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ABSTRACT

ATTRACTORS AND SEMI-ATTRACTORS OF IFS

Maxwell Fitzsimmons Advisor:

University of Guelph, 2018 Dr. Herb Kunze

It is well known that a finite set of contractive self maps on a metric space, called an

iterated function system (IFS), admits a nonempty compact invariant set called the attractor

of the IFS. It is also well known that the chaos game converges to “draw” the attractor. We

examine generalized notions of IFSs, attractors and the convergence of the chaos game to

these generalized attractors. We focus on IFSs whose Hutchinson-Barnsley operator is a

lower semicontinuous (l.s.c) multifunction, this includes infinite and possibly discontinuous

IFS. In this case we develop several characterizations of smallest/minimal nonempty closed

sub-invariant sets of the IFS. Under the same assumptions, we then give some necessary

conditions for the chaos game to converge. Then, under the assumption that the set of

all finite compositions of functions in the IFS are equicontinuous and certain compactness

assumptions, we establish that the chaos game converges.
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Chapter 1

Introduction

The subject of iterated function systems (IFS) is well studied and well known in popular

culture. Typically, an IFS is defined to be a finite collection of contractive self maps on a

metric space. In this case it is well known there is a unique nonempty compact invariant

set (or self similar) of the IFS called the attractor. Attractors are often fractals that are

interesting to look at. Thus there is some motivation to find out what this attractor looks

like. The most common method to draw the attractor is to use random iteration algorithms,

such as the chaos game.

In less conventional settings the maps of an IFS are allowed to be possibly non-contractive.

In this setting, it is an active area of research to determine whether an IFS possesses an

attractor and, if it does possess one then, to determine whether the chaos game can draw

the attractor: see [3, 9, 10, 11, 5]. In many of these works attractors are defined via limits

in the Hausdorff metric (or Vietoris topology). This is perhaps a natural setting for the

chaos game, as any set that is a limit set of a sequence of sets in the Hausdorff metric (or

Vietoris topology) will be compact and thus bounded. If the attractor is unbounded it will

be impossible to draw on a computer and perhaps defeats the purpose of the chaos game

and IFS to begin with.
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Nevertheless, in this work, for the sake of generality, we avoid the use of Hausdorff metric

(and also the Vietoris topology). Instead we follow Lasota, Andrzej and Myjak [11] and work

with IFSs with lower semicontinuous Hutchinson-Barnsley operators. We characterize when

such an IFS has a smallest nonempty closed sub-invariant set and to a lesser degree we explore

minimal nonempty closed sub-invariant sets of IFSs. Furthermore, under the assumption

that the set of all finite compositions of functions of the IFS is an equicontinuous set, we

show that the chaos game produces these minimal (and therefore smallest) nonempty closed

sub-invariant sets, with initial point starting in a (possibly) large basin of attraction. If in

addition to these assumptions the space is compact, then the basin of attraction is as large

as possible. Furthermore, we discuss a necessary condition on the point used to initialize the

chaos game.

Throughout this work, we assume the reader is comfortable with mathematical analysis

and metric spaces, including, open sets, closed sets, continuous functions, uniformly contin-

uous functions, Lipschitz continuous functions, forward/backward images of functions and

the composition of functions.

In Chapter 2 we briefly touch on the convergence of sequences of functions in a met-

ric space. We move on to a discussion on the convergence of sets and the various types

of continuity of multifunctions with an emphasis on lower semicontinuous multifunctions.

Anyone unfamiliar with these subjects on multifunctions should not skip reading section 2.3

of Chapter 2. In Chapter 3 we develop the motivating Theorems of finite contractive IFS. A

reader familiar with such topics can skip this section to save time as only certain definitions

from this chapter are used in the rest of the thesis. In Chapter 4 we develop the main

results of this work. Including aforementioned results on minimal/smallest nonempty closed

sub-invariant sets of an IFS, sufficient conditions for the convergence of the chaos game and

necessary conditions on the convergence of the chaos game.

In the appendix we define some notions that are used freely throughout this work.
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Chapter 2

Collections of Facts and Definitions

In this chapter we will mostly define and state Theorems related to metric spaces and set

valued analysis. The Theorems will not be proved unless it is very easy, the author finds

the proof insightful, the theorem will be used often or the author feels as though it is not a

common result.

Throughout this chapter and in this whole work we will assume some basic understanding

of metric spaces including: open sets, closed sets, convergence sequences and continuity of

functions.

2.1 Miscellaneous Topics in Analysis

In this section we will present some basic definitions used thorough the work

The first thing we will discuss is the continuity of functions.

Definition 1. Let (X, d), (Y, ρ) be metric spaces and let f : X → Y . Then we say f is

continuous at x ∈ X if for every ε > 0 there is a δx,ε > 0 for which

BXδx,ε(x) ⊆ f−1
(
BYε (f(x))

)
.
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We say f is continuous on X if f is continuous at every point in X. We also say that f is

continuous if f is continuous on X.

We say f is uniformly continuous on X if for every ε > 0 there is a δε > 0 such that for

all x ∈ X we have

BXδε(x) ⊆ f−1
(
BYε (f(x))

)
.

We also say that f is uniformly continuous if f is uniformly continuous on X.

We say that f is Lipschitz continuous or simply Lipschitz on X if there is an L ∈ [0,∞)

such that every x1, x2 ∈ X we have

ρ(f(x1), f(x2)) ≤ L d(x1, x2)

and L is a (or the) Lipschitz constant of f. Furthermore we say that f is a contraction or

contraction map if f is Lipschitz with a Lipschitz constant L < 1. We say that f is non-

expansive if it has Lipschitz constant L ≤ 1 and we call f expansive if it is Lipschitz but not

non-expansive.

2.2 Convergence of Sequences of Functions

The simplest way for a sequence of functions to “converge” is called pointwise convergence.

Definition 2. Let X be a set and (Y, d) be a metric space. A sequence of functions, {fn}n∈N

where fn : X → Y for all n ∈ N, is said to converge pointwise to the function f, f : X → Y ,

if for all x ∈ X the point sequence {fn(x)}n∈N → f(x).

Pointwise convergence is a weak form of function convergence; one obstacle in using

pointwise convergence is the limit functions are not necessarily continuous even if all the

functions in the sequence are continuous.
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Example 1. Let X = Y = [0, 1] with the normal metric. Consider the sequence of functions

{xn}n∈N. For every x0 ∈ [0, 1) the point sequence {xn0}n∈N converges to 0 but when x0 = 1

the point sequence {1n}n∈N converges to 1. Hence the limit function is

f(x) =


0 x ∈ [0, 1)

1 x = 1

which is discontinuous despite xn being continuous for every n ∈ N.

Also note that if we take X = Y = [−1, 1] then the sequence of functions in question

does not converge pointwise because when x0 = −1 the point sequence {(−1)n}n∈N does not

converge.

Luckily there are conditions that ensure that the limit of a sequence of continuous func-

tions is continuous. One such condition is the notion of uniform convergence.

Definition 3. Let X be a set and (Y, d) be a metric space. A sequence of functions, {fn}n∈N

where fn : X → Y for all n ∈ N, is said to converge uniformly to the function f, f : X → Y ,

if for all ε > 0 there is an N ∈ N such that for all x ∈ X we have d(fn(x), f(x)) < ε. Or

equivalently for all ε > 0 there is an N ∈ N such that supx∈X d(fn(x), f(x)) < ε.

The definition of uniform convergence is subtlely different from that of pointwise conver-

gence. However this subtle difference actually makes uniform convergence a much stronger

condition. Intuitively, uniform convergence of a sequence of functions requires the sequence

to converge pointwise, but the point sequences must all converge at the same rate.

We can actually use the idea of uniform convergence to define a metric space on continuous

functions.

Theorem 1. Let (X, ρ) be a compact metric space and (Y, d) be a complete metric space.

Let C(X, Y ) be the set of all continuous functions from X to Y . Then C(X, Y ) is a complete
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metric space with metric

du(f1, f2) = sup
x∈X

d(f1(x), f2(x)).

Often we write d(f1, f2) instead of du(f1, f2) and we call this the uniform distance or

sup-distance.

The compactness of X guarantees that the uniform distance is finite. One can discuss

instead the set of all bounded functions from X to Y in a similar manner.

An immediate corollary of the above is for X compact and Y complete a convergent

sequence of C(X, Y ) converges to a continuous function. However we can get a similar result

without the compactness on X.

Theorem 2. Let (X, ρ) and (Y, d) be metric spaces. Suppose that {fn}n∈N, fn : X → Y

continuous for all n ∈ N, converges to f uniformly. Then f is continuous.

Proof. First, fix ε > 0 and pick an n ∈ N large enough so that d(f, fn) < ε
3
. Since fn is

continuous for any x0 ∈ X we can pick δ > 0 so that fn
(
BXδ (x0)

)
⊆ BYε

3
(fn(x0)). Now

consider an x ∈ BXδ (x0)

d(f(x), f(x0)) ≤ d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(f(x0), fn(x0))

< d(f, fn) +
ε

3
+ d(f, fn)

<
ε

3
+
ε

3
+
ε

3

= ε

Since x0 was arbitrary, this shows f is continuous.

The last subject of this chapter explores how equicontinuity and uniform convergence are

related.
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Definition 4. Let (X, ρ) and (Y, d) be metric spaces. Let F be a subset of Y X then F is

said to be equicontinuous if for all x ∈ X and for all ε > 0 there is a δ > 0 for all f ∈ F

such that

f
[
BXδ (x)

]
⊆ BYε (f(x)).

Similarly F is said to be uniformly equicontinuous if for all ε > 0 there is a δ > 0 for all

f ∈ F and all x1, x2 ∈ X with ρ[x1, x2] < δ we have d(f(x1), f(x2)) < ε.

A set of functions is equicontinuous if all the functions in the set are continuous and with

reference to Definition 4, the same “δ” works for all the functions for any given x and ε > 0.

We can similarly talk about uniformly equicontinuous sets in which the same δ works for

all the functions independent of a given x. Notice any finite set of continuous functions is

equicontinuous. The simplest example of an infinite equicontinuous set is the collection of

all Lipschitz functions with Lipschitz constant less than some fixed k ∈ (0,∞).

Equicontinuity turns out to be deeply related to the uniform convergence of a sequence

of functions. But first we need a quick preliminary result.

Theorem 3 (A Generalized Heine-Cantor Theorem). Let (X, ρ) be a compact metric space,

(Y, d) be a metric space and F ⊆ Y X . Then F is equicontinuous if and only if F is uniformly

equicontinuous.

Proof. ( =⇒ ) Pick ε > 0 and for all x ∈ X get the δx from the definition of equicontinuity

for the given ε. Thus
⋃
x∈X BXδx

2

(x) is an open cover of X. By compactness it has a finite

sub-cover; let this cover be
⋃N
i=1 BXδxi

2

(xi) for some N ∈ N and xi, i ∈ [N ]. Now pick

δ = mini∈[N ]
δxi
2

and pick x, y ∈ X with ρ(x, y) < δ. Since x ∈ X ⊆
⋃N
i=1 BXδxi

2

(xi) there is

j ∈ [N ] such that ρ(x, xj) <
δxj
2

. Consider

ρ(y, xj) ≤ ρ(y, x) + ρ(x, xj) < δ +
δxj
2
≤ δxj
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meaning that for all f ∈ F

d(f(x), f(y)) ≤ d(f(x), f(xj)) + d(f(xj), f(y)) < 2ε.

(⇐= ) follows immediately from the definitions.

Note that the proof of Theorem 3 is the almost exactly the same as the normal Heine-

Cantor Theorem. If F = {f} for some f ∈ Y X in the statement of Theorem 3 then we have

the statement for the Heine-Cantor Theorem.

We are now ready to discuss the main result related to equicontinuity.

Theorem 4 (Arzelà–Ascoli Theorem). Let (X, ρ) be a compact metric space, (Y, d) be a

complete metric space and let C(X, Y ) be the set of all continuous functions from X to Y

endowed with the uniform metric. Then F ⊆ C(X, Y ) is compact if and only if the following

conditions hold:

1. F is closed.

2. for all x ∈ X the set
⋃

f∈F{f(x)} is totally bounded (or equivalently relatively compact).

3. F is equicontinuous.

Proof. ( =⇒ ) Suppose that F is compact. Then it is closed, as all compact sets are closed.

Take any x ∈ X and any sequence {fn(x)}n∈N of
⋃

f∈F{f(x)} then the function sequence

{fn}n∈N has a convergent subsequence say {fnk}k∈N → f. Since the convergence is uniform

it must also converge pointwise. So {fnk(x)}k∈N → f(x), thus every sequence of
⋃

f∈F{f(x)}

has a convergent subsequence making it relatively compact. Hence
⋃

f∈F{f(x)} is totally

bounded.
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Lastly, F is totally bounded. So for any ε > 0 there is a finite set of functions {fn}n∈[N ]

with F ⊆
⋃N
n=1 B

C(X,Y )
ε
3

(fn). Now the set {fn}n∈[N ] is equicontinuous because it is finite so

for any x0 ∈ X take δ > 0 so that for all n ∈ [N ]

fn
[
BXδ (x0)

]
⊆ BYε

3
(f(x0)).

For x ∈ BXδ (x0) and any f ∈ F we can take an n ∈ [N ] so that

max{d(f(x0), fn(x0)), d(fn(x), f(x))} ≤ d(fn, f) <
ε

3
.

Now consider

d(f(x0), f(x)) ≤ d(f(x0), fn(x0)) + d(fn(x0), fn(x)) + d(fn(x), f(x)) < ε.

Thus F is equicontinuous.

( ⇐= ) By Theorem 1, C(X, Y ) is complete and by assumption F is closed. Hence F

is complete and we need only show that F is totally bounded. Pick ε > 0 and as, F is

uniformly equicontinuous, (by Theorem 3) get δ > 0, so for all f ∈ F and x ∈ X

f
[
BXδ (x)

]
⊆ BYε

3
(f(x)).

AsX is compact it is totally bounded so there is a finite set {xi}i∈[M ] withX ⊆
⋃
i∈[M ] BXδ (xi).

Thus for all x ∈ X there must be a j ∈ [M ] with x ∈ BXδ (xj) and we can see that for all

f ∈ F , d(f(x), f(xj)) <
ε
3
.

Now for each i ∈ [N ] the set
⋃

f∈F{f(xi)} is totally bounded. So there is a finite set of⋃
f∈F{f(xi)}, say {fni(xi)}n∈[Ni], with

⋃
f∈F{f(xi)} ⊆

⋃Ni
n=1 BYε

3
(fni(xi)).

We now claim that F ⊆
⋃
i∈[M ]

⋃
n∈Ni B

C(X,Y )
ε (fni). Pick f ∈ F and x ∈ X and let xj be

9



within δ of x (as discussed before); then there is an n ∈ [Ni] such that d(fnj(xj), f(xj)) <
ε
3

(as
⋃

f∈F{f(xi)} ⊆
⋃Ni
n=1 BYε

3
(fni(xi)) for all i ∈ [M ]). Now we can see

d(f(x), fnj(x)) ≤ d(f(x), f(xj)) + d(f(xj), fnj(xj)) + d(fnj(xj), fnj(x)) < ε.

Since this holds for all x ∈ X we can take the supremum overX and F ⊆
⋃
i∈[M ]

⋃
n∈Ni B

C(X,Y )
ε (fni).

Hence F is totally bounded and complete. Therefore F is compact.

We can see now that equicontinuity is an essential part of compactness of subsets of

C(X, Y ) (when X is compact and Y is complete). This means that equicontinuity must be

deeply tied to the uniform convergence of sequences as, if {fn}n∈N converges uniformly then

it must be relatively compact.

Corollary 4.1. Let (X, ρ) be a compact metric space, (Y, d) be a complete metric space and

let C(X, Y ) be the set of all continuous functions from X to Y endowed with the uniform met-

ric. Furthermore, let {fn}n∈N be a sequence of C(X, Y ). Then {fn}n∈N converges uniformly

to f if and only if {fn}n∈N converges pointwise to f and the sequence is equicontinuous.

Proof. ( =⇒ ) The set {fn}n∈N is compact as the sequence converges uniformly. Thus by

the Arzelà–Ascoli Theorem the set is equicontinuous. {fn}n∈N converges pointwise since it

converges uniformly.

(⇐= ) Since {fn}n∈N converges pointwise, the set
⋃
n∈N{fn(x)} is relatively compact for

all x ∈ X. As {fn}n∈N is equicontinuous this must mean that {fn}n∈N is relatively compact

(in C(X, Y )). This means that every (uniformly) convergent subsequence of {fn}n∈N must

converge to f (as the sequence converges pointwise). Thus {fn}n∈N converges uniformly to

f.
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2.3 Convergence of Sets and Multifunctions

In this section we state some (relatively) basic things about multifunctions, particularly

about their continuity. Multifunctions will be useful in Chapter 4.

Definition 5. Let X and Y be sets. A function F : X → 2Y is said to be a multifunction of

X into Y . We write F : X  Y . Furthermore for B ⊆ X and x ∈ X we adopt the notation

F[x] = F(x)

and

F[B] :=
⋃
x∈B

F[x].

Also define the domain of a multifunction Dom (F) = {x ∈ X|F[x] 6= ∅}.

We use [ ] when dealing with multifunctions in order to make two things more clear.

One, so there is no confusion whether F(x) is a set or a point and, two, seeing as the range

of F is technically in 2Y thus F(B) should be a collection of subsets (i.e a subset of 2Y ).

However we almost always want to deal with the points in those subsets rather then the

subsets themselves, the [ ] notation helps us get around this.

Example 2. Let X = Y = R and define F : R R to be for x ∈ R

F[x] = {y ∈ R|x2 + y2 = 1}.

We can see that F
[

1√
2

]
= { 1√

2
, −1√

2
} and in fact |F[x]| ≤ 2 for all x ∈ R. The domain is

Dom (F) = [−1, 1].

A simpler example is for any f : R → R we can make f into an multifunction by letting

for x ∈ R

f[x] = {f(x)}.

11



Additionally the inverse image of f is also a multifunction. Let f−1 : R R be for x ∈ R

f−1[x] = {y| f(y) = x}.

Finally, the ε > 0 balls are also multifunctions. Let ε > 0 is fixed then Bε : R R defined

by, for all x ∈ R,

Bε[x] = {y|ε > |x− y|}.

A multifunction is sometimes called a point-to-set function or a multivalued function.

Along the same vein a function f : X → Y is called a point-to-point function or single valued

function.

We wish to delve into the continuity of multifunctions. Naturally, continuity for multi-

functions will be inspired by the continuity of single valued functions. Recall that a function

is continuous if and only if it preserves convergent sequences. That is, f is continuous at

x ∈ X if and only if for every sequence {xn}n∈N → x we have {f(xn)}n∈N → f(x). If we wish

to generalize this notion to multifunctions we will have to figure out what it means for a

sequence of sets to converge.

Definition 6. Let (X, d) be a metric space and let {An}n∈N be a sequence of 2X \ ∅. Then

we will say that {An}n∈N is a sequence of sets of X or {An}n∈N is a set sequence of X. If

X is the only metric space in context will we will say {An}n∈N is a sequence of sets or it is

a set sequence.

Now define the liminf, the lower limit or the inner limit, of a sequence of sets to be

Li
n→∞

An = {x| lim sup
n→∞

d(x,An) = 0}.

12



Also define the limsup, the upper limit or the outer limit, of a sequence of sets to be

Ls
n→∞

An = {x| lim inf
n→∞

d(x,An) = 0}.

In the above the notation for B ⊆ X, d(x,B) = infb∈B d(x, b).

Furthermore the sequence is said to converge to A ⊆ X iff

A = Li
n→∞

An = Ls
n→∞

An.

And we write {An}n∈N → A or A = limn→∞An.

Definition 6 may seem backwards at first glance, after all the so called “liminf” of a

sequence of sets is defined via the lim sup of real numbers and vice versa for the Ls. But

defining them as in Definition 6 allows the Ls and Li to behave much more like the lim sup and

lim inf of real numbers. For example if {an}n∈N is a sequence of real numbers and {An}n∈N is

a sequence of sets then lim infn→∞ an ≤ lim supn→∞ an and similarly Lin→∞An ⊆ Lsn→∞An

(see (i) of Proposition 1).

For the most part, we will be using the terminology lower limit and upper limit. Fur-

thermore Definition 6 is not the most useful way to define the upper and lower limit. We

give more understandable characterizations of the upper and lower limits in Proposition 1.

Particularly items 1, 2 and 4 will be used extensively.

Proposition 1. Let (X, d) be a metric space and let {An}n∈N be a sequence of 2X . Define

the notation {an ∈ An}n∈N to mean a point sequence in X with ∀n ∈ N an ∈ An. Then the

following hold.

1.

Li
n→∞

An = {x|∃{an ∈ An}n∈N such that {an}n∈N → x}

13



2.

Li
n→∞

An =
⋂
ε>0

⋃
m∈N

⋂
n≥m

Bε(An)

3.

Ls
n→∞

An = {x|∃{an ∈ An}n∈N and a subsequence such that {ank}k∈N → x}

4.

Ls
n→∞

An =
⋂
m∈N

⋃
n≥m

An

5.

Ls
n→∞

An =
⋂
ε>0

⋂
m∈N

⋃
n≥m

Bε(An)

Furthermore, let A ⊆ X, x∗ ∈ X and let {xn}n∈N be a sequence of points. Then the following

also hold

(i) Li
n→∞

An ⊆ Ls
n→∞

An

(ii) {An}n∈N → A iff A ⊆ Li
n→∞

An and Ls
n→∞

An ⊆ A

(iii) if {xn}n∈N → x∗ then the sequence of sets {{xn}}n∈N → {x∗}

Proof. 1. (⊆) Recall the lim sup of a sequence of real numbers {rn}n∈N (when the lim sup

is finite) is the largest limit of all of the convergent subsequences of {rn}n∈N. Here if

x ∈ Lin→∞An then the set of real numbers {d(x,An)}n∈N, is bounded below by zero and the

largest limit of any convergent subsequence is 0. So the set of limit points of the convergent

subsequences of {d(x,An)}n∈N is bounded above and below by zero. Thus every convergent

subsequence converges to zero and so {d(x,An)}n∈N → 0. This means for all ε > 0 there is

an N ∈ N with ∀n ≥ N d(x,An) < ε. We claim that for all ε > 0 there is N ∈ N such that

for every n ≥ N we can pick an ∈ An with d(x, an) < ε. If this is not the case, there is a

ε > 0 such that for all N ∈ N there is n ∈ N with every an ∈ An ε ≤ d(x, an). Taking the
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infan∈An yields a contraction. This shows that ∃{an ∈ An}n∈N such that {an}n∈N → x.

(⊇) Conversely if x satisfies ∃{an ∈ An}n∈N such that {an}n∈N → x, then limn→∞ d(x, an) =

0. As 0 ≤ d(x,An) ≤ d(x, an) for all n ∈ N we can take the limit of both sides and conclude

that limn→∞ d(x,An) = 0. Noting that because the limit exists it must be equal to the

lim sup gives us the result.

2. (⊆) If x ∈ Lin→∞An in the proof of 1 (⊆) we showed that {d(x,An)}n∈N → 0. Thus

we have for all ε > 0 there is a N ∈ N such that for all n ≥ N , d(x,An) < ε. This is precisely

the definition of the set on the RHS. (⊇) The preceding argument can be made in reverse.

3. (⊆) Recall the lim inf of a sequence of real numbers {rn}n∈N (when the lim inf is finite)

is the smallest limit of all of the convergent subsequences of {rn}n∈N. Thus if x ∈ Lsn→∞An

there is a subsequence of {d(x,An)}n∈N say {d(x,Ank)}k∈N → 0. From here one could follow

a similar argument to that made in 1 to show there is a sequence {ank}k∈N → x that is a

subsequence of some {an ∈ An}n∈N.

(⊇) Let x be such that there is a {an ∈ An}n∈N and a subsequence such that {ank}k∈N → x.

Then again we consider 0 ≤ d(x,Ank) ≤ d(x, ank) and take the limit. So {d(x,Ank)}k∈N → 0

and as the lim infn→∞ d(x,An) ≥ 0. Therefore lim infn→∞ d(x,An) = 0 and x ∈ Lsn→∞An.

4. (⊆) Proceed by contraposition. Suppose x /∈
⋂
m∈N

⋃
n≥mAn: then there is δ > 0 such

that Bδ(x)∩ (
⋂
m∈N

⋃
n≥mAn) = ∅ as X \

⋂
m∈N

⋃
n≥mAn is open. Thus there is m ∈ N such

that for all n ≥ m, δ ≤ d(x,An). We can interpret this to mean the tail of the sequence

{d(x,An)}n∈N is always bounded below by δ > 0 and so the lim infn→∞ d(x,An) must be

positive. Thus x /∈ Lsn→∞An.

(⊇) Suppose x ∈
⋂
m∈N

⋃
n≥mAn then for all δ > 0 Bδ(x)∩ (

⋂
m∈N

⋃
n≥mAn) 6= ∅. So for any
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δ > 0, ∀m ∈ N ∃n ≥ m and ∃an ∈ An with

0 ≤ d(x,An) ≤ d(x, an) < δ.

As the above holds for all δ > 0, it is straightforward to pick a subsequence of {d(x,An)}n∈N

that converges to zero.

5. (⊆) Using 3, if x ∈ Lsn→∞An there is an {an ∈ An}n∈N and a subsequence {ank}k∈N →

x. We have for every ε > 0 there is K ∈ N such that for every k ≥ K we have d(x, ank) < ε.

So for any fixed ε > 0 and any m ∈ N there is a k ≥ K so that nk ≥ m and d(x, ank) < ε.

Noting that nk is equal to some n gives us the result.

(⊇) Let x ∈
⋂
ε>0

⋂
m∈N

⋃
n≥m Bε(An). Then for N ∈ N we can pick ε = 1

N
and there is a

nN ≥ N and an anN ∈ AnN with d(x, anN ) < 1
N

. Thus by picking the anN ’s we can construct

a sequence {anN ∈ AnN}N∈N → x which is also a subsequence of some {an ∈ An}n∈N. So by

3 x ∈ Lsn→∞An.

(i) Using 1 and 3, we can see that if x is such that there is a {an ∈ An}n∈N → x then any

subsequence of {an}n∈N must also converge to x and so x ∈ Lsn→∞An, by 3.

(ii)

{An}n∈N → A

⇐⇒ A = Li
n→∞

An = Ls
n→∞

An = A

⇐⇒ A ⊆ Li
n→∞

An ⊆ Ls
n→∞

An ⊆ A

⇐⇒ A ⊆ Li
n→∞

An and Ls
n→∞

An ⊆ A where (i) gives the “upward” implication
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(iii) Note that there is only one possible sequence satisfying {vn ∈ {xn}}n∈N which is the

point sequence {xn}n∈N. All of its subsequences converge to x∗ so the Ls is the set containing

x∗. Similarly the Li must also be {x∗}. Thus the sequence of sets converges to {x∗}.

Items 1 through 5 of the above give us useful characterizations of the upper and lower

limits. Items 1 and 3 are typically used as the definitions of Li and Ls respectively; for good

reason it is much easier to speak of the set of all limits of convergent point sequences of the

set sequence (the lower limit) or the set of limits of the all the convergent point subsequences

of the set sequence (the upper limit). From items 1 and 3 one can more easily reason some

elementary proprieties of the upper and lower limits; for instance item (i) or the fact both of

the sets are closed. Another conceptually pleasing thought is that the lower limit is the set

of all points that are “close” to all but finitely many sets of the set sequence (see item 2, the⋂
n≥m Bε(An) part can be read as being ε close to all except the first m sets). Similarly, the

upper limit is the set of all points that are “close” to infinitely many sets of the set sequence

(see item 4, the
⋂
m∈N

⋃
n≥m Bε(An) part can be read as always being ε close to one of the

“last infinitely many” An’s).

Items (i) through (iii) are simple results that help serve as sanity checks to show that

Definition 6 is a good generalization of convergent (point) sequences and the lim inf and

lim sup of real numbers.

One should notice that if {xn}n∈N is a point sequence then it converges if and only if

Lin→∞{xn} is a singleton. In this case the lower limit is always empty or a singleton. Thus

the concept of the lower limit is not a very interesting for point sequences. The upper limit

however is more interesting in this case. Here the upper limit would contain the limits of all

the convergent subsequences of {xn}n∈N.
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Example 3. Let X = R with the usual metric. Consider the sequence of sets

An =


[−n, n] n even

(0, n] n odd

Then the lower limit is Lin→∞An = [0,∞) and the upper limit is Lsn→∞ = R. Thus the set

sequence does not converge. We can also see that {A2n}n∈N converges to R. This would be

an example of bounded sets converging to an unbounded set.

Along similar lines consider the set sequence

Bn =


(−∞,−n] ∪ (0, 1 + 1

n
) n even

( 1
n
, 1] ∪ (n,∞) n odd

converges to [0, 1]. This is an example of a sequence of unbounded sets converging to a

bounded set.

An important result about real numbers is the monotone convergence theorem. It states

every bounded monotone sequence of real numbers converges. We have a similar result for

sequences of sets.

Theorem 5. Let (X, d) be a metric space. Suppose that a sequence of sets {An}n∈N is a

monotone sequence, that is for all n ∈ N An ⊆ An+1 or An ⊇ An+1. Then {An}n∈N converges

to
⋃
n∈NAn or to

⋂
n∈NAn respectively.

Proof. Suppose that n ∈ N An ⊆ An+1. Then by items (i) and 4 of Proposition 1 we can

see that Lin→∞An ⊆ Lsn→∞An ⊆
⋃
n≥1An =

⋃
n∈NAn. Thus we need only show that⋃

n∈NAn ⊆ Lin→∞An. Let x ∈
⋃
n∈NAn then there is an m ∈ N such that x ∈ Am but

we know that for all n ≥ m that An ⊇ Am 3 x. Thus we can define a sequence {xn}n∈N

converging to x by picking any xn ∈ An for n < m and for all n ≥ m xn = x ∈ An. Therefore
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x ∈ Lin→∞An (by item 1 of Proposition 1) and
⋃
n∈NAn ⊆ Lin→∞An. Noting that Lin→∞An

is closed we can see that
⋃
n∈NAn ⊆ Lin→∞An.

Suppose that for all n ∈ N An ⊇ An+1. Then by items (i) and 2 of Proposition 1 we can

see that
⋂
n∈NAn =

⋂
ε>0

⋂
n∈N Bε(An) ⊆ Lin→∞An ⊆ Lsn→∞An and so we need only show

that Lsn→∞An ⊆
⋂
n∈NAn. Because for all n ∈ N An ⊇ An+1 it means that for all m ∈ N⋃

n≥mAn = Am, so by 4 of Proposition 1

Ls
n→∞

An =
⋂
m∈N

⋃
n≥m

An =
⋂
m∈N

⋃
n≥m

An =
⋂
m∈N

Am =
⋂
n∈N

An

which proves the result.

Remark 1. A key assumption of the monotone convergence Theorem (of real numbers)

is that the sequences need to be bounded (above or below depending on whether it is non-

decreasing or non-increasing). This contrasts with Theorem 5 where there is no hypothesis

even resembling the bounded condition. To see why this is missing: first note that if a set

of real numbers is bounded from above then this is equivalent to the sup of the set being

finite. The sup is of course the least upper bound of the set; this begs the question is there

a sup of a collection of sets, say B ⊆ 2X? And in fact there is, in some sense: the union

of all sets in the collection
⋃
B∈B B contains every set in B. So it is “greater” in the sense

of inclusion. Furthermore one can easily see that it is the “least” upper bound as if for all

B ∈ B we have B ⊆ A then so must the union of all the B’s and
⋃
B∈B B ⊆ A. Thus in

the sense of inclusion every collection of subsets has a least upper bound. Similarly, every

collection of subsets has a greatest lower bound given by the intersection of all the subsets in

the collection.

Thus there is no hypothesis that the monotone sequence of sets is bounded because every

sequence of sets is bounded in the sense of inclusion.

We are now almost ready to resume our quest to understand the continuity of mul-
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tifunctions. But first we need to discuss ways of generalizing the inverse image of single

valued functions to multi-valued functions. The inverse image of a single valued function

f is f−1[B] = {x| f(x) ∈ B}. The trouble with generalizing this is with “f(x) ∈ B”, for

if F is a multifunction F[x] can no longer be an element of B. Perhaps the most sensible

generalization is to change all statements with f(x) ∈ B to F[x] ⊆ B. This means we take

f(x) ∈ B to mean all of elements of f(x) are in B, however since f(x) is a singleton we can

also take f(x) ∈ B to mean there is at least one point of f(x) in B. Thus it is also conceivable

to instead write F[a]∩B 6= ∅. Thus we can define two different concepts of the inverse image

of a multifunction.

Definition 7. Let X and Y be sets, B ⊆ Y and let F : X  Y . The upper pre-image or

core of B by the multifunction F is

F+[B] = {x ∈ Dom (F) |F[x] ⊆ B}.

The lower pre-image or inverse image of B by the multifunction F is

F−[B] = {x ∈ Dom (F) |F[x] ∩B 6= ∅}.

Both of these notions lead to two different types continuity for multifunctions. A defini-

tion of a continuous function in the point to point case is

∀x ∈ X, ∀ε > 0,∃δ > 0,BXδ (x) ⊆ f−1
(
BYε (f(x))

)
.

Replacing the f−1 with either the upper or the lower pre-image, (almost) gives us two distinct

notions of continuity for multifunctions.

Definition 8. Let (X, d), (Y, ρ) be metric spaces and let F : X  Y . F is said to be upper
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semicontinuous (u.s.c) at the point x ∈ Dom (F) if and only if for all ε > 0 and all y ∈ Y

with BYε (y) ⊇ F[x] there is a δ > 0 such that

BXδ (x) ⊆ F+
[
BYε (y)

]
.

Furthermore F is said to be u.s.c on B ⊆ Dom (F) iff it is u.s.c at every point in B.

Definition 9. Let (X, d), (Y, ρ) be metric spaces and let F : X  Y . F is said to be lower

semicontinuous (l.s.c) at the point x ∈ Dom (F) if and only if for all ε > 0 and all y ∈ Y

with BYε (y) ∩ F[x] 6= ∅ there is a δ > 0 such that

BXδ (x) ⊆ F−
[
BYε (y)

]
.

Furthermore F is said to be l.s.c on B ⊆ Dom (F) iff it is l.s.c at every point in B.

One should not confuse u.s.c and l.s.c of multifunctions with upper and lower semi con-

tinuity of functions f : R → R. They are distinct and have little to do with one another.

Despite this much like for the real valued point-to-point functions, we say that a multifunc-

tion is continuous at x in the domain of the multifunction if it is both u.s.c and l.s.c at

x.

Example 4. If f(x) is a continuous point to point function the set valued function f[x] is

both upper and lower semicontinuous. This is because F+ = F− in the single valued case.

Let X = Y = R with the usual metric. And consider the multifunction

F[x] =


{0} x < 0

[−1, 1] x ≥ 0

.

Then F is u.s.c at 0 but not l.s.c at 0. To show upper semicontinuity we consider a y ∈ R
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and ε > 0 with F[0] ⊆ Bε(y). Now, for any δ > 0 and x ∈ Bδ(0) we have two cases

F[x] = [−1, 1] ⊆ Bε(y) and F[x] = {0} ⊆ Bε(y). In both cases we have that x ∈ F+[Bε(y)].

Thus F is u.s.c.

To show that F is not l.s.c at 0 we consider y = 1 and ε = 0.5 then B0.5(1) = (0.5, 1.5). We

can see that (0.5, 1.5)∩F[0] 6= ∅ but notice for any δ > 0 the set Bδ(0) must contain a negative

number say x and so F[x] = {0}. This means that F[x] ∩ B0.5(1) = {0} ∩ (0.5, 1.5) = ∅.

Therefore F in not l.s.c at 0.

Now consider F2 defined as

F2[x] =


{0} x ≤ 0

[−1, 1] x > 0

.

Then F2 is l.s.c at 0 but not u.s.c at 0. To see l.s.c pick any y ∈ R and ε > 0 with

Bε(y) ∩ F2[0] 6= ∅. Now for any δ > 0 and any x ∈ Bδ(0) we have 0 ∈ F2[x] and since

F2[0] = {0} we must have Bε(y) ∩ F2[x] 6= ∅ as Bε(y) ∩ F2[0] 6= ∅. So F2 is l.s.c at 0.

To show that F2 is not u.s.c at 0 we consider y = 0 and ε = 0.5 then B0.5(0) = (−0.5, 0.5).

Now for every δ > 0 the set Bδ(0) must contain a positive number say x and so F2[x] =

[−1, 1] 6⊆ (−0.5, 0.5) = B0.5(0). Therefore F2 in not u.s.c at 0.

Example 4 shows us that u.s.c and l.s.c are distinct concepts (at least on R). Intuitively

one may think that both F and F2 are “discontinuous”: in both cases the “values” of the

function change drastically at x = 0 and in fact both of these functions fail to be both

upper and lower semi lower semicontinuous (and thus continuous). The multifunction F

fails to be l.s.c as it suddenly becomes a “smaller” set when x < 0 and so all the points

in [−1, 1] \ {0} are “stranded”; there are neighborhoods of those points that are not close

to the multifunction’s value when x < 0. On the other hand F2 fails to be u.s.c because it

suddenly becomes much “larger” when x > 0; there are points near to 0 that map to sets
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that are nowhere near the points in F2[0].

In short l.s.c multifunctions “care” more about the individual points in F[x] being close to

other nearby values in the range, whereas u.s.c multifunctions consider F[x] to be a collection

of points and cares that the sets are “nearby” to each other (in the sense of containment).

There are many other types of continuity (or more commonly “semi continuity”) for

multifunctions. However, we will almost exclusively be focusing on lower semicontinuity. As

it “plays nicely” with convergent sequences, as opposed to upper semicontinuous that works

much better with open sets.

Theorem 6. Let (X, d) and (Y, ρ) be metric spaces. Let F : X  Y with Dom (F) = X

then the following are equivalent.

1. F is l.s.c on X.

2. For every x ∈ X, every y ∈ F[x] and every ε > 0 there exists a δ > 0 such that if

x′ ∈ BXδ (x) then F[x′] ∩ BYε (y) 6= ∅.

3. For all x ∈ X, for all sequences {xn}n∈N → x and for all y ∈ F[x] there exists a

sequence {yn ∈ F[xn]}n∈N that converges to y.

4. For every point sequence of X {xn}n∈N that converges to x we have F [x] ⊆ Lin→∞ F[xn].

5. For every point sequence of X {xn}n∈N that converges to x we have F [x] ⊆ Lsn→∞ F[xn].

6. For every set U ⊆ X we have F
[
U
]
⊆ F[U ].

7. For every open set V ⊆ Y the set F−[V ] is open in X.

Proof. 1 =⇒ 2 Pick x ∈ X then for all y ∈ F[x] and all ε > 0 we have F[x]∩BYε (y) 6= ∅. So

by lower semicontinuity there is a δ > 0 such that BXδ (x) ⊆ F−
[
BYε (y)

]
. Thus, by definition

of the lower preimage we have that if x′ ∈ BXδ (x) then F[x′] ∩ BYε (y) 6= ∅
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2 =⇒ 6 Proceed by contraposition. Suppose that there is U ⊆ X with F
[
U
]
* F[U ].

Thus there is a y ∈ F
[
U
]
∩ (Y \F[U ]); so there is an x ∈ U with y ∈ F[x] and since Y \F[U ]

is open in Y , there is an ε > 0 with BYε (y) ⊆ Y \ F[U ]. Also, as x ∈ U , for all δ > 0 there is

a x′ ∈ BXδ (x) ∩ U 6= ∅. Thus

F[x′] ∩ BYε (y) ⊆ F[U ] ∩ BYε (y) ⊆ F[U ] ∩ BYε (y) = ∅.

6 =⇒ 3 Proceed by contraposition. Thus there is an x ∈ X, a y ∈ F[x] and a sequence

{xn}n∈N for which every sequence {yn ∈ F[xn]}n∈N does not converge to y. Thus there is an

ε > 0 for all N ∈ N and an n ≥ N for which all yn ∈ F[xn] have ε ≤ ρ(y, yn) so we can choose

a subsequence of {xnk}k∈N → x that is eventually non-constant such that {ynk ∈ F[xnk ]}k∈N

satisfies for all k ∈ N ε ≤ ρ(y, ynk). Now define XN =
⋃
k≥N{xnk} for some N . Now

since x ∈ XN we have y ∈ F[x] ⊆ F
[
XN

]
. We show that BYε (y) ∩ F[XN ] = ∅: supposing

y′ ∈ BYε (y) ∩ F[XN ] means

ε ≤ ρ(y, y′) < ε

as y′ = ynk for some k and y′ ∈ BYε (y), giving a contradiction. Thus BYε (y)∩ F[XN ] = ∅ and

so y /∈ F[XN ]. Therefore F
[
XN

]
* F[XN ].

3 =⇒ 1 Proceed by contraposition. Suppose that there is an y ∈ Y , a ε > 0 and an

x ∈ X with BYε (y)∩F[x] 6= ∅ such that for every δ > 0 we have BXδ (x) * F−
[
BYε (y)

]
. Let y∗ ∈

BYε (y)∩F[x] and so there is an η > 0 with BYη (y∗) ⊆ BYε (y). For each n ∈ N, set δ = 1
n

and pick

xn ∈ BX1
n

(x) ∩
(
X \ F−

[
BYε (y)

])
⊆ BX1

n

(x) ∩
(
X \ F−

[
BYη (y∗)

])
as F−

[
BYη (y∗)

]
⊆ F−

[
BYε (y)

]
.

So for each n ∈ N, since xn /∈ F−
[
BYη (y∗)

]
, we have ∅ = F[xn] ∩ F−

[
BYη (y∗)

]
. Thus for each

n ∈ N and every yn ∈ F[xn] 0 < η ≤ ρ(yn, y
∗). So there can be no {yn ∈ F[xn]}n∈N that

converges to y∗ and since {xn}n∈N → x we can conclude that 3 does not hold.
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3 =⇒ 4 Take {xn}n∈N → x, pick y ∈ F[x]; then by Item 3 there exists a sequence

of points {yn}n∈N → y with yn ∈ F[xn] for all n ∈ N. Thus by item 1 of Proposition 1

y ∈ Lin→∞ F[xn].

4 =⇒ 5 Recall Item (i) of Proposition 1 and by 4 we have for all x ∈ X and every

{xn}n∈N → x

F[x] ⊆ Li
n→∞

F[xn] ⊆ Ls
n→∞

F[xn].

5 =⇒ 3 Proceed by contraposition. So there is an x ∈ X a {xn}n∈N → x and a y ∈ F[x]

such that every {yn ∈ F[xn]}n∈N does not converge to y. Thus y is not in the lower limit.

But by Item (i) of Proposition 1 we can see

y /∈ Li
n→∞

F[xn] ⊆ Ls
n→∞

F[xn].

Therefore 5 does not hold.

1 =⇒ 7 Suppose that V is open in Y . If F−[V ] is empty then we are done. So suppose

that x ∈ F−[V ], this means that F[x]∩ V 6= ∅ . So pick y ∈ F[x]∩ V and there is ε > 0 such

that BYε (y) ⊆ V (as V is open) and we can see, since y ∈ F[x] as well, that F[x]∩BYε (y) 6= ∅.

By the l.s.c of F there is a δ > 0 with

BXδ (x) ⊆ F−
[
BYε (y)

]
⊆ F−[V ].

However this means that x is an interior point of F−[V ] and since x was an arbitrary element

of F−[V ], F−[V ] is open.

7 =⇒ 1 Pick any x ∈ X, y ∈ Y and ε > 0 with F[x] ∩ Bε(y) 6= ∅ then by item 7

we know that F−[Bε(y)] is open in X with x ∈ F−[Bε(y)]. Hence, there is δ > 0 such that

BXδ (x) ⊆ F−[Bε(y)].
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Note how we assumed that Dom (F) = X in the above Theorem. This is done mostly for

convenience. If one wished to relax this, one would needs to start considering only open sets

(or convergence of sequences) in the domain anyway to avoid trivial or undefined cases.

Item 2 of Theorem 6 is typically the easiest to prove that a given multifunction is l.s.c.

Item 3 is perhaps the easiest to remember and the most conceptually pleasing. Items 4, 5

and 6 are very useful; one should keep them in mind when dealing with l.s.c multifunctions.

We will see in Chapters 3 and 4 the multifunctions we will be primarily concerned with

are the union of a collection of continuous point to point maps form a metric space to itself.

That is, suppose that F is a set of continuous functions from X to X then we are focused

on the multifunction

F[x] =
⋃
f∈F

f[x].

The above multifunction is often called the Hutchinson-Barnsley operator. It is a very well

behaved multifunction but perhaps most notably it is always lower semicontinuous.

Proposition 2. Suppose that (X, d), (Y, ρ) are metric spaces and that F is a set of contin-

uous functions from X to Y then

F[x] =
⋃
f∈F

f[x]

is a l.s.c multifunction.

Proof. Recall Item 6 of Theorem 6. Let U ⊆ X and notice for all f ∈ F we have f
[
U
]
⊆ f[U ]
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by the continuity of f. Thus

F
[
U
]

=
⋃
f∈F

f
[
U
]

⊆
⋃
f∈F

f[U ]

⊆
⋃
f∈F

f[U ]

=
⋃
f∈F

f[U ]

= F[U ]

For sake of generality, in Chapter 4 we will often deal with the composition of a l.s.c

multifunction with itself and the “union” of a collection of l.s.c multifunctions.

Proposition 3. Suppose that (X, d),(Y, ρ) are metric spaces and that F is a set of l.s.c

multifunctions from X into Y . Then the multifunction defined by

(⋃
F

F

)
[x] =

⋃
F∈F

F[x]

is l.s.c.

Proof. The proof is identical to that of Proposition 2.

Proposition 4. Let (X, d), (Y, ρ), (Z, s) be metric spaces and that F : X  Y and G : Y  

Z be l.s.c multifunctions. Then the composition multifunction G ◦F : X  Z defined by

G ◦F[x] = G[F[x]] =
⋃

y∈F[x]

G[y]

for all x ∈ X, is l.s.c.
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Proof. Let U ⊆ X and by the lower semicontinuity of F we have

F
[
U
]
⊆ F[U ]

we can apply G to both sides yielding,

G ◦F
[
U
]
⊆ G

[
F[U ]

]
.

But, HB[G] is l.s.c so G
[
F[U ]

]
⊆ G ◦F[U ]. Hence,

G ◦F
[
U
]
⊆ G ◦F[U ].

So by Item 6 of Theorem 6 G ◦F is lower semicontinuous.

Let us return our attention to Items 3, 4 and 5 of Theorem 6, particularly Item 4. These

characterizations of lower semicontinuous tell us a great deal about how l.s.c multifunctions

work with convergent sequences. However at first glance these results might seem incom-

plete. After all, a single valued function f is continuous if and only if for every convergent

sequence {xn}n∈N → x the sequence {f(xn)}n∈N converges to f(x). But in the case of a l.s.c

multifunction the set sequence {F[xn]}n∈N need not converge at all — let alone to F[x]!

The multifunction F2 in Example 2 is an example of this; sequences of {xn}n∈N → 0 con-

sisting of infinitely many positive and negative numbers make {F2[xn]}n∈N divergent and if

{xn}n∈N → 0 is strictly positive the set sequence converges to [−1, 1]. In order for {F[xn]}n∈N

to converge to F[x] we need an additional type of continuity for multifunctions.

Definition 10. Let (X, d), (Y, ρ) be metric spaces and let F : X  Y . F is said to be

outer semicontinuous (o.s.c) at the point x ∈ Dom (F) if and only if for every sequence
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{xn}n∈N → x we have

Ls
n→∞

F[xn] ⊆ F[x].

We say that F is outer semicontinuous (o.s.c) on B ⊆ Dom (F) if it is outer semicontinuous

at every point in B. Furthermore if F is both o.s.c and l.s.c on B then we say F is sequentially

continuous on B.

In light of the above definition we can see if a multifunction, say F, is sequentially

continuous on X then we have for every {xn}n∈N → x

F[x] ⊆ Li
n→∞

F[xn] ⊆ Ls
n→∞

F[xn] ⊆ F[x]

and thus the sequence of sets {F[xn]}n∈N converges to F[x].

We will not be concerning ourselves so much with outer semicontinuity. It turns out for

our purposes we do not need our multifunctions to be sequentially continuous. However, the

concept of outer semicontinuity is strongly related to a concept we have not discussed.

Definition 11. Let X, Y be sets and let F : X  Y be a multifunction. We define the graph

of F to be

Graph (F) = {(x, y) ∈ X × Y |y ∈ F[x], x ∈ Dom (F)}.

In some sources one will find multifunctions to be defined via the graph. Essentially,

theses sources say a multifunction F is a subset of X ×Y then define F[x] = {y ∈ Y |(x, y) ∈

F}. This may seem questionable at first, considering how most of us are used to seeing

f(x) = “expression”, but there are two things to remember: plotted graphs are the usual

choice of getting intuition for a function (or multifunction) when possible and many things are

easier to define or understand when using the graph (for example the inverse multifunction

F− = {(y, x) ∈ Y ×X|(x, y) ∈ F}).

We are now ready to return to our discussion on outer semicontinuity.
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Theorem 7. Let (X, d) and (Y, ρ) be metric spaces. Let F : X  Y with Dom (F) = X

then the following are equivalent.

1. F is o.s.c on X.

2. For all x ∈ X we have ⋂
δ>0

F[BXδ (x)] = F[x]

3. Graph (F) is a closed subset of X × Y of the metric space (X × Y, d +ρ).

4. For every x ∈ X and y ∈ Y \ F[x] there exist ε > 0 and δ > 0 such that

F
[
BXδ (x)

]
∩ BYε (y) = ∅.

Proof. 1 =⇒ 2 Note that
⋂
δ>0 F[BXδ (x)] ⊇ F[x] is always the case as x ∈ F

[
BXδ (x)

]
. Thus

we need only show the opposite inclusion. So pick y ∈
⋂
δ>0 F[BXδ (x)] and so for all ε > 0 we

have BYε (y) ∩
(⋂

δ>0 F
[
BXδ (x)

])
6= ∅. Thus for all n ∈ N we can choose

yn ∈ BY1
n
(y) ∩

(⋂
δ>0

F
[
BXδ (x)

])
⊆ BY1

n
(y) ∩ F

[
BX1
n

(x)
]

and for all n ∈ N we can also pick xn ∈ BX1
n

(x) such that yn ∈ F[xn]. We can also see that

{xn}n∈N → x and {yn ∈ F[xn]}n∈N → y. Thus by Item 1 and (i) of Proposition 1 we have

y ∈ Lin→∞ F[xn] ⊆ Lin→∞ F[xn] ⊆ F[x] where the last inclusion follows from F being o.s.c.

Thus y ∈ F[x] and 2 holds.

2 =⇒ 3 Pick (x, y) ∈ X × Y \ Graph (F) and notice by 2 that F[x] is a closed set.

Since y /∈ F[x] y is an interior point of Y \ F[x] (an open set), there is a ε > 0 such that
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BYε (y) ⊆ Y \ F[x]. Now consider (x′, y′) ⊆ BX×Yε ((x, y)) then

d(x′, x) + ρ(y′, y) < ε

ρ(y′, y) ≤ d(x′, x) + ρ(y′, y) < ε

and y′ ∈ BYε (y) ⊆ Y \ F[x]. Thus y′ /∈ F[x′] and (x′, y′) ∈ X × Y \Graph (F). Thus we have

shown (x, y) is an interior point of Y \ Graph (F) and since (x, y) was arbitrary this means

Y \Graph (F) is open. Therefore Graph (F) is closed.

3 =⇒ 4 Let x ∈ X and y ∈ Y \ F[x]. So (x, y) ∈ X × Y \ Graph (F), an open set,

so there is a η > 0 such that BX×Yη ((x, y)) ⊆ X × Y \ Graph (F). We pick δ, ε > 0 so that

δ + ε < η and we consider (x′, y′) ∈ BXδ (x)× BYε (y) ⊆ X × Y then

d(x′, x) + ρ(y′, y) < δ + ε < η

so BXδ (x) × BYε (y) ⊆ BX×Yη ((x, y)) ⊆ X × Y \ Graph (F). Now for every x′ ∈ BXδ (x) and

y′ ∈ BYε (y) we have y′ /∈ F[x′]. If there was a z ∈ F
[
BXδ (x)

]
∩ BYε (y) there would be

a u ∈ BXδ (x) with z ∈ F[u] ∩ BYε (y) but this contradicts the previous statement. Thus

F
[
BXδ (x)

]
∩ BYε (y) is empty.

4 =⇒ 1 Let x ∈ X, {xn}n∈N → x and y ∈ Lsn→∞ F[xn]. Recalling Item 3 of Proposition

1, there is a sequence {yn ∈ F[xn]}n∈N with a subsequence {ynk ∈ F[xnk ]}k∈N that converges

to y. We now proceed by contradiction; so suppose y /∈ F[x] and so by 4 there are ε, δ > 0

for which F
[
BXδ (x)

]
∩ BYε (y) = ∅. However since {xnk}k∈N → x and {ynk}k∈N → y we

can pick K ∈ N large enough such that d(xnK , x) < δ and ρ(ynK , y) < ε. Recalling that

ynK ∈ F[xnK ], we see that this contradicts F
[
BXδ (x)

]
∩ BYε (y) being empty. Thus y ∈ F[x]

and Lsn→∞ F[xn] ⊆ F[x]. Therefore F is outer semicontinuous.

One thing we can see from the above theorem is that a o.s.c multifunction, say F, has
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closed values i.e F[x] is closed in Y for all x. This immediately discounts many multifunctions

that “feel” like they should be continuous. For instance suppose V ⊆ Y is not closed; the

constant multifunction F[x] = V is not o.s.c at any point (but is both u.s.c and l.s.c at every

point). However in some sense, this is a reasonable thing for even in the case of F[x] = V there

are points in the codomain of F that the multifunction gets close to but never attains (i.e the

boundary of V ). In the single valued case this only happens when there is a discontinuity

in the function (or there is some long term behavior like in ex as x→ −∞, but luckily −∞

is normally not taken to be in the domain of the function). In essence o.s.c says “if there is

a way to get close to y via some approach in x then y is actually attained”. Contrasting to

l.s.c which says “if y ∈ F[x] then in every approach to x the approach (in the range) gets

close to y”.

Although the upper and lower pre-images are not a focus of this work, it is still good to

keep in mind some associated properties and relations, specially in how the contrast to the

single valued case.

Proposition 5. Let X and Y be sets, F : X  Y be a multifunction, U ⊆ X and V ⊆ Y .

Then the following hold.

1. X \ F−[V ] = F+[Y \ V ] and F−[Y \ V ] = X \ F+[V ].

2. F
[
F+[V ]

]
⊆ V .

3. F+[V ] ⊆ F−[V ]

4. U ⊆ F+[F[U ]] and U ⊆ F−[F[U ]].

5. If G is a collection of multifunctions from X into Y and for x ∈ X we define

G∗[x] =
⋃
G∈G

G[x]
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then (G∗)−[V ] =
⋃

G∈G G−[V ] and (G∗)+[V ] =
⋂

G∈G G+[V ]

6. If W ⊆ Y then F+[W ∩ V ] = F+[W ] ∩ F+[V ] and F+[W ∪ V ] ⊇ F+[W ] ∪ F+[V ].

7. If W ⊆ Y then F−[W ∩ V ] ⊆ F−[W ] ∩ F−[V ] and F−[W ∪ V ] = F−[W ] ∪ F−[V ].

Proof. 1.

x ∈ X \ F−[V ]

m

F[x] ∩ V = ∅

m

F[x] ⊆ Y \ V

m

x ∈ F+[Y \ V ]

and

x ∈ F−[Y \ V ]

m

F [x] ∩ (Y \ V ) 6= ∅

m

F[x] 6⊆ V

m

x ∈ X \ F+[V ].
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2.

If y ∈ F
[
F+[V ]

]
then there is an x ∈ F+[V ] such that y ∈ F[x] but by definition of F+ we

know that F[x] ⊆ V . Hence, y ∈ V and the result holds.

3.

If x ∈ F+[V ] then ∅ 6= F[x] ⊆ V . But surely then F[x] ∩ V 6= ∅, so x ∈ F−[V ].

4.

If x ∈ U then it is clear that F[x] ⊆ F[U ]; but this means that x ∈ F+[F[U ]]. By 3 we would

also have x ∈ F+[F[U ]] ⊆ F−[F[U ]].

5.

Suppose that x ∈ (G∗)−[V ] then G∗[x]∩ V 6= ∅. So there is a G ∈ G such that G[x]∩ V 6= ∅

and x ∈ G−[V ] ⊆
⋃

G∈G G−[V ]. This argument can be made in reverse for the other inclusion.

Suppose that x ∈ (G∗)+[V ] then G∗[x] ⊆ V . So for all G ∈ G we have G[x] ⊆ V . But this

means that x ∈ G+[V ] for all G ∈ G and x ∈
⋂

G∈G G+[V ]. Conversely if x ∈
⋂

G∈G G+[V ]

then for all G ∈ G we have G[x] ⊆ V . Thus we can take the union over G to yield G∗[x] ⊆ V

and x ∈ (G∗)+[V ].

6.

Note that W ∩ V ⊆ W and W ∩ V ⊆ V . Now, if x ∈ F+[W ∩ V ] then F[x] ⊆ W ∩ V

and so F[x] ⊆ W and F[x] ⊆ V . Thus x ∈ F+[W ] ∩ F+[V ]. Conversely, suppose that

x ∈ F+[W ]∩F+[V ] so F[x] ⊆ W and F[x] ⊆ V . Hence, F[x] ∈ W ∩V and so x ∈ F+[W ∩ V ].

If x ∈ F+[W ] ∪ F+[V ] then F[x] ⊆ W or F[x] ⊆ V . In either case F[x] ⊆ W ∪ V and

x ∈ F+[W ∪ V ].

7.

F−[W ∩ V ] ⊆ F−[W ] ∩ F−[V ] and F−[W ∪ V ] = F−[W ] ∪ F−[V ] If x ∈ F−[W ∩ V ] then

∅ 6= F[x] ∩ (W ∩ V ) ⊆ F[x] ∩W.
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So x ∈ F−[W ] and

∅ 6= F[x] ∩ (W ∩ V ) ⊆ F[x] ∩ V

so x ∈ F−[V ]. Hence, x ∈ F−[W ] ∩ F−[V ].

For the other identity we have,

x ∈ F−[W ∪ V ]

m

F[x] ∩ (W ∪ V ) 6= ∅

m

(F [x] ∩W ) ∪ (F [x] ∩ V ) 6= ∅

m

F [x] ∩W 6= ∅ or F [x] ∩ V 6= ∅

m

x ∈ F−[W ] ∪ F−[V ].

In Chapters 3 and 4 we will see that we are interested in multifunctions that map a set

to itself, say F, for which there is a set A such that F[A] = A.

Definition 12. Let X be a set, F : X  X and A ⊆ X. We say that A is sub-invariant

with respect to F if

F[A] ⊆ A.

We say A is super-invariant with respect to F if

A ⊆ F[A].
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Lastly we say that A is invariant with respect to F if it is both sub-invariant and super-

invariant with respect to F that is,

F[A] = A.

We also will use some terminology from the theory of partially ordered sets.

Definition 13. Let X be a set and let P be a property subsets of X can have. Then S ⊆ X

is said to the the smallest (or the minimum) P set if set A ⊆ X with property P then S ⊆ A.

That is S is contained in every set with property P .

Similarly, we define M ⊆ X to be a minimal P set if A ⊆ M with property P then

A = M .

Note that the smallest P set is unique (whenever it exists), as by definition if S1 and S2

were both the smallest then S1 ⊆ S2 and S2 ⊆ S1. We will generally avoid the use of the

term minimum set as it sounds to similar to minimal.

One way to think of smallest sets, is that everything else is larger than it, whereas in the

case of minimal sets nothing is smaller than them.
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Chapter 3

Classical IFS Theory

In this chapter we develop classical iterated function system theory. Iterated function systems

were first considered by Hutchinson in [8]. Additionally, iterated function systems were

popularized by Barnsley. The content of this chapter is “well known” to the research area

at large.

3.1 Attractors to Contractive IFS

First we must define what an IFS is.

Definition 14. Let X be a set. An iterated function system (or IFS) F is a nonempty subset

of XX = {f | f : X → X}. We say that F is: finite if |F| is finite, P if P is a property of

every function in F .

Furthermore, we define the Hutchinson-Barnsley operator of F to be F : X  X for all

x ∈ X

F[x] =
⋃
f∈F

f(x).

When reading the literature one should pay attention to the given definition of an IFS.
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Unlike in Definition 14, many sources define an IFS to be both finite and contractive. This

is done because of the spectacular results of Theorem 9 and Theorem 10 which we will prove

in this chapter. To do this we need a reminder of one of the most famous theorems in

Mathematics.

Theorem 8 (Banach’s Fixed Point Theorem). Let (X, d) be a complete metric space and

let f : X → X be a contraction map. Then f has a unique fixed point x̄ ∈ X. Moreover for

all x ∈ X the sequence {f◦n(x)}n∈N converges to x̄

Proof. First we show that for all x ∈ X the sequence {f◦n(x)}n∈N is a Cauchy sequence. Let

the contraction factor of f be c ∈ [0, 1). Pick ε > 0 and let N, n,m ∈ N with N ≤ n ≤ m;

then by the triangle inequality

d(f◦n(x), f◦m(x)) ≤ d
(

f◦n(x), f◦(n+1)(x)
)

+ d
(

f◦(n+1)(x), f◦m(x)
)

≤ d
(

f◦n(x), f◦(n+1)(x)
)

+ d
(

f◦(n+1)(x), f◦(n+2)(x)
)

+ d
(

f◦(n+2)(x), fm(x)
)

...

≤
m−1∑
i=n

d
(

f◦i(x), f◦(i+1)(x)
)

=
m−1∑
i=n

d
(
f◦i(x), f◦i(f(x))

)
.

Now f◦i is a contraction with contraction factor ci for each i ∈ N. Applying this to the above
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sum we get

d(f◦n(x), f◦m(x)) ≤
m−1∑
i=n

ci d(x, f(x))

= d(x, f(x))
m−1∑
i=n

ci

≤ d(x, f(x))
∞∑
i=n

ci

= d(x, f(x))cn
∞∑
i=0

ci

= d(x, f(x))
cn

1− c
.

≤ d(x, f(x))
cN

1− c
.

The series
∑∞

i=n c
i = cn

∑∞
i=0 c

i is a geometric series and thus converges as |c| < 1. Now for

every x we can pick N large enough so that d(x, f(x)) c
N

1−c < ε. This can be seen from the fact{
d(x, f(x)) ck

1−c

}
k∈N
→ 0 for all x. Thus for all x ∈ X the sequence {f◦n(x)}n∈N is Cauchy

and so converges, to say x̄ ∈ X, by completeness.

As f is a contraction it is continuous and so {f◦n(x)}n∈N → x̄ =⇒ {f(f◦n(x))}n∈N → f(x̄)

however {f(f◦n(x))}n∈N = {f◦n(x)}∞n=2 is a subsequence of {f◦n(x)}n∈N thus both sequences

must have the same limit and f(x̄) = x̄. So x̄ is a fixed point of f.

To show uniqueness, suppose that x, y ∈ X are both fixed points of f then

d(x, y) = d(f(x), f(y)) ≤ c d(x, y).

If d(x, y) > 0 this implies 1 < c by the above inequality, which is a contradiction. Thus

d(x, y) = 0 and x = y thus the fixed point in the above argument must be unique.
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Banach’s Fixed Point Theorem is quite remarkable: not only does it give existence and

uniqueness of a fixed point of a contractive function (fixed points having many mathematical

applications), but it also gives us an algorithm for approximating the fixed point, namely

pick some x ∈ X then start computing the sequence {f◦n(x)}n∈N.

Banach’s fixed point Theorem is also a key theorem in proving the main result of this

section. It states given a complete metric space (X, d) and a finite contractive IFS F there

is a unique nonempty compact set A ⊆ X satisfying A =
⋃

f∈F f(A). Furthermore define

F(B) =
⋃

f∈F f(B) for all B ⊆ X and B compact. Then {F◦n(B)}n∈N “converges to” A. We

will state this more formally later in the section. Now that we know where we are going, the

strategy of proving the result is clear: attempt to apply Banach’s fixed point theorem to the

function F. There are a number of obstacles in doing this. Firstly, F maps sets to sets, so

we need some sort of metric on sets that is also complete; secondly, F must be a contraction

with respect to this metric.

Definition 15. Let (X, d) be a metric space. Define Hausdorff hyperspace

H(X) = {B ⊆ X : B is compact and nonempty}.

Let A,B ⊆ X and x ∈ X. Define the point to set distance

d(x,B) = inf
b∈B

d(x, b)

and the set to set distance

d(A,B) = sup
a∈A

d(a,B) = sup
a∈A

inf
b∈B

d(a, b).
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Finally define the Hausdorff distance

dH(A,B) = max{d(A,B), d(B,A)}.

Intuitively, the point to set distance is the shortest distance starting from x ending in

B. This makes the set to set distance the “largest shortest distance” starting in A ending

in B. Note that d(B,A) can be infinite, but that can only occur when B is unbounded.

Furthermore d(B,A) = 0 iff B ⊆ A. So if dH(A,B) = 0 then A = B.

Example 5. Let X = R and d(x, y) = |x− y|. Then consider the following.

d([0, 1], [−1, 1]) = 0

d([−1, 1], [0, 1]) = 1

d(−1, [0, 1]) = 1

dH([−1, 1], [0, 1]) = 1

We can see that set to set distance is not symmetric: that is d(A,B) 6= d(B,A). When the

sets are unbounded we can get an infinite set to set distance:

d([0,∞), [0, 1]) =∞

d([0, 1], [0,∞)) = 0

We now seek to show that (H(X), dH) is a metric space.

Proposition 6. Let (X, d) be a metric space. Then (H(X), dH) is a metric space.
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Proof. It can be shown that f(x) = d(x,A) is a continuous function in f : X → [0,∞) for all

sets A ⊆ X. Thus for all sets A,B ∈ H(X) by the extreme value theorem f must achieve its

maximum value on A so d(A,B) ∈ [0,∞) and similarly d(B,A) ∈ [0,∞). In fact from this

reasoning we can deduce that d(a, b) = dH(A,B) for some a ∈ A and b ∈ B. Thus so must

dH(A,B) ∈ [0,∞).

dH is symmetric because

dH(A,B) = max{d(A,B), d(B,A)} = max{d(B,A), d(A,B)} = dH(B,A).

Now suppose dH(A,B) = 0. We claim that A = B. Suppose that A * B then take

a ∈ A \ B this means that 0 < d(a,B) ≤ d(A,B) because B is closed so there is a open set

disjoint from B containing a. But this is a contradiction, so A ⊆ B. By making a mirror

argument we can conclude that B = A.

Conversely suppose A = B then we have for all a ∈ A and b ∈ B, d(a,B) ≤ d(a, b) but

picking b equal to a we have d(a,B) = 0 for all a ∈ B. Thus dH(B,B) = 0.

Now we show triangle inequality. Let C ∈ H(X), a ∈ A such that d(a,B) = d(A,B) (we

can do this by the first argument in the proof), c ∈ C be arbitrary and b ∈ B be arbitrary.

d(A,B) = d(a,B) ≤ d(a, b)

d(A,B) ≤ d(a, c) + d(c, b)

Now we can take the infimum over b ∈ B of the right hand side of this inequality to yield

d(A,B) ≤ d(a, c) + d(c, B).
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Since d(c, B) ≤ d(C,B) we have

d(A,B) ≤ d(a, c) + d(C,B).

Again take the infimum over c ∈ C of the right hand side

d(A,B) ≤ d(a, C) + d(C,B)

≤ d(A,C) + d(C,B).

Since d(a, C) ≤ d(A,C). Now note d(A,C) ≤ dH(A,C) and d(C,B) ≤ dH(C,B). Thus

d(A,B) ≤ dH(A,C) + dH(C,B).

We can make the same argument with d(B,A) which implies dH(A,B) ≤ dH(A,C) +

dH(C,B).

Remark 2. In actuality dH forms what is called a pseudometric on the nonempty bounded

subsets of X and a metric on the nonempty closed and bounded subsets of X. However we

have no need for this more general result.

Now that we have a metric on sets (well, the nonempty compact ones) we need the metric

to be complete. Luckily, H(X) inherits many of the properties of X, such as completeness

and compactness.

Proposition 7. Let (X, d) be a complete metric space. Then (H(X), dH) is a complete

metric space

The proof is long and rather technical and so it is omitted; see [6] for a proof.
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Remark 3. The first step in proving Proposition 7 involves having a candidate set for a

Cauchy sequence of sets to converge to in the Hausdorff metric. If {An}n∈N is a Cauchy

sequence of sets, this “candidate” set is Lin→∞An the topological lower limit of the sequence.

It turns out that if {An}n∈N → A with respect to the Hausdorff metric then A = Lin→∞An =

Lsn→∞An is the set limit in the sense of Definition 6.

We have one last result to prove before getting the main result of the section.

Proposition 8. Let (X, d) be a metric space and F = {fi}i∈[N ] be a finite contractive IFS

on X. Define the set to set map

F[B] =
N⋃
i=0

fi[B].

Then F : H(X)→ H(X) and F is a contraction on (H(X), dH).

Proof. Let B ∈ H(X) then for all f ∈ F f[B] is nonempty. Furthermore it is also compact

as f is continuous. Thus recalling the finite union of compact sets is compact we have

F[B] ∈ H(X).

Now let B,C ∈ H(X) and WLOG let dH(F[B],F[C]) = d(F[B],F[C]). Recalling the

proof of Proposition 6 there is a b ∈ B and f ∈ F such that

dH(F[B],F[C]) = d(F[B],F[C]) = d(f(b),F[C]).

But now that means for any g ∈ F and c ∈ C we have d(f(b),F[C]) ≤ d(f(b), g(c)). So pick

g = f and let kf be the contraction factor for f. Then we have for any c ∈ C

dH(F[B],F[C]) ≤ d(f(b), f(c)) ≤ kf d(b, c).

Since the above holds for all c ∈ C we can take the infimum over C and dH(F[B],F[C]) ≤

kf d(b, C). Finally, as d(b, C) ≤ d(B,C) ≤ dH(B,C), we have dH(F[B],F[C]) ≤ kf dH(B,C).

44



Now kf is dependent on C and B, so we note that k = maxg∈F kg ≥ kf and so

dH(F[B],F[C]) ≤ k dH(B,C).

We are now finally ready to prove the main result of the section, the Hutchinson-Barnsley

Theorem.

Theorem 9 (Hutchinson-Barnsley Theorem). Let (X, d) be a complete metric space and

F = {fi}i∈[N ] be a finite contractive IFS on X. Then there is a unique nonempty compact

set A ⊆ X

A =
N⋃
i=0

fi[A]. (3.1)

Furthermore for all nonempty compact sets B ⊆ X the sequence {F◦n[B]}n∈N converges to

A with respect to the Hausdorff metric. Particularly for all x ∈ X the sequence {F◦n[x]}n∈N

converges to A with respect to the Hausdorff metric.

Proof. By Propositions 6, 7 and 8 we have that F is a contraction map on the complete

metric space (H(X), dH). Thus by Banach’s fixed point Theorem (Theorem 8) the result

follows.

The set A in Theorem 9 is called the attractor of the IFS. The attractor is an invariant

set (a set satisfying Equation 3.1) with respect to the IFS. Finding sets that are invariant

with respect to the IFS are a core topic of this thesis and will be explored more in Chapter

4.

Example 6 (Cantor set). Consider the finite contractive IFS on [0, 1] that consists of the
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following functions.

f0(x) =
x

3

f2(x) =
x

3
+

2

3

The attractor of this IFS is the set of all numbers in [0, 1] that have a base-3 representation

containing no 1’s . To see this pick any x ∈ [0, 1] and let x = 0.x1x2x3 . . . be a base-

3 representation of x. Now notice the effect of the functions on this representation. For

instance:

f0(x) = 0.0x1x2x3 . . .

f2(x) = 0.2x1x2x3 . . .

f2 f0(x) = 0.200x1x2x3 . . .

f2 ◦ f0 ◦ f0(x) = 0.200x1x2x3 . . .

Thus we can see that for any N ∈ N and all n ≥ N the set F◦n[x] only contains elements that

have a base-3 representation containing no 1’s in their first N digits. This means that in

the Hausdorff limit of {F◦n[x]}n∈N contains only elements that have a base-3 representation

containing no 1’s. To see that the attractor contains all the numbers in question, suppose

y ∈ [0, 1] with y = 0.y1y2y3y4 . . . with yi = 0, 2 for all i ∈ N then the sequence {fy1 ◦ fy2 ◦ · · · ◦

fyn(x)}n∈N converges to y for all x ∈ [0, 1].

Typically, the attractor is a fractal and is quite interesting to look at. Conveniently,

the Hutchinson Barnsley Theorem gives us an algorithm to actually look at the attractor.
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Unfortunately, the algorithm is inefficient practically. Suppose that F contains N functions.

Then the set F◦n[x] contains at most Nn elements, and to compute F◦(n+1)[x] we need to

evaluate all N functions on all Nn elements in F◦n[x]. Thus Nn+1 function evaluations are

needed. Luckily, there are more efficient algorithms for approximating attractors.

Theorem 10 (Chaos Game or Elton’s Ergodic Theorem). Let (X, d) be a metric space, and

F = {fi}Ni=1 be a finite contractive IFS on X and A be the attractor of the IFS. Suppose

that an infinite sequence of the numbers {in}n∈N in = 1, 2, . . . , N for n ∈ N are generated by

picking in = j with probability pj > 0 and independently of the previous in’s, with
∑N

j=1 pj =

1.

Then the sequence defined by xn = fin(xn−1) with x0 ∈ A is dense on the attractor, that

is {xn}n∈N = A. Furthermore, the sequence yn = fin(yn−1) with y0 ∈ X satisfies

lim
m→∞

dH

(
{yn}∞n=m, A

)
= 0.

Proof. First let us note something useful about invariant sets with respect to the IFS. Since

A is invariant it satisfies

F[A] = A.

Applying F to both sides of this equation gives

F◦2[A] = F[A] = A.

47



Applying F n ∈ N times gives

F◦n[A] = A.

Thus we can conclude the following: for all i ∈ [N ] and a ∈ A we have fi(a) ∈ A. Furthermore

for every a ∈ A and K ∈ N there is finite composition of the functions in F of length

K, say fσ = fσK ◦ fσK−1
◦ . . . fσ1 where σk ∈ [N ] for k ∈ [K], and an a2 ∈ A such that

a = fσ(a2). Thus we can say that for all m ∈ N, {xn}∞n=m ⊆ A as x0 ∈ A. This tells us

that d
(
{xn}∞n=m, A

)
= 0 for all m ∈ N and that {xn}∞n=m is compact for all m ∈ N. Define

c = maxi∈[N ] ci where ci is the contraction factor of fi. Now, pick any a1 ∈ A and any ε > 0

and pick K ∈ N so that cK diam(A) < ε.

Aside: Due to how the sequence {in}n∈N is made it has, with probability 1, the property

of containing every finite sequence of numbers from [N ] infinitely often (this is sometimes

called the infinite monkey theorem). That is for all J ∈ N and given any finite sequence of

numbers of [N ] say, {σk}Kk=1, σk ∈ [N ] for k ∈ [K], then there is a j ≥ J such that ij+k = σk

for k ∈ [K].

Now find a sequence of length K, {σk}Kk=1, and a2 ∈ A such that a1 = fσ(a2) and find

j ≥ m so that ij+k = σk for k ∈ [K]. This means that fσ1(xj) = xj+1, fσ2 ◦ fσ1(xj) = xj+2

and so fσ(xj) = xj+K . Recall that fσ is a K-fold composition of contraction maps and so is

a contraction map with contraction factor cK . Now consider
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d(a1, xj+K) = d(fσ(a2), fσ(xj))

≤ cK d(a2, xj)

≤ cK diam(A)

< ε.

This shows that d
(
A, {xn}∞n=m

)
= 0. Thus for all m ∈ N dH

(
A, {xn}∞n=m

)
= 0 and

A = {xn}∞n=m. Picking m = 1 gives the result in the theorem.

Now we show

lim
m→∞

dH

(
{yn}∞n=m, A

)
= lim

m→∞
dH

(
{yn}∞n=m, {xn}

∞
n=m

)
= 0.

Fix y0, x0 ∈ X and pick ε > 0 and pick M ∈ N so that cM d(x0, y0) < ε. Now pick any

m,n ∈ N with n ≥ m ≥M so yn is an arbitrary member of {yn}∞n=m. Then

d(yn, xn) = d(fin(yn−1), fin(xn−1)) ≤ c d(yn−1, xn−1)

≤ c2 d(yn−2, xn−2)

...

≤ cn d(y0, x0)

≤ cM d(y0, x0)

< ε

This shows that for all m ≥ M we have d
(
{yn}∞n=m, {xn}

∞
n=m

)
< ε. An identical argument

shows that for all m ≥ M we have d
(
{xn}∞n=m, {yn}

∞
n=m

)
< ε. So the result holds recalling
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that {xn}∞n=m = A for all m ∈ N.

The Chaos Game is played as follows to “draw” the attractor. Given y0 ∈ X, F = {fi}Ni=1

and probabilities pi > 0 : pick i ∈ [N ] with probability pi and plot the point x1 = f(x0). Then

pick another (possibly, the same) map with probability pi and plot x2 = fi(x1). Continue in

this fashion until there is very little change in the picture being drawn. It is typical that one

does not actually plot the first m points of the chaos game, see example 7 for more details.

Example 7. Consider an IFS on R2, with the Euclidean metric, with only the following

functions:

f1

x
y

 =

x
2

y
2


f2

x
y

 =

 x
2

+ 1
4

y
2

+
√
3
4


f3

x
y

 =

x
2

+ 1
2

y
2


The attractor to F = {f1, f2, f3} is the Sierpinski Triangle (or Sierpinski Gasket). See

Figure 3.1. The points in red are points plotted by f1, the points in green were plotted by f2

and the points in blue are plotted by f3. The chaos game is “shown in motion” via Figure

3.2. In this figure the chaos game is played with the above IFS with all probabilities equal to

1
3

and initial point x0 = (0, 1) a point near the top left of the pictures. Notice in (a) there are

100 points of the xn’s plotted; we can already see some things that vaguely look like triangles,

and there are a few points near the initial point plotted that are not on or near the attractor.

In (b) there are 1000 points of the xn’s plotted; the image looks quite similar to the attractor,
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Figure 3.1: The Sierpinski Triangle.

(a) (b) (c)

Figure 3.2: The chaos game forming the Sierpinski Triangle at: (a) 100 points plotted, (b)
1000 points plotted and (c) 10000 points plotted.

although it clearly needs some more “filling out” to do. In (c) there are 10000 points of the

xn’s plotted; we see that the picture looks very simular to that in Figure 3.1 and so we would

say the chaos game has “drawn” the attractor.

As noted above, there are a number of green dots in (a)-(c) of Figure 3.2 that are clearly

not on the attractor. This is due to the chaos game picking f2 the first 4 times or so and

the fact x0 /∈ A. Usually, programs include a “burn in period”, meaning the first m points

are not plotted, as it takes some time to “get on the attractor”. This is what was done in

Figure 3.1.
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3.2 Address Maps and Infinite Compositions of Func-

tions

The last topic of this chapter is address maps. We saw in the proof of Theorem 10 two points

on the attractor are close together when they are the image points of the same composition of

functions. This can be generalized (and indeed can simplify the proof of Theorem 10) to the

case of infinitely many maps composed. But first we need to define some useful notations.

Definition 16. Let I and X be sets and F be a IFS on X. Then it is said that I indexes

F if and only if there exists a bijective function from I to F .

In other words, we can label the functions in F by the members of I. Notationally, we

do this by writing for each i ∈ I fi ∈ F as the function corresponding to i (and vice versa).

So we can write F = {fi : i ∈ I} for convenience we will often write F = {fi}i∈I without

defining I.

Previously in this chapter we were dealing with finite IFS so it was convenient to index

the sets over [N ]. Of course, this is arbitrary; for instance, in Example 6 we indexed the IFS

with the set {0, 2} rather than {1, 2}.

The reason we bother with index sets is so we have a convenient way of expressing

compositions of functions in an IFS.

Definition 17. Let I be an index set and N ∈ N. An element α ∈ IN is called a

word or string over I of length N . We write that α = α1α2α3 . . . αN instead of α =

(α1, α2, α3, . . . , αN).

Let IN be the set of all semi-infinite words or strings over I. If σ ∈ IN then we write

σ = σ1σ2σ3 . . . .

Let I∗ =
⋃
n∈N I

n be the set of all finite words over I. We define the following operation:

if α ∈ I∗ then |α| denotes the length of the string and if α ∈ IN then we write |α| = ∞.
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Furthermore, let n,m ∈ N with n ≤ m ≤ |α| then

α[n,m] = αnαn+1 . . . αm

and if α ∈ IN then we may write

α[n,∞) = αnαn+1 . . . .

Let α, β ∈ I∗ and let σ ∈ IN with α = α1α2α3 . . . αN for some N ∈ N and β = β1β2β3 . . . βM

for some M ∈ N. We define the concatenation of strings denoted by

αβ = α1α2α3 . . . αNβ1β2β3 . . . βM

and

ασ = α1α2α3 . . . αNσ1σ2 . . . .

Finally, let F = {fi}i∈I be an IFS over a set X and let α ∈ I∗ with length N ∈ N. Then

define

fα = fα1 ◦ fα2 ◦ . . . fαN .

We saw this notation before in Chapter 3. It is useful when dealing with compositions

of functions. However it is introduced mainly to help us get a handle on the infinite compo-

sitions of functions.

Definition 18. Let (X, d) be a metric space, F = {fi}i∈I be an IFS on X, σ ∈ IN, n ∈ N

and x ∈ X. We define the right composition functions: R : IN × N×X → X

R(σ, n, x) = fσ[1,n](x).
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(Hopefully) Without confusion we also define R : IN ×X → X

R(σ, x) = lim
n→∞

fσ[1,n](x)

whenever the above limit exists. Further, if the above limit is independent of x, that is for

all x, y ∈ X R(σ, x) = R(σ, y) we will define R : IN → X to be

R(σ) = lim
n→∞

fσ[1,n](x)

where x is arbitrary. Finally we let Dom (R) ⊆ IN be the set on which the limit limn→∞ fσ[1,n](x)

exists for all x ∈ X and is independent of x.

If the function R is referred to without arguments, to make it clear which of the above

functions we are referring to, assume that R is a function that maps IN to X.

In the context of finite contractive maps the set IN is called the address space and

Dom (R) = IN; meaning for all σ ∈ IN and x ∈ X the sequence {R(σ, n, x)}n∈N converges

to a constant independent of x that we call R(σ). In other words the sequence of functions

{R(σ, n, ·)}n∈N converges pointwise to a constant function R(σ). Furthermore it turns out

that every point on an attractor has an address that is R
(
IN
)

= A if A is the attractor. For

this reason the function R is called the address map.

Example 8. If we recall Example 6 we can now see that there was the implicit use of the

address map. In fact in that example the address map has a very clear meaning to the space

[0, 1] it represents trinary expansions. In general much like every point in [0, 1] has a trinary

expansion every point on an attractor has an address (see Theorem 11). Even better, because

of the limit involved in the definition it means the first few finite compositions will give us

some information of where the limit is. That is if fσ[1,n](x) should be close to R(σ) much like

knowing the first n digits of a number x = 0.x1x2x3 · · · ∈ [0, 1] would give us a number close

54



to x. Thus one can think of σ ∈ IN with R(σ) = a ∈ A as an N-ary expansion of a in some

sense, where N ∈ N is |I| = N .

To solidify this idea, we generalize Example 6 slightly. Let N ∈ N be fixed. We define

the IFS on [0, 1] with the normal metric by FN = {fi}N−1i=0 where for i = 0, 1, 2, . . . N − 1 and

x ∈ [0, 1]

fi(x) =
x

N
+

i

N
.

If we let x = 0.x1x2x3 . . . be an N-ary representation of x we can see the action of fi on x is

fi(x) = 0.ix1x2x3 . . . .

If we let I = {0, 1, 2, . . . , N − 1} we can see for σ ∈ IN that R(σ) = 0.σ1σ2σ3 . . . . Thus we

can see that R
(
IN
)

= [0, 1], by picking σ appropriately so that it matches an N-ary expansion

of a given x ∈ [0, 1].

Now [0, 1] isn’t exactly what we would call a fractal. It gets more interesting when we

take ∅ 6= J ⊆ I and consider {fj}j∈J . Then the attractor R
(
JN
)

is the set of numbers in

[0, 1] with no N-ary representation containing a member of I \ J as an N-git.

If we take N = 3 and J = {0, 2} we get Example 6.

The infinite composition of contractive functions are very interesting in general.

Proposition 9. Let (X, d) be a complete metric space, F = {fi}i∈I be a contractive IFS

on X with c = supi∈I ci < 1 where ci is the contraction factor of fi and for i ∈ I, for all

x ∈ X we have r = supi∈I d(x, fi(x)) <∞. Then for all σ ∈ IN the function R(σ) is defined.

Notably if F is finite then both c < 1 and r <∞.

Proof. Noting that for all i ∈ I the functions fi have contraction factor c and we can see
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that for all σ ∈ IN, x ∈ X and n ∈ N we have

d(R(σ, n, x), R(σ, n+ 1, x)) = d
(

fσ[1,n](x), fσ[1,n] ◦ fσn+1(x)
)
≤ cn d

(
x, fσn+1(x)

)
≤ cnr.

From here we can follow the proof of Banach’s Fixed Point Theorem (Theorem 8 ) to

show that {R(σ, n, x)}n∈N is Cauchy and therefore converges to, say, R(σ, x).

Now pick any y ∈ X and ε > 0 and pick N ∈ N large enough so that for all n ≥ N

max{d(R(σ, x), R(σ, n, x)), cn d(x, y)} < ε
2
. Then for all n ≥ N

d(R(σ, x), R(σ, n, y)) ≤ d(R(σ, x), R(σ, n, x)) + d(R(σ, n, x), R(σ, n, y)) <
ε

2
+ cn d(x, y) < ε.

Thus {R(σ, n, y)}n∈N converges to R(σ, x) and so R(σ, x) = R(σ, y) for all x, y ∈ X. As

σ is arbitrary this completes the proof.

Traditionally, for finite contractive IFS the well definedness of the addressing function R

is proved via a different method. But to do so we need to know a bit more about the address

space IN.

Proposition 10. Let I be a set. Then IN is a complete metric space with metric

s(σ, λ) =


1
2n

σ 6= λ

0 σ = λ

where σ, λ ∈ IN and n ∈ N ∪ {0} is the largest n ∈ N with σ[1,n] = λ[1,n], and if no such

natural number exists then n = 0. Additionally, s satisfies, for all σ, λ, γ ∈ IN

s(σ, λ) ≤ max{s(σ, γ), s(γ, λ)}.

Furthermore, if I is finite then
(
IN, s

)
is a compact metric space.
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Proof. First we show that s is a metric. Firstly we should argue that s is well defined; the

case where σ = λ is well defined. So suppose that σ 6= λ then there is an N ∈ N such that

σN 6= λN and take N to be the least such N ∈ N. Thus N−1 ∈ N∪{0} is the n in the above

definition. It follows from the definition that s maps IN×IN to the non-negative real numbers.

To show symmetry we first consider the case where σ = λ and s(σ, λ) = s(σ, σ) = s(λ, σ) = 0.

So assume that σ 6= λ and that s(σ, λ) = 1
2nσ

for some nσ ∈ N, so σ[1,nσ ] = λ[1,nσ ], and because

nσ is the largest such nσ we have that σ[1,nσ+1] 6= λ[1,nσ+1]. This means that the largest n

satisfying λ[1,n] = σ[1,n] must also be nσ. If σ1 6= λ1 then we can make a similar argument.

Therefore s(σ, λ) = s(λ, σ).

Now suppose that s(σ, λ) = 0. If σ 6= λ then s(σ, λ) > 0 thus σ = λ. The converse holds

by definition.

We now show the “additionally”. Firstly, if σ = λ the inequality holds for all γ ∈ IN. So

assume that σ 6= λ. If γ = λ then the max will be equal to s(σ, γ) = s(σ, λ) and the inequality

holds. Now suppose that σ, λ, γ are three distinct elements of IN and that m,n, k ∈ N∪ {0}

such that s(σ, λ) = 1
2n

, s(σ, γ) = 1
2m

and s(γ, λ) = 1
2k

. Now if m ≤ n or k ≤ n then the

inequality holds. So assume that both m, k > n this means that γ[1,n+1] = σ[1,n+1] and

γ[1,n+1] = λ[1,n+1]. But this means that λ[1,n+1] = σ[1,n+1] which is a contradiction as n was

supposed to be the largest such n.

To show the triangle inequality, fix σ, λ, γ ∈ IN and without loss of generality let s(σ, γ) ≥

s(γ, λ). Now by the “additionally” we have

s(σ, λ) ≤ s(σ, γ) ≤ s(σ, γ) + s(γ, λ).

To show completeness, consider a Cauchy sequence {σn}n∈N of IN. Now define σ ∈ IN

by, for all N ∈ N, defining σN = σkNN , where kN is the least such kN ∈ N satisfying: for

all m,n ≥ kN s(σn, σm) ≤ 1
2N

. We claim that for all N ∈ N we have s
(
σ, σkN

)
≤ 1

2N
. This
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follows from the sequence {kM}M∈N being non-decreasing. Indeed, for all m ≤ N we have

σm = σkmm = σkNm and the claim follows. Now pick any ε > 0, pick N ∈ N such that 1
2N−1 < ε

and get kN from the definition of σ. Consider n ≥ kN

s(σ, σn) ≤ s
(
σ, σkN

)
+ s
(
σkN , σn

)
≤ 1

2N−1
< ε.

Thus {σn}n∈N converges to σ and
(
IN, s

)
is complete.

Finally, to show compactness we show that IN is totally bounded. Let ε > 0 and pick

N ∈ N such that r = 1
2N−1 < ε. We claim that for any σ ∈ IN

IN ⊆
⋃
α∈IN

Br(ασ) ⊆
⋃
α∈IN

Bε(ασ).

The second inclusion is from the definition of r. To show the first inclusion consider λ ∈ IN

then λ = λ[1,N ]λ[1,∞) and λ[1,N ] ∈ IN . So d
(
λ[1,N ]σ, λ

)
≤ 1

2N
< 1

2N−1 = r. Therefore,

λ ∈
⋃
α∈IN Br(ασ) and IN ⊆

⋃
α∈IN Br(ασ). Now, since I is finite IN is finite, and thus⋃

α∈IN Bε(ασ) is a finite ε cover of IN, giving that IN is totally bounded. Therefore IN is

compact as it is complete and totally bounded.

Remark 4. If I is infinite then
(
IN, s

)
is not compact. To see this, recognize there must

be an element of IN, say σ, such that for all k, n ∈ N σk 6= σn (i.e the letters of σ are

all distinct). This mean the sequence {σ[n,∞)}n∈N has no convergent sequences, as for every

n, k ∈ N we have s
(
σ[n,∞), σ[k,∞)

)
= 1.

Additionally, the use of 1
2

in the definition of s is arbitrary we could use any c ∈ (0, 1)

for Proposition 10 to hold.

Note the actual distances given by s don’t really matter. What does matter is the n that

the distances give us. This n is the length of the longest finite prefix that the two elements

share (if one exists); it is this n that tells us how close together the elements are.
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It turns out the address map R (in the context of Proposition 9) is a continuous function

from IN to X.

Theorem 11. Let (X, d) be a complete metric space and F = {fi}i∈I be a finite contractive

IFS on X. Then there is a unique continuous function R : IN → X satisfying for all i ∈ I

and σ ∈ IN

fi ◦R(σ) = R(iσ)

and

R(σ) = fσ1 ◦R
(
σ[2,∞)

)
.

Furthermore R
(
IN
)

is a nonempty compact invariant set and so is the attractor of F .

Proof. Fix x ∈ X. Then for each n ∈ N R(σ, n, x) = Rn(σ) is a function from IN to X that

is continuous. If λ ∈ BIN1
2n−1

(σ) then Rn(σ) = Rn(λ); so Rn(λ) is in every open set containing

Rn(σ). Also note that Rn(σ) = fσ[1,n](x).

We now show that {Rn}n∈N converges uniformly. Much like in the proof of Banach’s

Fixed Point Theorem, we consider for some σ ∈ IN and n ∈ N

d(Rn+1(σ), Rn+2(σ)) = d
(

fσ[1,n] ◦R1

(
σ[n+1,∞]

)
, fσ[1,n] ◦R2

(
σ[n+1,∞]

))
≤ cn d

(
R1

(
σ[n+1,∞]

)
, R2

(
σ[n+1,∞]

))
,

where c is the largest contraction factor of the fi’s, taking the supremum over IN gives

d(Rn+1, Rn+2) ≤ cn d(R1, R2). Now we can see that for all m,n ≥ N ∈ N

d(Rn+1, Rm+1) ≤ d(R1, R2)
∞∑
k=n

ck ≤ d(R1, R2)
∞∑
k=N

ck = d(R1, R2)
cN

1− c
.

So for any given ε > 0 we can take N large enough for d(R1, R2)
cN

1−c < ε. Thus {Rn}n∈N is

a Cauchy sequence (in C(X,X) with respect to the uniform distance) and so converges to a
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continuous function as C(X,X) is complete by Theorem 1.

Let {Rn}n∈N → R uniformly. So {Rn}n∈N converges pointwise to R. Let i ∈ I, σ ∈ IN

and so {fi ◦Rn(σ)}n∈N → fi ◦R(σ) by continuity. But fi ◦Rn(σ) = Rn+1(iσ) for all n ∈ N

and {Rn+1(iσ)}n∈N is a subsequence of {Rn(iσ)}n∈N → R(iσ). Therefore R(iσ) = fi ◦R(σ).

Now for σ ∈ IN we know that {fσ1 ◦Rn

(
σ[2,∞]

)
}n∈N → fσ1 ◦R

(
σ[2,∞]

)
, and so, by the

above, fσ1 ◦R
(
σ[2,∞]

)
= R(σ).

To show uniqueness suppose R and g both satisfy for all σ ∈ IN fσ1 ◦R
(
σ[2,∞]

)
= R(σ)

and fσ1 ◦ g
(
σ[2,∞]

)
= g(σ). Consider for any σ ∈ IN

d(R(σ), g(σ)) = d
(
fσ1 ◦R

(
σ[2,∞]

)
, fσ1 ◦ g

(
σ[2,∞]

))
≤ c d

(
R
(
σ[2,∞]

)
, g
(
σ[2,∞]

))
taking the supremum over IN of both sides tells us

d(R, g) ≤ c d(R, g).

Since c < 1, the only possibility is d(R, g) = 0 and R = g.

Finally R
(
IN
)

is compact, as IN is compact and R continuous. R
(
IN
)

is invariant, as for

everyR(σ) ∈ R
(
IN
)

we haveR(σ) = fσ1 ◦R
(
σ[2,∞)

)
. Noting σ1 ∈ I and so σ[2,∞) ∈ IN we have

R
(
IN
)
⊆
⋃
i∈I fi

(
R
(
IN
))

. Simulaly fi ◦R(σ) = R(iσ) for all i ∈ I soR
(
IN
)
⊇
⋃
i∈I fi

(
R
(
IN
))

.

Therefore, R
(
IN
)

is compact invariant set and so is the attractor.

We would like to point out the construction of the limit function in the above proof does

in fact coincide with Definition 18.

As one might expect we can use the address map to help us prove that the chaos game

converges. This will be a recurring strategy in Chapter 4.
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Chapter 4

Generalized Attractors and The

Chaos Game

In this Chapter we use well known generalizations of attractors and give sufficient conditions

for the chaos game to “draw” these generalized attractors.

4.1 Some Generalizations of Attractors

We will focus on one particular generalization of attractors, something that is known as

semi-attractors. They were first introduced by Losota and Myjak [9, 10, 11]. These authors

define semi-attractors via set limits introduced in Chapter 2. The author of this thesis had

essentially independently discovered these semi-attractors early this year. When he became

aware of the results of Losota and Myjak he was able to deduce some interesting proprieties

of a mild generalization of semi-attractors. We will now state the definition of this mild

generalization.

Definition 19. Suppose that (X, d) is a metric space, A ⊆ X, and F : X  X is a lower

semicontinuous multifunction. Then A is called the semi-attractor of F if it is the smallest
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nonempty closed sub-invariant set of F. That is for all B ⊆ X with B nonempty, closed and

satisfying F[B] ⊆ B then A ⊆ B where A is nonempty, closed, and satisfies F[A] ⊆ A.

Furthermore, we say that A is the semi-attractor of F on X if A is the semi-attractor of

the Hutchinson-Barnsley operator of the F .

Note that a semi-attractor must be unique as it is “the smallest”, see the discussion

following Definition 13. It will be easier to see why this is a generalization of the semi-

attractors introduced in [11] after we prove the following.

Theorem 12. Let (X, d) be a metric space, F : X  X be a lower semicontinuous multi-

function on X and suppose A is the semi-attractor of F. Then

A =
⋂
x∈X

Ls
n→∞

F◦n[x] =
⋂
x∈X

⋃
n∈N

F◦n[x].

Furthermore for all a ∈ A,

A = Ls
n→∞

F◦n[a] =
⋃
n∈N

F◦n[a].

The proof of this Theorem follows in part from the below Proposition.

Proposition 11. Let (X, d) be a metric space, and F : X  X be a multifunction on

X. Let A ⊆ X be a non-empty, closed and sub-invariant with respect to F. If F is lower

semicontinuous then ⋂
x∈X

Ls
n→∞

F◦n[x] ⊆
⋂
x∈X

⋃
n∈N

F◦n[x] ⊆ A.

Furthermore, both
⋂
x∈X Lsn→∞ F◦n[x] and

⋂
x∈X

⋃
n∈N F◦n[x] are closed and sub-invariant

with respect to F. Thus if one of these sets is non-empty it is the semi-attractor of F.

Proof. As A is sub-invariant, for all n ∈ N and for all a ∈ A, we have F◦n[a] ⊆ A. Thus,

recalling A is closed we have for all N ∈ N and for all a ∈ A,
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⋃
n≥N

F◦n[a] ⊆
⋃
n∈N

F◦n[a] ⊆ A.

Recalling that Lsn→∞ F◦n[a] =
⋂
N∈N

⋃
n≥N F◦n[a] we conclude that for all a ∈ A, Lsn→∞ F◦n[a] ⊆⋃

n∈N F◦n[a] ⊆ A. Thus

⋂
a∈A

Ls
n→∞

F◦n[a] ⊆
⋂
a∈A

⋃
n∈N

F◦n[a] ⊆ A.

It follows fromA ⊆ X that
⋂
x∈X Lsn→∞ F◦n[x] ⊆

⋂
a∈A Lsn→∞ F◦n[a] and

⋂
x∈X

⋃
n∈N F◦n[x] ⊆⋂

a∈A
⋃
n∈N F◦n[a].

Using a similar argument as above, one can show for all x ∈ X Lsn→∞ F◦n[x] ⊆
⋃
n∈N F◦n[x].

Therefore

⋂
x∈X

Ls
n→∞

F◦n[x] ⊆
⋂
x∈X

⋃
n∈N

F◦n[x] ⊆ A.

Now I must show that
⋂
x∈X Lsn→∞ F◦n[x] and

⋂
x∈X

⋃
n∈N F◦n[x] are sub-invariant.

I claim that the intersection of sub-invariant sets is sub-invariant. Suppose B is collection

of sub-invariant sets with respect to F, then F
[⋂

B∈B B
]
⊆
⋂
B∈B F[B] ⊆

⋂
B∈B B.

Now I claim that for all N ∈ N and for all x ∈ X the set
⋃
n≥N F◦n[x] is sub-invariant.

Recall that as F is lower semicontinuous for all B ⊆ X, F
[
B
]
⊆ F[B]. Thus

F

[⋃
n≥N

F◦n[x]

]
⊆
⋃
n≥N

F◦(n+1)[x] =
⋃
n>N

F◦n[x] ⊆
⋃
n≥N

F◦n[x]

taking N = 1 gives
⋃
n∈N F◦n[x] is sub-invariant for all x ∈ X. Taking the intersection

over all x ∈ X gives us
⋂
x∈X

⋃
n∈N F◦n[x] is sub-invariant and closed. Now we can see⋂

N∈N
⋃
n≥N F◦n[x] = Lsn→∞ F◦n[x] is sub-invariant for all x ∈ X and so

⋂
x∈X Lsn→∞ F◦n[x]

is sub-invariant and closed.
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Now we prove Theorem 12.

Proof. (Theorem 12) In the proof of Proposition 11 we show for all N ∈ N and x ∈ X the

set
⋃
n≥N F◦n[x] is sub-invariant. The set is also closed and non-empty, thus as A is the

semi-attractor of F we have for all N ∈ N and for all x ∈ X

∅ 6= A ⊆
⋃
n≥N

F◦n[x].

Thus

A ⊆
⋂
x∈X

⋂
N∈N

⋃
n≥N

F◦n[x] =
⋂
x∈X

Ls
n→∞

F◦n[x] 6= ∅

and, by Proposition 11,
⋂
x∈X Lsn→∞ F◦n[x] ⊆

⋂
x∈X

⋃
n∈N F◦n[x] ⊆ A. The result follows.

To prove the “furthermore”, note that Lsn→∞ F◦n[x] 6= ∅ for all x ∈ X by the above

argument and it is always sub-invariant and closed.
⋃
n∈N F◦n[x] is also non-empty closed

and sub-invariant for all x ∈ X. Now pick any a ∈ A. As A is sub-invariant, it follows that

Ls
n→∞

F◦n[a] ⊆
⋃
n∈N

F◦n[a] ⊆ A

But the sets Lsn→∞ F◦n[a] and
⋃
n∈N F◦n[a] are non-empty, closed and sub-invariant so the

opposite inclusions holds, as A is the smallest such set.

An interesting consequence of Theorem 12 is that a naive iteration algorithm—pick a

point in x ∈ X and keep applying the Hutchinson-Barnsley operator to form the sequence of

sets {F◦n[x]}—actually works in some sense whenever x ∈ A. The below Theorem mirrors

Theorem 6.2 of [11].

Theorem 13. Let (X, d) be a metric space, F : X  X be a lower semicontinuous multi-

function on X and suppose A is the semi-attractor of F. Then the following hold:
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(i) A ⊆ Ls
n→∞

F◦n[B] for all ∅ 6= B ⊆ X

(ii) F[A] = A

(iii) Ls
n→∞

F◦n[B] = A for all ∅ 6= B ⊆ A

(iv) A ⊆ B for all nonempty closed sub-invariant subsets B ⊆ X

Proof. To prove (i), note that using Theorem 12 we have for all b ∈ B A ⊆ Lsn→∞ F◦n[b].

Recall that the Ls of a sequence of sets is increasing; that is, if Xn ⊆ Yn for all n ∈ N then

the Lsn→∞Xn ⊆ Lsn→∞ Yn. We can see

A ⊆ Ls
n→∞

F◦n[b] ⊆ Ls
n→∞

F◦n[B].

(ii) follows from observing that F[A] is nonempty closed sub-invariant set. To see this, first

notice that as A is nonempty closed and sub-invariant ∅ 6= F ◦2[A] ⊆ F [A] ⊆ F[A] ⊆ A.

Thus, by the lower semi continuity of F,

F
[
F[A]

]
⊆ F◦2[A] ⊆ F[A] ⊆ A.

So F[A] is nonempty closed sub-invariant set but A is the smallest such set, so A ⊆ F[A].

(iii) is due to

Ls
n→∞

F◦n[B] ⊆
⋃
n∈N

F◦n[B] ⊆ A

this follows from F◦n[B] ⊆ F◦n[A] for all n ∈ N. The other inclusion is given by (i).

(iv) is the definition of being the semi-attractor of F.

Recalling the discussion at the beginning of this chapter, Definition 19 is not the same

definition of semi-attractor given in [11]. They define the semi-attractor of F in the sense of
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Losota and Myjak to be

A =
⋂
x∈X

Li
n→∞

F◦n[x]

whenever A is nonempty. One can see that if A is a semi-attractor of F in the sense of

Losota and Myjak, then it is a semi-attractor in the sense of Definition 19. This allows for

the Losota and Myjak semi-attractors to have nice interactions with set limits; that is, if

A is a Losota and Myjak semi-attractor then A =
⋂
x∈X limn→∞ F◦n[x]. Unfortunately, it

is possible for
⋂
x∈X Lsn→∞ F◦n[x] to be nonempty but for

⋂
x∈X Lin→∞ F◦n[x] to be empty;

see Example 9. Even though semi-attractors in the sense of Definition 19 are not as well

behaved, we can still get many similar results to Theorem 6.2 of [11].

Henceforth, one should always assume that semi-attractor is meant in the sense of Defi-

nition 19.

Example 9. Let X = {z ∈ C : |z| = 1}. For all z ∈ X, z = eiθ with θ ∈ R let f : X → X

be given by,

f(z) = ei
√
2π+iθ

and f[z] = {f(z)}. Then f (as a multifunction) is lower semicontinuous as it is continuous

(as a single valued function). Then for all z ∈ X, Lsn→∞ f◦n[z] = X and Lin→∞ f◦n[z] = ∅.

Returning our attention back to Theorem 12 and considering the case that F is the

Hutchinson Barnsley operator of an IFS. Then a ∈ A if and only if for all x ∈ X, for all

ε > 0 and for all N ∈ N there is a composition of functions of the IFS, fα, such that it is the

composition of more then N functions of the IFS for which d(fα(x), a) < ε. Speaking more

informally this means no matter where you are in X you can get anywhere (within ε) in the

semi-attractor by applying a composition of the functions of the IFS (in fact you can take

this compositions to be longer then any prescribed N ∈ N).

Also notice that if there is an x ∈ X for which
⋂
N∈N

⋃
n≥N F◦n[x] or Lsn→∞ F◦n[x] is
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compact then the semi-attractor of F is also compact. Of course, the previous sentence

holds if we replace “compact” with “bounded”.

If we consider
⋃
n∈N F◦n[x] to be a multifunction, then F has a semi-attractor if and only

if the graph of the multifunction
⋃
n∈N F◦n contains a horizontal line, that is there is a y ∈ X

such that {
(x, y) ∈ X2|x ∈ X

}
⊆

{
(x, z) ∈ X2|x ∈ X, z ∈

⋃
n∈N

F◦n[x]

}
.

Of course, the semi-attractor of F is the union of all such y. Furthermore for all such y,

y ∈
⋃
n∈N F◦n[y]; that is y, is a (multi?) fixed point of

⋃
n∈N F◦n.

The following result is mildly convenient to refer to.

Lemma 1. Let (X, d) be a metric space, F : X  X be a lower semicontinuous multifunction

on X and suppose for all x ∈ X there is a set Bx ⊆
⋃
n∈N F◦n[x] that is sub-invariant with

respect to F.

If
⋂
x∈X Bx 6= ∅ then

⋂
x∈X Bx is the semi-attractor of F.

Proof. It’s clear that

∅ 6=
⋂
x∈X

Bx ⊆
⋂
x∈X

⋃
n∈N

F◦n[x].

But by Theorem 12
⋂
x∈X

⋃
n∈N F◦n[x] = A is the semi-attractor of F whenever it is nonempty.

So let A be the semi-attractor of F. Now I claim that
⋂
x∈X Bx is sub-invariant. Indeed, by

lower semi continuity and sub-invariance of the Bx we have

F

[⋂
x∈X

Bx

]
⊆
⋂
x∈X

F
[
Bx

]
⊆
⋂
x∈X

F[Bx] ⊆
⋂
x∈X

Bx.

But A is the smallest nonempty closed sub-invariant set of F, so A ⊆
⋂
x∈X Bx. This

completes the proof.

Remark 5. At this point, due to the rich nature of semi-attractors (the smallest nonempty

67



closed sub-invariant set), it may be natural to ask about the largest nonempty closed sub-

invariant set. This of course would be the space itself. But a closely related notion is the

largest super-invariant set, see [1]. In [1] they show that (among other things) if

1. Given a finite IFS with functions that are finitely fibered, that is for all x ∈ X and

f ∈ F the set f−1(x) is finite (such as when the functions are injective).

2. The space X is compact and the IFS is finite and continuous.

Then the set ⋂
n∈N

F◦n[X]

is the greatest nonempty invariant set of F .

It is rather straightforward to show that
⋂
n∈N F◦n[X] contains every super-invariant set

of a multifunction F. Indeed, suppose that B ⊆ X satisfies B ⊆ F[B]. Then by applying F

to this relation we see

B ⊆ F[B]

B ⊆ F[B] ⊆ F◦2[B]

...

B ⊆ F◦n[B]

for all n ∈ N. Thus B ⊆
⋂
n∈N F◦n[B] ⊆

⋂
n∈N F◦n[X]. Therefore

⋂
n∈N F◦n[X] contains every

super-invariant set and, so, if it is super-invariant then it is the largest super-invariant set

with respect to F. Noting that in the above we show that for any super-invariant set B the

set F[B] is also super-invariant, we have that
⋂
n∈N F◦n[X] is also invariant.

Thus the smallest nonempty closed sub-invariant set and the largest super-invariant set
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are

⋂
x∈X

⋃
n∈N

F◦n[x]

⋂
n∈N

⋃
x∈X

F◦n[x]

respectively, whenever they exist. These expressions are strikingly similar.

As alluded to before, there are more generalizations of attractors. However, our focus will

be on “attractors” that can be “drawn” by the chaos game. Essentially we are interested in

sets A that somehow equal the set of limit points of the sequence generated by playing the

chaos game (A =
⋂
m∈N {xn}

∞
n=m = Lsn→∞{xn} where {xn}∞n=m is the set of points generated

by the chaos game). Due to this limiting nature it makes sense to define generalized attractors

via some limiting process, particularity in some neighborhood of the “attractors”.

Definition 20. Let (X, d) be a metric space, F : X  X be lower semicontinuous and

A ⊆ X. We define the pointwise basin of weak limsup attraction of A under F to be

w-B(A) =
{
x ∈ X : A ⊆ Ls

n→∞
F◦n[x]

}
.

We define the pointwise basin of limsup attraction of A under F to be

Ls-B(A) =
{
x ∈ X : A = Ls

n→∞
F◦n[x]

}
.

We define the pointwise basin of Hausdorff attraction of A under F to be

PWH-B(A) =
{
x ∈ X : A = lim

n→∞
F◦n[x] where the limit is taken with respect to

the Hausdorff metric
}
.
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We define the strict basin of Hausdorff attraction of A under F, strict-B(A), to be the

union of all open sets U with the following properties: A ⊆ U , and, for all K ⊆ U , with K

nonempty and compact we have that the sequence of sets {F◦n[K]}n∈N converges to A in the

Hausdorff metric.

Note that for either PWH-B(A) or strict-B(A) to be nonempty A must be compact.

Finally we define the set of compact full orbits under F to be

O =

{
x ∈ X :

⋃
n∈N

F◦n[x] is compact

}
.

If F is an IFS on X with Hutchinson-Barnsley operator, F, is lower semicontinuous the

we will replace then “under F” with “under F” in the above definitions.

The most common type of generalized attractor discussed concerning the topic of the

chaos game is the strict attractor and the point wise attractor. For instance, see [3, 4].

Definition 21. Let (X, d) be a metric space, F be an IFS on X and A ∈ H(X). Then we

say that A is a point wise attractor if there is an open set U ⊆ X with A ⊆ U ⊆ PWH-B(A).

Similarly, we say that A is a strict attractor if strict-B(A) 6= ∅.

The last type of attractor we will be identifying are quasi attractors.

Definition 22. Let (X, d) be a metric space, F be an IFS on X and A ⊆ X. Then we say

that A is a quasi attractor if for all a ∈ A we have
⋃
n∈N F◦n[a] = A 6= ∅.

Example 10. Let X = C \ {0} with the normal metric and consider the functions: for all

z = reiθ, θ ∈ R and r ∈ [0,∞)

f1(z) = rei(θ+
√
2π)

f2(z) = eiθ.
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Now, consider the IFS {f1}. We can see that for every r ∈ R the set {z ∈ C | |z| = r} is a

quasi attractor of this IFS. Thus, this is an example of a IFS that has a quasi attractor but

no semi-attractor.

The IFS {f1, f2} = F has a semi-attractor that is the set A = {z ∈ C | |z| = 1}. One

can see this by recognizing that
⋃
n∈N F◦n[z] ⊇ Lsn→∞ f◦n12 (z) = A for all z ∈ X. But A is not

a point wise attractor of F as for all z ∈ X we have z ∈ Lsn→∞ f◦n1 [z] ⊆ Lsn→∞ F◦n[z], so

even if {F◦n[z]}n∈N converges in the Hausdorff metric this limit must contain z, by picking

any open set U ⊇ A and z ∈ U \ A we see that A is not a point wise attractor.

Remark 6. A question that is typically explored by the literature is: Given an IFS, F , with

an attractor A (possibly any of the attractors mentioned so far) on a metric space (X, d)

does there exists a set B containing A (B is usually the space or A itself) and a metric

d
′

on B equivalent to the original metric on (B, d) such that either: for all f ∈ F , f is

a contraction on
(
B, d

′
)

or F is a contraction on
(
H(B), d

′

H

)
. For example see [13]. In

general the answer to this question is no. Particularly, F being a contraction on
(
H(B), d

′

H

)
is a very strong condition, as if B is complete then Banuach’s Fixed Point Theorem applies

and for every K ∈ H(B) the set sequence {F◦n[K]}n∈N converges (realistically to A) in the

Hausdorff metric. But, we saw in Example 10 and Example 9 that there are IFS for which

Lin→∞ F◦n[x] = ∅ for all x ∈ X so in these cases {F◦n[K]}n∈N cannot converge with respect

to the Hausdorff metric and hence F is not a contraction on H(B) for any metric equivalent

to dH . Thus this question is far more natural for strict attractors and point wise attractors.

My first exposure into this field of research was trying to determine whether a particular

IFS had a attractor and, if it does have one, when does the chaos draw the attractor starting

in X? I was able to answer this question to a near full extent, see [7]. It turns out that in

for this particular IFS, if x is not in the attractor the sequence of sets {F◦n[x]}n∈N for x ∈ X

would never converge in the Hausdorff metric to the attractor (whenever the attractor exists).
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Unfortunately, most of the results concerning the chaos game assume that the attractor is a

strict attractor or a point wise attractor (not that I understood the subtleties at the time).

I also spent a considerable amount of time trying to define a metric for which the F was

a contraction; which of course was forlorn. This particular problem still shapes my current

work and is a large reason for why I seek to avoid the use of the Hausdorff metric and

assuming compactness (of the attractor or the space). Although, I am unable to completely

get rid of compactness assumptions as we will see later.

We will note that in [5] and [14] quasi attractors are defined to be nonempty compact,

invariant with respect to the F and
⋃
n∈N F◦n[a] = A for all a ∈ A. We will show that

quasi attractors as defined above are invariant whenever A is compact, the IFS is finite and

continuous.

Additionally, it is not clear that strict attractors or point wise attractors are invariant.

However it turns out that this is nearly the case whenever F is l.s.c.

Lemma 2. Let (X, d) be a metric space, F : X  X be l.s.c and A ⊆ X. Then we have

1.

strict-B(A) ⊆ PWH-B(A) ⊆ Ls-B(A) ⊆ w-B(A).

2. If B ⊆ X is a nonempty, closed, sub-invariant set contained in any of the above basins

then A ⊆ B. Thus if A is nonempty closed sub-invariant and contained in the basin

then it is the smallest such set in any of the basins and satisfies A = F[A].

3. If ∅ 6= Ls-B(A) then A is closed and sub-invariant. Thus, if A is nonempty and

is contained in strict-B(A),PWH-B(A) or Ls-B(A) then A is nonempty closed and

satisfies A = F[A].

Proof. 1.
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Suppose that x ∈ strict-B(A) then {x} is compact and so limn→∞ F◦n[x] = A in the Hausdorff

metric. Thus x ∈ PWH-B(A).

Suppose that x ∈ PWH-B(A) then limn→∞ F◦n[x] = A in the Hausdorff metric meaning

that {F◦n[x]}n∈N converges as a sequence of sets in the sense of Definition 6. Thus A =

limn→∞ F◦n[x] = Lsn→∞ F◦n[x] and x ∈ Ls-B(A).

Let x ∈ Ls-B(A); then A = Lsn→∞ F◦n[x] and, thus, A ⊆ Lsn→∞ F◦n[x].

2.

Suppose that B ⊆ X is a nonempty, closed, sub-invariant set contained in any of the basins

in 1. Then, by 1, B is a sub-invariant subset of w-B(A). Now, for all b ∈ B one can show

that Lsn→∞ F◦n[b] ⊆ B, as B is closed and sub-invariant. But now since b ∈ w-B(A)

A ⊆ Ls
n→∞

F◦n[b] ⊆ B

and so A ⊆ B.

Now if A is nonempty, closed, sub-invariant and contained in the basin it is the smallest

such set, by the above. To show A = F[A], we can notice that F[A] is closed, nonempty,

sub-invariant and F[A] ⊆ A ⊆ strict-B(A). Indeed,

∅ 6= F[A] ⊆ A.

Recalling that F is lower semicontinuous yields

F
[
F[A]

]
⊆ F[F[A]].

Since F[A] ⊆ A, we obtain

F
[
F[A]

]
⊆ F[A] ⊆ A ⊆ w-B(A),
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and F[A] is closed nonempty sub-invariant and contained in w-B(A). But A is the smallest

such set, so A ⊇ F[A] and F[A] = A.

3.

Suppose that x ∈ Ls-B(A); then A = Lsn→∞ F◦n[x]. But in the proof of Proposition 11,

we showed that Lsn→∞ F◦n[x] is always sub-invariant; hence, A must be as well. Thus, if

A is nonempty and is contained in strict-B(A),PWH-B(A) or Ls-B(A) it is contained in

Ls-B(A) and by item 2 we have that A is nonempty closed and satisfies A = F[A].

Lemma 2 tells us that we can deduce a great deal about a set A just by assuming that

A is a subset of one of the basins and F is l.s.c. Thus, interestingly, this results applies to

possibly infinite or discontinuous IFS. But naturally we are still the most concerned with

finite continuous IFS.

Theorem 14. Let (X, d) be a metric space, F be an IFS on X with Hutchinson-Barnsley

operator F being l.s.c and A ⊆ X. Then the following are equivalent

1. A is a quasi attractor of F .

2. A is a minimal closed nonempty sub-invariant set of F.

3. ∅ 6= A ⊆ Ls-B(A).

Hence, strict attractors, point wise attractors and semi-attractors of F are quasi attrac-

tors of F . Thus if A is a quasi attractor of F we have for B = w-B(A),Ls-B(A)

A =
⋂
x∈B

Ls
n→∞

F◦n[x] =
⋂
x∈B

⋃
n∈N

F◦n[x]
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and F[A] = A. Additionally, if A is a compact quasi attractor of F and F maps compact

sets to compact sets, such as when F is finite and continuous, then F[A] = A

Proof. 1 =⇒ 2

Suppose that A is a quasi attractor of F . Then, by definition, for every a ∈ A we have⋃
n∈N F◦n[a] = A. Now suppose that B is a nonempty, closed, and sub-invariant subset of A.

So for all b ∈ B ⊆ A one can show that (see the proof of Proposition 11)
⋃
n∈N F◦n[b] ⊆ B.

Indeed, by applying F to both sides of

F[b] ⊆ B

F◦2[b] ⊆ F[b] ⊆ B

...

F◦n[b] ⊆ B

for all n ∈ N. Thus we can take the union over n ∈ N yielding
⋃
n∈N F◦n[x] ⊆ B. Recalling

B is closed, we take the closure giving us
⋃
n∈N F◦n[b] ⊆ B. But b ∈ B ⊆ A, so,

⋃
n∈N

F◦n[b] ⊆ B ⊆ A =
⋃
n∈N

F◦n[b].

Thus A = B and A is a minimal closed, nonempty, and sub-invariant set.

2 =⇒ 1 Suppose that A is a minimal, closed, nonempty, and sub-invariant set. Then,

for all a ∈ A we have
⋃
n∈N F◦n[a] is a closed, nonempty, and sub-invariant set (it is sub-

invariant by the proof of Proposition 11). The set
⋃
n∈N F◦n[a] is also contained in A by the

above argument with “B”. Thus, for all a ∈ A we have
⋃
n∈N F◦n[a] = A as A is a minimal

closed, nonempty, and sub-invariant. Therefore A is a quasi attractor of F .

2 =⇒ 3

Following the proof of Theorem 12, we can say that for all N ∈ N and a ∈ A the set
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⋃
n≥N F◦n[a] ⊆ A is closed nonempty and sub-invariant. Hence, for all N ∈ N and a ∈ A

A =
⋃
n≥N

F◦n[a]

as A is a minimal closed nonempty and sub-invariant set. But now we can take the inter-

section over all N ∈ N of the right hand side and we have A = Lsn→∞ F◦n[a]. Therefore,

A ⊆ Ls-B(A) and A is nonempty by assumption.

3 =⇒ 2

By 2 and 3 of Lemma 2 A is the smallest, nonempty, closed, and sub-invariant set contained

in Ls-B(A). Thus any nonempty, closed, and sub-invariant set contained in A must be equal

to A. So A is a minimal nonempty, closed, and sub-invariant of F.

If A is a strict attractor, by definition, it is contained in strict-B(A) ⊆ Ls-B(A) so by 3

it is a quasi attractor. Similarly, if A is a point wise attractor by definition it is contained in

PWH-B(A) ⊆ Ls-B(A) so by 3 it is a quasi attractor. If A is a semi-attractor by definition

it is the smallest closed, nonempty, and sub-invariant set of F. Thus, it is also a minimal

closed, nonempty, and sub-invariant set of F. So, by 2, A is a quasi attractor.

Recalling that Lsn→∞ F◦n[x] ⊆
⋃
n∈N F◦n[x] for all x ∈ X and the definition of B =

w-B(A), we have for all x ∈ w-B(A) that

A ⊆ Ls
n→∞

F◦n[x] ⊆
⋃
n∈N

F◦n[x].

Thus, A ⊆
⋂
x∈B Lsn→∞ F◦n[x] ⊆

⋂
x∈B
⋃
n∈N F◦n[x]. But since A is a quasi attractor and

A ⊆ Ls-B(A) ⊆ w-B(A) there is an a ∈ A ⊆ w-B(A) such that
⋃
n∈N F◦n[a] = A. Therefore,⋂

x∈B
⋃
n∈N F◦n[x] ⊆ A and the result holds. The case where B = Ls-B(A) is the same.

The fact that F[A] = A follows from applying 2 of Lemma 2.

Lastly, if A is a compact quasi attractor of F and F maps compact sets to compact sets
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then F[A] is compact. Thus, A = F[A] = F[A].

We should note that most of the above Theorem was proved in a slightly different setting

as Theorem 1.2, in [5].

Theorem 14 shows us that of the four kinds of attractors discussed so far quasi attractors

are the most general (when the Hutchinson-Barnsley operator is l.s.c). On the other hand

items 2 and 3 of Lemma 2 and item 3 of Theorem 14 tell us that if A is a quasi attrac-

tor of an IFS it is the smallest nonempty, closed, and sub-invariant set in w-B(A), which

makes it sound a lot like a semi-attractor. In fact in the case of strict attractors and point

wise attractors the strict basin and pointwise basin are sub-invariant with respect to the

Hutchinson-Barnsley operator. Thus, in these cases, we can take the space equal to the

basin and the attractor becomes a semi-attractor.

Remark 7. Recently, the literature has been exploring topological IFS, see [4, 2, 3, 5], and

playing the chaos game in these topological spaces. Topological spaces are more general than

metric spaces (every metric space is a topological space but some topological spaces cannot be

made into a metric space). Thus, it is unsurprising that some results about the chaos game

that are easy to show in metric spaces are much more difficult to show in topological spaces.

One such hurdle is showing that strict attractors and point wise attractors are invariant,

as they remark in [5]. As far as the Author of this work can tell, the proofs of Lemma 2 and

Theorem 14 (and indeed this chapter so far) only rely on the Hutchinson-Barnsley operator,

say F, having the following property

F
[
U
]
⊆ F[U ]

for all U ⊆ X (which is item 6 of Theorem 6). Since, even in topological spaces, a function f

is continuous on X if and only if f
(
U
)
⊆ f(U) for all U ⊆ X, item 6 of Theorem 6 holds for
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F whenever the F is continuous (see Proposition 2). Thus this Author expects Lemma 2 and

Theorem 14 (and all the major results in this chapter so far) to hold in a general topological

context.

We would like to note again that the results of this chapter so far are due in large part in

assuming that the Hutchinson-Barnsley operator is l.s.c. This raises the question of when the

Hutchinson-Barnsley operator is l.s.c. We know by Proposition 2 that it is l.s.c whenever

the IFS is continuous. Thus we can refine this question down to just IFSs with possible

discontinuous functions. The converse of this question is also interesting; that is, if F is an

IFS and F is the Hutchinson-Barnsley operator of F that is l.s.c, does there exist an IFS,

say H, with Hutchinson-Barnsley operator H such that F = H, and, if F is finite, can we

take H to be finite as well?

We conclude the chapter with some sufficient conditions for an F to possess a semi-

attractor.

Proposition 12. Let (X, d) be a metric space and let F = {fi}i∈I be an IFS on X with

Hutchinson-Barnsley operator l.s.c. Additionally let, F∗ =
{

fα | α ∈
⋃
n∈N I

n
}

.

Then if any of the following hold, F has a semi-attractor.

1. There is a f ∈ F such that f is a contraction and X is complete.

2. There is a f ∈ F∗ such that f is a contraction and X is complete.

3. There is a f ∈ F such that there is an x̄ ∈ X such that limn→∞ f◦n(x) = x̄, for every

x ∈ X.

4. There is a f ∈ F∗ such that there is an x̄ ∈ X such that limn→∞ f◦n(x) = x̄, for every

x ∈ X.

5. There is a f ∈ F for which there is a set B ⊆ X such that Lsn→∞ f◦n[x] = B, for every

x ∈ X.
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6. There is a f ∈ F∗ for which there is a set B ⊆ X such that Lsn→∞ f◦n[x] = B, for

every x ∈ X.

4.2 The Chaos Game

In this section we extend Theorem 10 to some of the more general attractors discussed thus

far. There are two versions of the chaos game discussed in the literature: the “probabilistic

chaos game” and the “deterministic chaos game”. Our focus will be on the deterministic

chaos game. First we should refresh some notation we established in Chapter 3. Namely,

Definitions 14, 16 and 17.

Definition 23. Let (X, d) be a metric space, F = {fi}i∈I be an IFS on X, σ ∈ IN, n ∈ N

and x ∈ X. For every α ∈ I∗, α = α1α2α3 . . . σ|α|, we define

ρ(α) = α|α|α|α|−1 . . . α1.

Now, define the left composition function L : IN × N×X → X

L(σ, n, x) = fρ(σ[1,n])(x) = fσnσn−1...σ1(x).

Furthermore, (hopefully) without confusion we will define the multi function L : IN×X  X

to be

L[σ, x] = Ls
n→∞

L(σ, n, x).

If one carefully reduces Theorem 10 and its proof into its essence one might realize that

the random generation of the numbers from 1 to N end up defining an element of [N ]N, say

σ, and the sequence {yn}n∈N is of the form yn = fσnσn−1...σ2σ1(y0) = L(σ, n, y0). Furthermore,

the set {yn}∞n=m as m → ∞ would only consist of the limit points of {yn}n∈N. Thus the
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statement limm→∞ dH

(
{yn}∞n=m, A

)
= 0 and A = Lsn→∞ yn are equivalent. Lastly, σ has a

very interesting property: it contains every finite string as a substring infinitely often, with

probability 1.

Putting all these ideas together motivates the following definitions.

Definition 24. Let I be a set. Then σ ∈ IN is said to be disjunctive if for all N ∈ N and

all α ∈ I∗ then there are n,m ∈ N with N ≤ n ≤ m such that

σ[n,m] = α.

In other words σ contains every finite string infinitely often.

Definition 25. Let (X, d) be a metric space, F = {fi}i∈I be an IFS on X and B, A ⊆ X.

We say that the chaos game draws A starting in B if for all x ∈ B and for all σ ∈ IN such

that σ is disjunctive we have

A = L(σ, x).

If A is a attractor in some sense then we will say that the chaos game draws the attractor.

We note that by this definition of the chaos game, only countable IFS can have attractors

drawn by the chaos game. This is because there are no disjunctive sequences in IN when I

is uncountable.

Typically, the set B in the above definition is one of the basins discussed in the previous

section. One should always pay careful attention to the definitions used in the literature for

the chaos game. It is typical that authors embed their own basin directly into the definition.

This, among other definitional inconsistencies between papers, makes it somewhat difficult

to keep track of the cases in which the chaos game draws attractors. Sometimes authors use

a weaker definition such as A ⊆ {L(σ, n, x)}n∈N, but because of the basins and/or the type

of attractor these weaker definitions are equivalent to Definition 25.
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Remark 8. Perhaps a quasi attractor is the most general type of attractor on which to play

the chaos game. I am of the opinion that the chaos game should always draw the attractor

starting in the attractor otherwise I don’t think we capture the essence of Theorem 10. Fur-

thermore, an attractor should have some kind of self similarity condition such as F[A] = A,

but much more preferably invariance. Consider a set A that has a proper nonempty, closed,

and sub-invariant subset B. I claim that A cannot be drawn by the chaos game starting in

A, indeed, we have for all σ ∈ IN and b ∈ B, L[σ, b] ⊆ B ⊂ A and so L[σ, b] 6= A for some

b ∈ A and all σ ∈ IN. Naturally the sets with no proper nonempty, closed, and sub-invariant

subsets satisfying some kind of self similarly condition are quasi attractors.

Suppose A is a quasi attractor of an IFS. Then for any x ∈ Ls-B(A) and for all σ ∈ IN

we have that

A = Ls
n→∞

F◦n[x] ⊇ L[σ, x].

This can be easily seen from the following observation: for all n ∈ N F◦n[x] =
⋃
λ∈IN L[λ, n, x].

Thus, if we play the chaos game starting in Ls-B(A),PWH-B(A) or strict-B(A) we only need

show that A ⊆ L[σ, x]. This inclusion intuitively means that the sequence {L(σ, n, x)}n∈N

“gets everywhere”. If x /∈ Ls-B(A) then the inclusion A ⊇ L[σ, x] is actually problematic.

One way to deal with this inclusion would be to observe, that if A ∩ {L(σ, n, x)}n∈N 6= ∅

(i.e L(σ,m, x) ∈ A for some m ∈ N) then {L(σ, n, x)}∞n=m ⊆ {L(σ, n, x)}∞n=m ⊆ A for some

m ∈ N. This follows from A being closed and sub-invariant. Hence, in this case, we have

L[σ, x] ⊆ A. Thus, perhaps one may think that if A∩L[σ, x] 6= ∅ then L[σ, x] ⊆ A. Generally,

this is not true. However we can achieve this result with an additional assumption on the

functions of an IFS.

Definition 26. Let (X, d) be a metric space and F = {fi}i∈I be a IFS on X. Then we say

that F is compositionally equicontinuous (c.e.c) if the set of all finite compositions of F ,
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denoted

F∗ = {fα |α ∈ I∗},

is equicontinuous.

Furthermore, we define for all x ∈ X

F∗[x] =
⋃
n∈N

F◦n[x].

Sequences of equicontinuous functions are very well behaved: much like for a continuous

function, a sequence of equicontinuous functions (essentially) preserves convergence of the

sequence.

Proposition 13. Let (X, d) be a metric space, {xn}n∈N be a sequence in X, and let {fn}n∈N

be a sequence of equicontinuous functions from X to X. We have that

1. if {fn}n∈N converges pointwise to f and {xnk}k∈N converges to x then

{fnk(xnk)}k∈N → f(x)

or equivalently

f(x) ∈ Ls
n→∞

fn[xn].

2. if {fnk}k∈N converges pointwise to f and {xn}n∈N converges to x then

{fnk(xnk)}k∈N → f(x)

or equivalently

f(x) ∈ Ls
n→∞

fn[xn].
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.

If {xn}n∈N has a convergent subsequence converging to x ∈ X then

f(x) ∈ Ls
n→∞

fn[xn].

Proof. 1.

Suppose {xnk}k∈N → x and ε > 0. Since {fn}n∈N is equicontinuous, for the point x and ε
2

we

can get a δ > 0 so that for all n ∈ N, fn(Bδ(x)) ⊆ Bε(fn(x)). Also {fn(x)}n∈N → f(x), so there

is a K ∈ N large enough so that for all k ≥ K both d(f(x), fnk(x)) < ε
2

and d(xnk , x) < δ.

Now consider

d(f(x), fnk(xnk)) ≤ d(f(x), fnk(x)) + d(fnk(x), fnk(xnk)) < ε.

Thus {fnk(xnk)}k∈N → f(x); Therefore f(x) ∈ Lsn→∞ fn[xn].

2.

This case is very similar to the proof of 1.

Although the above Proposition is of little practical importance to us, it aids our intuition

on how a c.e.c IFS would allow the set L[σ, x] to be more well behaved.

Lemma 3. Let (X, d) be a metric space, F = {fi}i∈I be a c.e.c IFS on X, x ∈ X, σ ∈ IN

and A ⊆ X be a sub-invariant set with respect to F.

If L(σ, x) ∩ A 6= ∅ then L(σ, x) ⊆ A.

Proof. Let a ∈ L(σ, x)∩A so there is a subsequence of {L(σ, n, x)}n∈N converging to a. Now,

take ε > 0 and by F being c.e.c there is a δ such that for all f ∈ F∗, f(Bδ(a)) ⊆ Bε(f(a)).

Now, there is N ∈ N large enough for d(L(σ,N, x), a) < δ.
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Note that for all n ≥ N

L(σ, n, x) = fσnσn−1...σN+1
◦L(σ,N, x) = fρ(σ[N+1,n]) ◦L(σ,N, x)

and A is sub-invariant with respect to F.

So by equicontinuity and fσnσn−1...σN+1
(a) ∈ A we have

ε > d
(
L(σ, n, x), fσnσn−1...σN+1

(a)
)
> d(L(σ, n, x), A).

This shows limn→∞ d(L(σ, n, x), A) = 0. However this means that L(σ, x) ⊆ A, indeed take

y ∈ L(σ, x) and consider for some n ∈ N

d(y, A) ≤ d(y,L(σ, n, x)) + d(L(σ, n, x), A).

By the above, for every ε > 0 and every N ∈ N we can pick an n ≥ N such that

d(y,L(σ, n, x)) < ε
2

and d(L(σ, n, x), A) < ε
2
. Thus d(y, A) = 0 and L(σ, x) ⊆ A.

Example 11. Let X be the unit circle in the complex plane (C) and consider the IFS,

F = {f, f−1} = {f1, f−1} where for x ∈ X with x = e2πiα α ∈ [0, 1)

f(x) = f1(x) = e2πiα
2

and

f−1(x) = f−1(x) = e2πi
√
α.

We can see that for g ∈ F and all x ∈ X we have limn→∞ g◦n(x) = e2πi0 = 1. This

means that F has a semi-attractor, say A, that contains 1 and noting that 1 is a fixed point

of both functions in F that A = {1}. However, I claim there is a disjunctive sequence of
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{1,−1}N 3 σ and x ∈ X such that x ∈ L[σ, x]. Pick σ = 1−1 111−1−11−1−1 11111−1 . . . .

Explicitly for every n ∈ N, the string σ[1+∑n−1
m=1m2m,

∑n
m=1m2m] contains every string of length

n as a substring exactly once. Since functions commute with themselves and a function

commutes with its inverse, we can see L(σ,
∑n

m=1m2m, x) = x for all n ∈ N as σ[1,∑n
m=1m2m]

must contain the same number of 1’s and −1’s. Therefore, x ∈ L[σ, x] and if we take

x /∈ {1} = A then L[σ, x] 6⊆ A.

This is an example of a non-equicontinuous IFS for which the result of Lemma 3 does

not hold.

For now, we will return to a more general commentary on IFS. Soon, we will be focusing

on achieving the inclusion A ⊆ L[σ, x]. We will first study the basin w-B(A); it turns out

that this basin is strongly related to the largest set in which we can start the chaos game.

First we will define some convenient notations.

Definition 27. Let (X, d) be a metric space and F : X  X be a multifunction. Then we

define for all N ∈ N and x ∈ X

F∗N [x] =
⋃
n≥N

F◦n[x]

and

F∗[x] = F∗1[x] =
⋃
n∈N

F◦n[x].

Furthermore, define for all N ∈ N and x ∈ X

F◦−N [x] =
(
F◦N

)−
[x]

and

F−∗N = (F∗N)−[x] =
⋃
n≥N

F◦−n[x].
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Proposition 14. Let (X, d) be a metric space, F : X  X be a l.s.c multifunction , A ⊆ X

with F[A] = A and x ∈ X.

Then the following are equivalent

1. A ⊆ F∗1[x]

2. There is an N ∈ N such that A ⊆ F∗N [x]

3. For all N ∈ N, A ⊆ F∗N [x]

4. A ⊆
⋂
N∈N

F∗N [x] = Ls
n→∞

F◦n[x]

Proof. 1 =⇒ 2

Take N = 1.

2 =⇒ 3

Let M ∈ N be arbitrary, if M < N then

A ⊆ F∗N [x] ⊆ F∗N [x] ∪

(
N−1⋃
n=M

F ◦n[x]

)
= F∗M [x].

If M ≥ N , we consider the multifunction F◦(M−N), it is l.s.c and F◦(M−N)[A] = A. Thus, we

can apply F◦(M−N) to both sides of A ⊆ F∗N [x] yielding,

A ⊆ F∗N [x]

F◦(M−N)[A] ⊆ F◦(M−N)
[
F∗N [x]

]
F◦(M−N)[A] ⊆ F◦(M−N)

[
F∗N [x]

]
A ⊆ F◦(M−N)[F∗N [x]]

A ⊆ F∗M [x].
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3 =⇒ 4

For all N ∈ N we have

A ⊆ F∗N [x].

Thus, by taking the intersection over N we get A ⊆
⋂
N∈N F∗N [x] = Lsn→∞ F◦n[x].

4 =⇒ 1

For all n ∈ N we have

A ⊆
⋂
N∈N

F∗N [x] ⊆ F∗n[x]

so take n = 1.

Notably, F[A] = A whenever A is a quasi attractor of F.

Theorem 15. Let (X, d) be a metric space, Then the following hold.

1. For all N ∈ N, w-B(A) =
{
x ∈ X | A ⊆ F∗N [x]

}
2. For all N ∈ N,

w-B(A) =
⋂
a∈A

⋂
ε>0

F−∗N [Bε(a)]

3. For all N ∈ N and any a ∈ A,

w-B(A) =
⋂
ε>0

F−∗N [Bε(a)]

4. Given any N ∈ N, the set B = w-B(A) is the largest set satisfying

A =
⋂
x∈B

F∗N [x]
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5. For all N ∈ N,

F−∗N [w-B(A)] = w-B(A)

and

(F∗N)+[X \ w-B(A)] = X \ w-B(A).

Proof. 1.

Since A is a minimal closed, sub-invariant set of F we know that F[A] = A and so we can

use the equivalence of item 4 and item 3 of Proposition 14 to give the result.

2. ⊆

Let N ∈ N and x ∈ w-B(A) and so by 1 we have A ⊆ F∗N [x]. So for all a ∈ A, a ∈ F∗N [x],

and thus for all ε > 0 we have

Bε(a) ∩ (F∗N [x]) 6= ∅.

Hence there is a n ≥ N such that

Bε(a) ∩ (F◦n[x]) 6= ∅.

Thus by definition of the inverse of a multifunction x ∈ F◦−n[Bε(a)] ⊆ F−∗N [Bε(a)]. Putting

all of this together yields x ∈
⋂
a∈A

⋂
ε>0 F−∗N [Bε(a)].

⊇

Conversely, suppose that x ∈
⋂
a∈A

⋂
ε>0 F−∗N [Bε(a)]. Pick any a ∈ A and any ε > 0 then

x ∈ F−∗N [Bε(a)] and so there is an n ≥ N such that x ∈ F◦−n[Bε(a)]. Thus, again by definition

of the inverse of a multifunction

∅ 6= Bε(a) ∩ (F◦n[x]) ⊆ Bε(a) ∩ (F∗N [x]) 6= ∅.

As this holds for all ε > 0, a ∈ F∗N [x]. But this holds for all a ∈ A as well, so A ⊆ F∗N [x] and
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x ∈ w-B(A) by 1.

3.

By 2, we need only show for every a ∈ A that
⋂
ε>0 F−∗N [Bε(a)] ⊆

⋂
b∈A
⋂
ε>0 F−∗N [Bε(b)].

So suppose that a ∈ A and x ∈
⋂
ε>0 F−∗N [Bε(a)]. So for all ε > 0 we have F∗N [x]∩Bε(a) 6= ∅,

giving a ∈ F∗N [x]. But A is a minimal closed, nonempty, and sub-invariant set of F, so

F∗[a] = A. Thus

F∗[a] ⊆ F∗
[
F∗N [x]

]
⊆ F∗[F∗N [x]] = F∗N+1[x]

and so A ⊆ F∗N+1[x]. Therefore, by 1, x ∈ w-B(A).

4.

Suppose that B satisfies

A =
⋂
x∈B

F∗N [x]

for some given N ∈ N. Then we can see that for any y ∈ B

A =
⋂
x∈B

F∗N [x] ⊆ F∗N [y]

and so, by 1, we have y ∈ w-B(A). Therefore B ⊆ w-B(A) and by Theorem 14 w-B(A)

satisfies the identity.

5.

Pick x ∈ F−∗N [w-B(A)]; for some N ∈ N then F∗N [x] ∩ w-B(A) 6= ∅. So pick y ∈ F∗N [x] ∩

w-B(A) and consider

A ⊆ F∗1[y] ⊆ F∗1[F
∗
N [x]] = F∗N+1[x]

So x ∈ w-B(A) by 1.

For the converse we proceed by contraposition. Suppose that x /∈ F−∗N [w-B(A)] for some
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N ∈ N then recalling that A ⊆ w-B(A) we have

∅ = F∗N [x] ∩ w-B(A) ⊇ F∗N [x] ∩ A.

So we see that ∅ = F∗N [x]∩A by taking the closure of the above and recalling A is closed. Thus

it must be the case that A 6⊆ F∗N [x] and x /∈ w-B(A). Therefore w-B(A) ⊆ F−∗N [w-B(A)].

By Proposition 5, the identities in question are equivalent.

Theorem 15 gives us many different ways of expressing the set w-B(A). Some of which

strike the author as bizarre, particularity Item 5. Item 4 suggests that every minimal closed,

nonempty, and sub-invariant set of a l.s.c multifunction behaves like a semi-attractor on its

weak limsup basin of attraction. Thus it would very interesting if w-B(A) is a sub-invariant

set of a l.s.c multifunction. Unfortunately this does not seem to be the case in general.

However (perhaps frustratingly), the complement is sub-invariant.

Corollary 15.1. Let (X, d) be a metric space, F : X  X be a l.s.c multifunction and A be

minimal closed, nonempty, and sub-invariant set of F.

Then for all N ∈ N

F∗N [X \ w-B(A)] ⊆ X \ w-B(A).

Proof. By Theorem 15 we have (F∗N)+[X \ w-B(A)] = X \ w-B(A). So we can apply F∗N to

this equation and recall Item 2 of Proposition 5, yielding

F∗N [X \ w-B(A)] = F∗N
[
(F∗N)+[X \ w-B(A)]

]
⊆ X \ w-B(A).

We will finally show why w-B(A) is of any interest.
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Theorem 16. Let (X, d) be a metric space, F = {fi}i∈I be a IFS with Hutchinson-Barnsley

operator being l.s.c multifunction and A ⊆ X be a quasi attractor of F . Further, let σ ∈ IN

and x ∈ X.

If A∩ L[σ, x] 6= ∅ then for all n ∈ N we have L(σ, n, x) ∈ w-B(A). Furthermore, suppose

that x has the property: for every disjunctive λ ∈ IN we have that

A ∩ L[λ, x] 6= ∅.

Then x ∈ (F∗)+[w-B(A)].

Proof. Proceed by contraposition. Suppose that for some n ∈ N, L(σ, n, x) ∈ X \ w-B(A);

then by Item 3 of Theorem 15, for all a ∈ A and some ε > 0, for all f ∈ F∗ we have

d(a, f(L(σ, n, x))) ≥ ε. But for every m ≥ n there is an fm ∈ F∗ such that fm ◦L(σ, n, x) =

L(σ,m, x). But this means that a /∈ L[σ, x] for all a ∈ A, so A ∩ L[σ, x] = ∅.

To prove the “furthermore”, first define

normal
(
IN
)

=
{
λ ∈ IN | λ is disjunctive

}
and observe that for any α ∈ I∗ the set

α normal
(
IN
)

=
{
αλ ∈ IN | λ is disjunctive

}
⊆ normal

(
IN
)

as αλ still contains every finite substring infinitely often whenever λ does. Now pick any

α ∈ I∗. I claim that fα(x) ∈
⋃
n∈N

⋃
λ∈normal(IN) L(λ, n, x). Indeed, pick any λ ∈ normal

(
IN
)

and αλ ∈ normal
(
IN
)
. This means that L(αλ, |α|, x) ∈

⋃
n∈N

⋃
λ∈normal(IN) L(λ, n, x). But

L(αλ, |α|, x) = fα(x) ∈
⋃
n∈N

⋃
λ∈normal(IN) L(λ, n, x).
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This shows that

F∗[x] =
⋃
α∈I∗

fα(x) ⊆
⋃
n∈N

⋃
λ∈normal(IN)

L(λ, n, x).

The other inclusion holds as well: observe that L(λ, n, x) = fρ(λ[1,n])(x) for any λ ∈ IN.

Now, assuming that for every disjunctive λ ∈ IN we have that

A ∩ L[λ, x] 6= ∅,

we see that, by the first part of this Theorem, for all n ∈ N and λ ∈ normal
(
IN
)

we have

L(λ, n, x) ∈ w-B(A). Thus

F∗[x] =
⋃
n∈N

⋃
λ∈normal(IN)

L(λ, n, x) ⊆ w-B(A).

Therefore, x ∈ (F∗)+[w-B(A)].

Theorem 16 tells us that (F∗)+[w-B(A)] is the largest set in which we can start the chaos

game and expect it to always draw the attractor.

Remark 9. The fact of (F∗)+[w-B(A)] being the largest starting set for the chaos game can

be seen probabilistically as well. Suppose that when playing the chaos game, with a finite

IFS, where we select the each function with probability no less then p ∈ (0, 1] to construct

σ ∈ IN. This means that probability of σ having prefix α ∈ I∗ is no less then p|α| > 0.

Now if x /∈ (F∗)+[w-B(A)] then x ∈ X \ F∗+[w-B(A)] = F∗−[X \ w-B(A)]. This means

there is an α ∈ I∗ with fα(x) ∈ X \ w-B(A) and by the above there is a nonzero probability

that we have L(σ, |α|, x) = fα(x) ∈ X \ w-B(A). So, by the contrapositive of the first part

of Theorem 16, A ∩ L[σ, x] = ∅. Therefore, if the maps of the chaos game are picked with
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probability no less then p ∈ (0, 1] and x /∈ (F∗)+[w-B(A)], then there is a nonzero chance of

chaos game failing to draw the attractor (in a most spectacular fashion as L[σ, x] ∩ A = ∅

will occur with nonzero probability).

Although, we have no reason to believe that w-B(A) is sub-invariant we can show that

(the arguably more important set taking into account Theorem 16) (F∗)+[w-B(A)] is sub-

invariant.

Proposition 15. Let (X, d) be a metric space, F : X  X be a multifunction and A ⊆ X.

Then

F
[
(F∗)+[w-B(A)]

]
⊆ (F∗)+[w-B(A)]

and

F∗
[
(F∗)+[w-B(A)]

]
⊆ (F∗)+[w-B(A)].

Proof. Suppose that x ∈ (F∗)+[w-B(A)], and consider a y ∈ F∗[x] ⊆ w-B(A). Since F∗[x] is

sub-invariant with respect to F it is also sub-invariant with respect to F∗. Thus we can see,

F∗[y] ⊆ F∗[x] ⊆ w-B(A)

and so y ∈ (F∗)+[w-B(A)]. Therefore, F∗
[
(F∗)+[w-B(A)]

]
⊆ (F∗)+[w-B(A)] and recalling

that F ⊆ F∗ we have F
[
(F∗)+[w-B(A)]

]
⊆ (F∗)+[w-B(A)].

Now we know the sequence of points generated by the chaos game must be contained

in w-B(A). This fact, along with equicontinuity, will aid us in our quest of achieving the

inclusion A ⊆ L[σ, x]. We would like to mention that the author was inspired by Lemma

3.15 of [5] (see also Proposition 1.2 of [14]) and Theorem A.2 of [5], in the creation of the

following result.

93



Lemma 4. Let (X, d) be a metric space, F = {fi}i∈I be a c.e.c IFS on X, x ∈ X, and A be

a quasi attractor of F .

If K ⊆ (F∗)+[w-B(A)], where K is compact, then for every ε > 0 and every a ∈ A there

is an α ∈ I∗ such that for every x ∈ K there is an n ≤ |α| with

fρ(α[1,n])(x) ∈ Bε(a)

or equivalently

x ∈
|α|⋃
m=1

f−1
ρ(α[1,m])

[Bε(a)]

Proof. Pick a ∈ A and ε > 0; then, by Theorem 3, F∗ is uniformly equicontinuous on K, so

for ε
2

there is a δ > 0 such that for all f ∈ F∗ and all x ∈ K, f(Bδ(x)) ⊆ B0.5ε(f(x)). Now K

is totally bounded, so there is a finite set {xk}Mk=1 of K such that K ⊆
⋃M
k=1 Bδ(xk).

We now recursively define α ∈ I∗, we pick α1 ∈ I such that

fα1(x1) ∈ B0.5ε(a)

we can do this because x1 ∈ K ⊆ (F∗)+[w-B(A)] ⊆ w-B(A). Also note that fα1(x2) ∈

F∗[x2] ⊆ w-B(A), and so we can pick α2 ∈ I such that

fα2α1(x2) ∈ B0.5ε(a).

But again we see that fα2α1(x3) ∈ w-B(A).

Thus we can continue to pick αk ∈ I for k ≤M , such that

fαkαk−1...α2α1(xk) ∈ B0.5ε(a),
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provided fαk−1...α2α1(xk) ∈ w-B(A), which is the case since xk ∈ K ⊆ (F∗)+[w-B(A)] so for

all f ∈ F∗ we have f(xk) ∈ F∗[K] ⊆ w-B(A).

Now pick an x ∈ K; then there is a k ∈ [M ] such that x ∈ Bδ(xk), and, by equicontinuity,

we have that d
(
fαkαk−1...α2α1(xk), fαkαk−1...α2α1(x)

)
< ε

2
. Thus, we see,

d
(
fαkαk−1...α2α1(x), a

)
≤ d

(
fαkαk−1...α2α1(x), fαkαk−1...α2α1(xk)

)
+ d
(
fαkαk−1...α2α1(xk), a

)
< ε

by recalling that fαkαk−1...α2α1(xk) ∈ B0.5ε(a).

This concludes the proof.

Lemma 4 is a key result in showing the inclusion A ⊆ L[σ, x]. It allows us to get as close

as we need to a point in A from anywhere in some compact subset, say K, of w-B(A) using

only one map from F∗. The fact this map works for all x ∈ K is what allows us to be able

to say anything definitive about the chaos game.

We can now state a result concerning the chaos game with c.e.c IFS.

Theorem 17. Let (X, d) be a metric space, F = {fi}i∈I be a c.e.c IFS on X, x ∈ X

and A be a compact quasi attractor of F . Then A is drawn by the chaos game starting in

(F∗)+[w-B(A)] ∩ O.

Proof. Suppose that x ∈ (F∗)+[w-B(A)] and σ ∈ IN be normal. By Lemma 3 if we show

that A ∩ L[σ, x] 6= ∅ then L[σ, x] ⊆ A. Thus, we need only show that A ⊆ L[σ, x]. To

achieve this we apply Lemma 4. First note that x ∈ O, so F∗[x] is compact. Thus for

all λ ∈ IN and n ∈ N, L(λ, n, x) ∈ F∗[x] so the set {L(λ, n, x)}n∈N is compact. We must

also show that {L(σ, n, x)}n∈N ⊆ (F∗)+[w-B(A)]. Pick n ∈ N and suppose that L(σ, n, x) /∈

(F∗)+[w-B(A)]. This means there is an f ∈ F∗ such that f(L(σ, n, x)) /∈ w-B(A). But we

can see that f(L(σ, n, x)) ∈ F∗[x] ⊆ w-B(A), which is a contradiction. So {L(σ, n, x)}n∈N ⊆

(F∗)+[w-B(A)] and we can apply Lemma 4.
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Pick any a ∈ A. I claim that there is a subsequence of {L(σ, n, x)}n∈N converging to a.

Indeed, by picking ε = 1
k

for k ∈ N we can find αk ∈ I∗ such that for every n ∈ N there is

an ` ∈ N for which

f
ρ
(
αk
[1,`]

) ◦L(σ, n, x) ∈ B 1
k
(a)

by Lemma 4. Now σ is disjunctive so there is an increasing sequence of natural numbers

{nk}k∈N such that

σ[nk,nk+|αk|] = αk.

This means that for all k ∈ N and all m ≤ |αk| that

f
ρ
(
αk
[1,m]

) ◦L(σ, nk, x) = L(σ, nk +m,x)

and from before there is an mk ≤ |αk| for which

f
ρ
(
αk
[1,mk]

) ◦L(σ, nk, x) = L(σ, nk +mk, x) ∈ B 1
k
(a).

So the sequence {L(σ, nk +mk, x)}k∈N → a. Therefore A ⊆ L[σ, x] and, by previous discus-

sion, A = L[σ, x].

Note that Theorem 17 does not assume the IFS is finite. Furthermore, if the space X is

compact then the chaos game draws A starting in (F∗)+[w-B(A)], which by Theorem 16 is

the largest set in which we could possibly start. We can also see that if A is a semi-attractor

then (F∗)+[w-B(A)] = (F∗)+[X] (by Item 3 of Theorem 15); but (F∗)+[X] = X, as for all

x ∈ X we have F∗[x] ⊆ X. So we can conclude the following.

Corollary 17.1. Let (X, d) be a compact metric space, F = {fi}i∈I be a c.e.c IFS on X,

x ∈ X and A be a semi-attractor of F . Then the chaos game draws A starting in X.

Proof. See preceding discussion.
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If we assume some additional properties of the IFS we can weaken the requirement for

compactness of the space in Corollary 17.1.

Definition 28. Let (X, d) be a metric space and F = {fi}i∈I be a continuous IFS on X.

Define

CF =
{
x | there is sequence of functions {fk}k∈N → x uniformly, where ∀k ∈ N, fk ∈ F∗

}
Theorem 18. Let (X, d) be a metric space and F = {fi}i∈I be a uniformly continuous IFS

on X. Then

F[CF ] ⊆ CF .

Furthermore, if CF 6= ∅ then CF is the semi-attractor of F.

Proof. If CF is empty then it is sub-invariant. Suppose that c ∈ CF then there is a

{fαk}k∈N → c. Thus, for any x ∈ X, {fk(x)}k∈N → c. To show sub-invariance, consider

any i ∈ I and, by uniform continuity, {fi ◦ fαk}k∈N converges uniformly to the constant fi(c).

This proves CF is sub-invariant.

Suppose now that c ∈ CF . Observe that for all k ∈ N and for all x ∈ X we have

fk(x) ∈
⋃
n∈N F◦n[x]. As

⋃
n∈N F◦n[x] is closed c ∈

⋃
n∈N F◦n[x] for all x ∈ X. Thus, for all

x ∈ X we have ∅ 6= CF ⊆
⋃
n∈N F◦n[x] and,

∅ 6=
⋂
x∈X

CF ⊆
⋂
x∈X

⋃
n∈N

F◦n[x].

So, by Lemma 1 CF is the semi-attractor of F.

Theorem 19. Let (X, d) be a metric space, F = {fi}i∈I be a c.e.c and uniformly continuous

IFS on X with CF 6= ∅. Then the chaos game draws A starting in X.
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Proof. Let c ∈ CF so there is a sequence of F∗, say {fαn}n∈N, with αn ∈ I∗ for all n ∈ N,

converging uniformly to c.

We claim that for every sequence {xn}n∈N of X that the sequence {fαn(xn)}n∈N converges

to c. Indeed, since the convergence of {fαn}n∈N to c is uniform, for all ε > 0 there is an N ∈ N

such that for all n ≥ N

d(fαn(xn), c) ≤ sup
x∈X

d(fαn(x), c) < ε.

Thus, the claim holds.

Let σ ∈ IN be normal, for all n,N ∈ N there is an mn ≥ N such that

ρ
(
σ[1,mn]

)
[1,|αn|] = αn.

Hence, there is subsequence of {L(σ, n, x)}n∈N for any x ∈ X satisfying, for all n ∈ N,

fαn ◦L(σ,mn, x) = L(σ,mn + |αn|, x).

But {L(σ,mn, x)}n∈Nis just some sequence of X, so by the claim {L(σ,mn + |αn|, x)}n∈N

converges to c.

Thus, CF ⊆ L(σ, x), but CF is sub-invariant and CF ∩ L(σ, x) 6= ∅. So, by Lemma 3,

CF ⊇ L(σ, x). Recalling that L(σ, x) is closed yields CF = L(σ, x).

Remark 10. The concept of c.e.c IFS was studied in [12] and to a lesser extent in [5].

Proposition 8 of [12] relates c.e.c IFS to non-expansive IFS. It states that for a c.e.c IFS, F ,

and for every compact sub-invariant subset K of a metric space (X, d) there exists a metric

ρ on K equivalent to d such that F is a non-expansive IFS on (K, ρ). The proof of this

Proposition is essentially omitted and is effectively found in Lemma 3.1 of [13].
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This strongly suggests that the case of c.e.c IFS and non-expansive IFS are essentially

the same thing. However the proof of this result is truly reliant on compactness and the

sub-invariance of K. And so there they should be considered in separate cases.

We end this section with a miscellaneous result the author always thinks is useful but

never is.

Proposition 16. Let (X, d) be a metric space, F = {fi}i∈I be a finite continuous IFS on

X, x ∈ X and σ ∈ IN. Then

L[σ, x] ⊆ F−[L[σ, x]].

Furthermore, if {L[σ, n, x]}n∈N is compact then

L[σ, x] ⊆ F[L[σ, x]].

Proof. Suppose that a ∈ L[σ, x]. We must show there is an i ∈ I such that fi(a) ∈ L[σ, x].

There is a sequence {L(σ, nk, x)}k∈N → a, and of course we know that

fσnk+1 ◦L(σ, nk, x) = L(σ, nk + 1, x).

But I is finite, so there must be an i ∈ I such that i = σnk+1 for infinitely many k ∈

N. Thus for one choice of such an i we can pick a subsequence of {L(σ, nk, x)}k∈N, say

{L(σ, nkm , x)}m∈N → a, with fi ◦L(σ, nkm , x) = L(σ, nkm + 1, x) for all m ∈ N. But by

continuity of fi we have {L(σ, nkm + 1, x)}m∈N → fi(a). Hence, fi(a) ∈ L[σ, x].

To prove the furthermore, for a ∈ L[σ, x] and {L(σ, nk, x)}k∈N → a we observe instead

that

fσnk ◦L(σ, nk − 1, x) = L(σ, nk, x).

and much like before we can take a subsequence of {L(σ, nk, x)}k∈N, say {L(σ, nkm , x)}m∈N,
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with fi ◦L(σ, nkm − 1, x) = L(σ, nkm , x) for all m ∈ N and some fixed i ∈ I. Additionally,

we can take {L(σ, nkm − 1, x)}m∈N to converge, to say a2, by compactness. This means that

{fi ◦L(σ, nkm − 1, x) = L(σ, nkm , x)}m∈N → fi(a2) and {L(σ, nkm , x)}m∈N is a subsequence of

{L(σ, nk, x)}k∈N → a. Thus, fi(a2) = a and a ∈ F[L[σ, x]].
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Chapter 5

Conclusion And Further Work

The main contributions of this work are: Theorem 12, where we characterize when a l.s.c

multifunction has a semi-attractor and, following that, provide several sufficient conditions

for an IFS (possibly discontinuous and infinite) with its Hutchinson-Barnsley operator being

l.s.c. Theorem 16 shows that for any F , with its Hutchinson-Barnsley operator being l.s.c,

the initial point of the chaos game must start in (F∗)+[w-B(A)] in order for the chaos

game to be guaranteed to draw a quasi attractor A. Theorem 17 shows that for every c.e.c

IFS with compact quasi attractor A, the chaos game draws A with initial point stating in

(F∗)+[w-B(A)] ∩ O.

There are many avenues of future research:

1. Extend the results of Theorems 12 and 16 to more general topological spaces.

2. Extend the results of Section 4.2 to topological spaces, using the concept of evenly

continuous sets of functions instead of equicontinuity.

3. Carefully examine how the sets w-B(A) and (F∗)+[w-B(A)] relate to the “probabilistic

chaos game” or other random iteration algorithms.
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4. Find characterizations of largest/maximal super-invariant sets of a lower semicontinu-

ous or outer semicontinuous multifunction.

5. Prove or disprove that for every IFS F with lower semicontinuous Hutchinson-Barnsley

operator there is a continuous IFS G for which G = F. Additionally, if F is finite then

can we take G to be. Further, is playing the chaos game with F equivalent to playing

it with G?
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Appendix A

Notation Appendix

Here for reference we define some notion used throughout this work.

Let (X, d) be a metric space and (Y, ρ) be a metric space. Let A and B be sets.

• BA = {f | f : A→ B}

• 2A = {A1|A1 ⊆ A}

• BXr (x0) = {x ∈ X| d(x, x0) < r} for r ∈ (0,∞) and x0 ∈ X

• If f : A→ B and A1 ⊆ A then f(A1) = {f(a) | a ∈ A1}

• If f : A→ B and B1 ⊆ B then f−1(B1) = {a ∈ A | f(a) ∈ B1}
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