Report Documents progress on SPC recommendations, 1996). The strategy implemented resulted in fewer courses with more credit weight to reduce the number of courses required and therefore make tuition more affordable for the students (University of Guelph, 2001). The result was a more learner-centered educational environment that required fewer faculty (Report Documents progress on SPC recommendations, 1996).

Another projection of the learner-centered curriculum was to promote multi-media learning education and distant learning (Recommendations 29,31,32). Substantial learner-centered
efforts were made by the Alma Mater Fund Advisory Council in approving University’s proposals for multimedia centers. The first media center was to be placed in the library in the first phase (Report Documents progress on SPC recommendations, 1996). This was to help students have access to a network of data that made them more independent and promote distant learning (University of Guelph, 2001).

Another impact of the academic flexibility plan was the merging of some academic departments in the OAC. According to recommendation number 42, Landscape Architecture, Rural Planning and Development, and Rural Extension Studies were among the departments that were proposed to be consolidated in 1996 (Report Documents progress on SPC recommendations, 1996).

2002 Alterations

The college consolidation and independent studies approach had significant effects on how the LA building was used. Since the two other colleges (Rural Planning and Development and Rural Extension Studies) were now merged with the Landscape Architecture, the building had to accommodate a higher number of students and faculty. In 2002, the shortage of space led to a significant interior alteration to suit the setting for the additional programs. In general, the new renovations were aiming to produce new office and classroom spaces as the new programs required more seminar room and office spaces. The architect of the renovation project was BJC Architects from Guelph, Ontario (U of G Physical Resources Plans). According to the available
physical resources’ drawings, the renovation was planned to happen in three phases, but phases two and three were not completed (U of G Physical Resources Plans).

The major part of the phase one renovations took place in two areas of the building. Area 1 was in the faculty wing, where more office rooms were added by dividing some larger offices. Area 2 was the first level studio addition of 1989 and east wing classrooms adjacent to it (Figure 26).

Figure 26: 2001 Major Renovation Areas (Drawn by Author based on University of Guelph Physical Resources Plans)
Area 1 Changes in the Faculty Wing: the lounge area for the faculty was moved to a new location to the south of the hallway staircase and the room for the existing lounge area was divided into two offices. As can be seen in Figure 27, on the west side of the hallway, a partition wall was removed to make room for a larger office area. In addition, the office spaces in the entrance of the faculty hallway were rearranged to make room for four new offices and a staff room. A new window was created in the front façade to provide lighting and view for the new office at the end corner (Figure 27).

Figure 27: 2001 Faculty Wing Rearrangement (Drawing by the Author based on U of G physical Resources Plans)
Area 2: The most significant changes were in rearranging the 1989 studio into classrooms and offices as the program had a lack of office spaces resulted from the merging of the three programs. The north side of the studio was divided into 4 offices and a storage room by the existing emergency staircase (Figure 28). The existing windows from the studio were used as dividing measures, so each office had natural lighting. The south portion of the studio facing the courtyard was turned into a large classroom and a meeting room with opening to the east hallway. The entrance to this part of the building was designed next to the staircase by removing a part of the wall. Since there was a need for an emergency exit at the west end of the new hallway, a door was planned. (Figure 28) When construction started, it quickly became evident that the Finished Floor Elevation (FFE) of the hall was almost two feet or 0.75 meters lower than the exterior grade. This oversight of the architects necessitated the addition of interior stairs and the removal of a second classroom doorway (Personal Communications).

There were also minor rearrangements regarding the three seminar rooms of the east wing. A new window was placed into the room, which used to be the darkroom and turned it into a study space. The wall dividing the other two classes was planned to move slightly to align with the existing column, and the dividing wall with the door between the two rooms was to be removed to create two large classroom spaces, but according to the current conditions, this change didn’t happen (Figure 28).

In the additional planning phases, BJC Architects design included plans to develop the courtyard as office space and classrooms. By the end of phase three, the courtyard was planned to be
filled entirely with a graduate study space, 12 new offices, a washroom, and an elevator. The gross area to be added to the building was 1250 sq. ft. (116 square meters) (Figure 29).

Figure 28: 2001 Area 2 Renovations (Drawing by the Author based on U of G Physical Resources Plans)
Figure 29: LA building first floor. Phase two and three of the 2001 renovation plans (U of G Landscape Architecture School Archives)
Summary

Since its construction as the Seed Research Building, the LA Building has seen a series of changes in response to the events and requirements of the time. The three main changes that affected the exterior of the building were the 1969 change to Landscape Architecture Building, 1989 first floor studio addition as a response to the rising number of MLA students, and the second-floor addition of 1992 that was adding 2700 sq. ft. (250 square meters) of studio space to the building. The other changes were mostly interior rearrangements to add facilities and required spaces to the building. Alterations during the 1970s as a result of the new MLA and 5-year BLA program and the 2002 changes of the downstairs studio and office spaces were the two most noticeable changes to the interior configurations of the building. Figure 30 shows the exterior changes to the structure since the opening of Landscape Architecture school. The building maintained its original looks while some spaces like the courtyard had gone through a dramatic shift in characteristics as the new additions were constructed.

Figure 30: Exterior changes to the LA building (Diagram by the Author)
CHAPTER FIVE: Discussion & Conclusion

Overview

This chapter discusses the information in the results section and draws a conclusion on the future of the building by analyzing the building’s historical and educational qualities. Furthermore, based on the pros and cons of the building, a design approach is proposed, followed by the author’s own design and visualization.

Building’s Performance

During its lifetime, the building has gone through many historical events that resulted in changes in its appearance and layout. There were different reasons for these changes, including the addition of new programs, an increasing number of students, and technological improvements. Perhaps the most critical issue that affected the building’s appearance was the shortage of space. After the establishment of SEDRD, the number of students and faculty doubled and caused even a more need for space and as a result, many graduate students and faculty of the new programs were located outside the building (Perkins, Lazon, & Douglas, SEDRD Building: a Working Draft on SEDRD Physical Facilities, 2006). The graph in Figure 31 shows the quality of the building’s performance since the establishment of the LA program. As it’s shown in the graph, the building had sufficient net area of space compared to the area needed for its student numbers. As time passed, the student population increased, but extra space has been adding to the building to deal with the numbers. However, after the
consolidation of the three programs in 2001, the numbers almost doubled, resulting in significant space shortage problems. The color of the background image shows the quality of the building’s performance based on the number of students and its net area (Figure 31). Although other factors like aging facilities were causing problems, the shortage of space has always been the most important factor in the building’s performance.

Figure 31: LA Building Density Graph (generated by the author)
The Importance of the LA Building

The significance of the LA Building could be analyzed based on two different qualities it has. As a building for design education, the LA Building has particular characteristics that enhance the quality of education. Additionally, it can be analyzed as a historically valuable building.

Educational Values:

One of the most important aspects of design education is the interaction between the users (Thoring, Desmet, & Badke-Schaub, 2018). The LA building was very successful in creating a social and lively environment for students in the 1970s (Personal Conversations). Although this characteristic is diminishing because of the independency caused by technology and increasing students, the building has proved that it always had the character required for design education. The character of each building is shaped over time and based on the series of events happening around it. This incremental generation of space is what Alexander suggests being the only timeless way to build lively environments (Alexander, 1979).

The LA building was exposed to many historical events that kept changing its characteristics based on the needs those events created. Based on Alexander’s theory, this modification of space over time helps to create an active environment for students by addressing the needs of each period.
Heritage Aspects:

The LA building has a significant cultural and historical importance as the first landscape architecture school in Canada, and there is still a great emotional attachment among professionals that were educated in the building.

In addition to the historical values as the home of the first Landscape Architecture program in Canada, the building carries a multi-styled architecture shaped over time. As a result of multiple renovations over different times and trends in architecture, it shows traces of the functional brick buildings of the 1950s and brutalist architecture of the 1960s and 70s. The more recent additions of the 1980s and were designed to match with the existing aesthetics, but a more modern architecture style is implemented in the second-floor studio in 1993 with glazing facade and exposed ceiling (based on author’s observations). This Irregularity in form and pattern is the result of a successive line of events that occurred in layers of history and reflect the richness embedded in the physical space. It also brings the factor of time in the design, which makes it more complex and satisfying (Ben Hamouche, 2009).

Future Approach

Based on the educational and historical value of the LA building, it is important to consider protecting the building. The observations show that the exterior of the building is not in good condition and needs major maintenance. The suggested approach is to maintain and extend the building with respect to its history while exploring a futuristic and modern approach that fulfills the current educational needs of the students. Based on the problems the building is dealing
with, and the essential issues of the present time, there are a number of suggested qualities that the new design should respond to:

Accessibility: since the opening of the building as the home of Landscape Architecture in Canada, the accessibility to the second floor was an issue that has not been resolved. The accessibility now is even a more significant problem with the rising number of differently-abled users, and it should be addressed to meet AODA standards.

Social Interactions and Educational Aspects: Social interaction between students is a critical aspect of design education (Anthony, 1991). With the diminishing of studio culture in the building, this aspect of design education is not performing well. Based on the personal conversations with graduates of the program, the 1970s were the time which building was in its best shape and performed as intended for design education. Based on interviews, the graduates of this period had the most profound emotional bonds with each other and the building. It seems that these qualities began to decrease eventually as the number of students increased (personal conversations). It has been commented on that in the last decade, or so students do not use the building as much as was the case from the 1960s to early 2000s. Perhaps because of the independence from place allowed by new technology such as email and online work, it is conjectured that students and faculty spend much less time together in the building. This negatively affects the direct, in-person interactions required for design education. The new approach should provide spaces that improve various types of desired interaction among students and faculty.
Heritage Aspects: As discussed before, the LA building has heritage value based on its architectural styles and the pleasant memories it brings. Each space has a story behind it that brings richness and value to the whole character of the building. Any new action should consider and respect these characters, which are a part of the building’s biography.

Economic and Environmental Values: One of the main reasons for the failure of the two new studio additions to the building was insufficient budgets. Considering the fact that the program is dealing with a severe budget deficiency, the new design should be as efficient as possible, both economically and in terms of energy consumption.

Eco-Friendly and Green: With the upcoming issue of climate change, it is imperative that the new design provides a sustainable approach to implement a solution to make the building more environmentally friendly and green. Since this is the character of the architecture and landscape architecture of our time, this could also add another new style to the building.

Advanced Technology and Facilities: Technology often has complex and contradictory effects, particularly in a learning environment. Technology can attract the students to the building if it is not available elsewhere or is too expensive to own personally. An example might be large and costly printing plotters or expensive software unlikely to be privately owned by students. It is also evident that the increasingly frequent use of email, social media applications, and the availability of broadband internet access can also have adverse effects in that students and faculty are not place-dependent and can work elsewhere. The strategies for technology and facilities implemented over decades in the building did for a period ensure that students were
present. However, as technology has advanced, there is now less need for computer labs and printed output that requires large format printers and plotters. However, improving facilities that are not easily accessible can encourage students to come to the building. 3D printers, workshops, and more advanced computers for digital works are just some of these facilities.

Future Design

The proposed design for an extension to the building is the author’s suggestions to make the space more appropriate based on the requirements mentioned before. The design is an alternative solution and is a preliminary visualization of it. It is important that the approach does not change the character of the place significantly. It is a stepping stone to the future changes that will be made based on cultural factors. The diagrams and renderings that follow are showing a preliminary suggested alternative of the building.
Figure 32: The proposed structure adds another level with a separate structure from the original building that underpins the existing foundation. (Diagram by Author)
A glazing structure will be added over the courtyard to make it more pleasant during cold seasons and increase the activity (Figure 33). Some walls were removed to enhance the access to this core social space. This could also be a reference to the greenhouse of the old seed building.

Figure 33: Glazing structure Diagram (by Author)

Figure 34: New Courtyard Space Rendering (Rendered by Author)
Figure 35: Proposed Courtyard Plan with three social gathering spaces and an elevator. The arrows show the places of the removed walls to improve access to the area. (designed by author)
Figure 36: Addition of a green roof to the 1992 studio to make a more insulated environment underneath while conveying the green approach of the project.

Figure 37: The facade on the East side is shaped by fence-like meshes with Ivy plants covering it. The foldable partition enables the students to expand the space to the edge of the facade when the weather is good. (Author’s Sketches)
Figure 38: The mesh facade borrows its pattern from the existing windows (Author, 2019)

Figure 39: East and Front View Rendering (By the Author)
Summary

The biography of the Landscape Architecture Building shows that over the 65 years of its lifetime, the building was shaping itself to match the needs that it had to fulfill. Turned from a functional seed building to a modern design studio, the building was imitating most of the educational and physical qualities of Bauhaus and Beaux-Arts school (such as open studios, and courtyard for interactions). The changes to the building were responding to the different kinds of economic, administerial, and educational events of the times. Most of these events caused an increase in the number of students in the building, that led to a severe shortage of space. Although the original space had good educational potential as it was reported (Personal Conversations), this lack of space affected the functioning of the building as it was getting more overcrowded.

Until recently (the early 2000s), the department tried to compensate for the shortage of space by developing physical additions to the building (like the two studio additions). However, with the strategy of the school in promoting online studies, the shortage of space was not causing as many problems as the students were not forced to have physical attendance in the building. This strategy is not the ideal situation, especially for design schools, where the students should interact with each other regularly. Although the online-learning method might seem like an easy solution, the physical collaboration between students is essential in design education as they deal with multi-angled problems (Thoring, Desmet, & Badke-Schaub, 2018).
In modern design education, the physical space of the building should be an inviting place for the students to communicate and learn from their peers and tutors (Emam, Taha, & ElSayad, 2019). This leads to the conclusion that the physical space of the LA Building should grow to meet the spatial and technological needs of the new students rather than making them less dependent on the physical space. Considering the eclectic architectural style layered in 60 years in the building and its historical and emotional value as the first landscape architecture school in Canada, the extension of the space should not interfere with the qualities of the building while developing an up-to-date facility that matches the new needs and trends in design education.
REFERENCES

University of Guelph. (2001, 12). Retrieved from University of Guelph Website: https://www.uoguelph.ca/info/strategic/review.shtml

University of Guelph History. (2019, July). Retrieved from uoguelph: https://www.uoguelph.ca/info/history/

