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ABSTRACT

Automatically Coding Occupation Titles to a Standard Occupation

Classification

Negin Nahoomi Advisors:
University of Guelph, 2018 Dr. Fei Song

Dr. Gary Gréwal

Occupation Coding is the process of classifying job titles into one or multiple cat-

egories that are usually organized into a hierarchy. Historically, the task of classifying

job titles to standard classifications was done manually. However, the drawbacks of

manual coding have led researchers to develop automatic methods for occupation

coding. We compare the classic machine learning approaches and the deep learning

approaches on classifying job titles to Standard Occupational Classification (SOC).

We implement flat and hierarchical models using Naïve Bayes, Maximum Entropy

(MaxEnt), Support Vector Machines (SVM), and Convolutional Neural Networks

(CNN) to code job titles to SOC. For this purpose, 65,962 SOC labeled job titles are

collected from publicly available sources. These job titles are extremely short with

an average of three words per job title. Our experimental results show that MaxEnt,

SVM, and CNN perform similarly and are better than Naïve Bayes on coding job

titles to SOC.
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Chapter 1

Introduction

is the process of classifying occupation titles into one or mul-

tiple occupation classes that are usually organized into a hierarchical structure [63].

The occupation classifications typically categorize occupations based on skills and ed-

ucation. These classifications can also be designed to sort occupations internationally,

historically, and nationally.

The previous work on occupation coding can be divided into manual, computer-

assisted, and automatic methods. Manual coding of job titles to standard classifica-

tions is time-consuming and cost intensive. For example, it can take four to eight

years for one trained coder to classify a database of 200,000 occupations [7]. As an-

other example, the United States Census Bureau spent approximately seven million

dollars categorizing 17 million occupation titles manually in 1980 [10]. In spite of the

disadvantages, most organizations still depend on manual coding of occupations to

an extent. Thus, there is a need to develop a method to automatically code job titles

to standard classifications with high quality.

In computer-assisted approaches, computer programs are designed to help pro-

fessional coders assign codes faster and with higher confidence. The research on

automatic techniques for coding occupation titles can be further divided into three

categories: rule-based, machine learning, and hybrid methods. In the rule-based ap-

proach, a set of rules are used for classifying occupation titles. While rule-based

classification is more efficient than manual coding, huge amounts of data and hand-

crafted rules are needed to perform reliable classification. More recently, the occu-

pation coding research has shifted towards machine learning algorithms due to the

1



success of machine learning in text classification. Therefore, in this thesis, we provide

automated methods, based on supervised machine learning algorithms, to code job

titles to a standard occupation classification.

1.1 Motivation

Occupation coding has applications in different fields such as statistical, social,

and epidemiology studies. For instance, occupation coding is used for identifying dis-

eases and injuries related to different occupation classes, inferring social classes, ana-

lyzing labour statistics and wage regressions [35, 63]. Furthermore, at the University

of Guelph, social scientists are analyzing the gender wage gap in the Ontario’s public

sector salary disclosure. The Ontario public sector salary disclosure, also known as

the , is a yearly report that is published by the government of Ontario

on individuals working in Ontario’s public sector who have an annual salary of higher

than 100,000 CAD [44]. The information available in the Sunshine List includes

and . A previous study

has inferred the gender of individuals listed in the Sunshine List based on their first

name [4]. Further study towards analyzing the gender pay gap in the Sunshine List

could be done by comparing the occupation classes of the occupation titles. The

models proposed in this work, can be used for coding the Sunshine List’s occupa-

tion titles to Standard Occupational Classification (SOC) [73], which is a well-known

occupation classification. We justify classifying occupation titles to SOC instead of

National Occupational Classification (NOC) [17] based on two main reasons: (1) the

amount of publicly available SOC labeled data that is available online. (2) compat-

ibility with Occupational Information Network (ONET) [1], which is a well-known

online database that links occupation codes to skills, abilities, knowledge, etc.

2



1.2 Thesis Statement

In this thesis, we present multiple supervised machine learning models for coding

occupation titles to SOC. We explore the effectiveness of currently commonly used

text classification techniques on coding occupation titles to SOC.

1.3 Approach

In this thesis, we compare classic supervised machine learning techniques and

supervised deep learning techniques on classifying occupation titles. We implement

flat models with Naïve Bayes [20], Maximum Entropy (MaxEnt) [13], Support Vector

Machines (SVM) [12], and Convolutional Neural Networks (CNN) [36] as well as

hierarchical models with SVM and MaxEnt. We use pre-processing techniques such

as lowercasing, removing punctuation, numbers, and stop words. We also implement

a set of experiments that show stemming and feature selection are not effective due

to attributes of data. We use micro F1, macro F1, precision, recall, and hamming

loss to evaluate the performance of the models.

To train the supervised classifiers, we collected 65,962 SOC labeled occupation

titles from publicly available sources. Some of the job titles belong to more than one

class. If the job title is detailed enough, a single class can be assigned to it. However,

occupation coding is often done on data. Free-text data refers to data that is

not created based on a predefined structure and contains irregularities. Therefore, the

titles are not always specific enough to assign a single label. Section 3 discusses the

reasons for the multiple labels in detail. As a result, we use a multi-label classification

scheme.

1.4 Contributions

The main contributions of this work are:

3



1. A multi-label flat classification model for coding occupation titles to SOC;

2. A multi-label hierarchical classification model for coding occupation titles to

SOC; and,

3. A comparison of SVM, Maximum Entropy, Naïve Bayes, and Convolutional

Neural Network on classifying short multi-label occupation titles.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the

necessary background information. Chapter 3 provides detailed analysis of the SOC

labeled data. Chapter 4 presents the proposed flat and hierarchical occupation coding

models. Chapter 5 presents the deep learning model for coding occupation titles.

Chapter 6 concludes this study along with possible directions for future research.

4



Chapter 2

Background on Automatic Occupation Coding

Occupation coding classifies job titles into one or multiple occupation classes

that are typically organized into a hierarchical scheme. In this chapter, we intro-

duce the necessary background information for understanding automatic occupation

coding using supervised machine learning algorithms. Section 2.1 describes two well-

known occupation classification systems used in North America. Section 2.2 provides

information on automatic text classification. Section 2.3 reviews the machine learn-

ing classifiers used in this thesis. Finally, Section 2.4 reviews the previous studies on

occupation coding.

2.1 Occupation Classification Systems

Occupation classification systems categorize occupation titles into multiple oc-

cupation classes that are usually organized into a hierarchical structure [63]. Oc-

cupation classification systems can be designed to sort occupations internationally,

historically, or nationally based on skills, education. We look into two well-known

occupation classifications: [17] and

[73].

NOC categorizes jobs in the Canadian labor market based on skill and education

levels [17]. NOC-2011 has 690 classes organized in a four level hierarchy: there are 10

(first level), 40 (second level), 140

(third level), and 500 (fourth level). Table 2.1 shows the 10 classes

in the first level of the NOC hierarchy.
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Table 2.1: NOC-2011 First Level Categories
NOC Code Occupation Title

0 Management occupations
1 Business, finance and administration occupations
2 Natural and applied sciences and related occupations
3 Health occupations
4 Occupations in education, law and social, community and government services
5 Occupations in art, culture, recreation and sport
6 Sales and service occupations
7 Trades, transport and equipment operators and related occupations
8 Natural resources, agriculture and related production occupations
9 Occupations in manufacturing and utilities

NOC assigns a four digit code to each occupation title: the first digit indicates

the first level category; the first two digits indicate the second level category, the first

three digits indicate the third level category, and all four digits indicate the fourth

level category. Figure 2.1 identifies the four levels of the hierarchy in the four-digit

NOC code for a web developer.

Figure 2.1: The NOC-2011 four-digit code for a web developer
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SOC categorizes jobs in the American labor market based on skill and education

levels [73]. SOC-2010 has 1,421 classes organized in a hierarchical structure with four

levels: there are 23 (first level), 97 (second level), 461

(third level), 840 (fourth level). The 23 classes

in the first level of the SOC-2010 hierarchy are listed in Table 2.2.

Table 2.2: SOC-2010 First Level Categories
SOC Code Occupation Title

11 Management occupations
13 Business and financial operations occupations
15 Computer and mathematical occupations
17 Architecture and engineering occupations
19 Life, physical, and social science occupations
21 Community and social services occupations
23 Legal occupations
25 Education, training, and library occupations
27 Arts, design, entertainment, sports, and media occupations
29 Healthcare practitioners and technical occupations
31 Healthcare support occupations
33 Protective service occupations
35 Food preparation and serving related occupations
37 Building and grounds cleaning and maintenance occupations
39 Personal care and service occupations
41 Sales and related occupations
43 Office and administrative support occupations
45 Farming, fishing, and forestry occupations
47 Construction and extraction occupations
49 Installation, maintenance, and repair occupations
51 Production occupations
53 Transportation and material moving occupations
55 Military specific occupations

Each job title is given a six-digit code: the first two digits indicating the first

level category, the first three digits indicating the second level category, the first five
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digits indicating the third level category, and the entire six digits indicating the fourth

level category. Figure 2.2 identifies the four levels of the hierarchy in the six-digit

SOC code for a web developer. To put things into perspective, Fig. 2.3 shows a sub-

hierarchy in SOC-2010 for computer-related occupation, which breaks down computer

occupations into six broad occupations and 13 detailed occupations.

Figure 2.2: The SOC-2010 six-digit code for a web developer

Figure 2.3: The SOC-2010 hierarchy for computer related occupations
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SOC and NOC have a similar structure. They both classify occupations based

on a four-level hierarchy. The first level of the hierarchy is the most general and the

fourth level is the most detailed. In this work, we code occupation titles to SOC. We

justify using SOC instead of NOC based on the following reasons: (1) The availability

of SOC labeled occupations through publicly available datasets allowed us to train

supervised machine learning algorithms on SOC codes. (2) the SOC codes are mapped

to detailed skill, education, etc requirements by ONET.

If necessary, SOC codes can be mapped to NOC codes using crosswalks. Cross-

walks provide guidelines for mapping occupation codes from one standard classifi-

cation to another. While no crosswalk exists between SOC-2010 and NOC-2011,

both classifications are already mapped to ISCO-2008.

[24] is published by United Nations and classifies

international occupations in a four-level hierarchy. Using officially published cross-

walks SOC-2010 can be mapped to ISCO-2008 and then ISCO-2008 codes can be

mapped to NOC-2011 .

2.2 Text Classification Overview

In this section, we review the common steps in automatic text classification, in-

cluding text pre-processing (Section 2.2.1), feature representation and selection (Sec-

tions 2.2.2 and 2.2.3), and appropriate classification methods (Sections 2.2.4 and

2.2.5). Figure 2.4 shows the text classification process.
1
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Figure 2.4: Text classification overview

2.2.1 Text Pre-processing

Text documents have a high degree of variability such as grammatical forms,

formal or informal language, synonyms, spelling errors, standard and non-standard

abbreviations. Automatic methods perform better when all entries are written with

the same standard. Therefore, before text is automatically classified, a pre-processing

step takes place. Some of the pre-processing techniques such as

, , and and are

commonly performed [9, 32, 55, 56, 58]. Others, such as and

, depend on the type of data that is being used. For short text such as job titles,

many studies suggest removing stop words, but not stemming [18, 21, 37, 74] or do-

ing neither [76]. Stemming reduces words to their stems. For instance, “analytically”

and “analytic” are both reduced to their stem “analyt”. In many cases, stemming

improves the classification accuracy by making more words connected through stems.

On the other hand, stemming can lead to loss of information, especially for short text

that already falls short of enough information. In every language, many common

words appear in almost all documents such as ‘the’, ‘a’, and ‘an’ in English. These
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words are called , and can be removed from the text since they do not play

a role in the distinction between the classes. Removing stop words can help with

dimension reduction, avoiding overfitting, and improving the classification accuracy.

However, short text tends to have less stop words in comparison with longer text.

Therefore, removing stop words from short text tends to have less significant effect.

Looking at the previous work on occupation classification, Gweon et al. [18] used

stop words removal and stemming. However, Schierholz [58] and Kirby et al. [32] did

not use stemming or stop words removal. We perform experiments on our data to

analyze the effects of these two pre-processing methods.

2.2.2 Feature Representation

In Natural Language Processing (NLP), we split the text by white space into

tokens. For instance, the text can be represented in terms of single tokens (unigrams),

two consecutive tokens (bigrams), three consecutive words (trigrams), etc. A common

feature representation method is the [57]. BOWs represents text

in terms of a bag of tokens or consecutive tokens (n-grams). The BOW feature vector

represents frequencies or occurrences of tokens in a sparse vector. A binary feature

vector only records occurrences of features. Figure 2.5 shows the BOWs representation

for occupation titles “vice president”, and “chief executive officer” with vocabulary

= {officer, vice, chief, president, executive}.

Figure 2.5: An example of BOWs feature vectors with unigrams for “vice president”
and “chief executive officer” occupation titles.
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BOWs cannot record context or grammar since it divides text into discrete units.

While unigrams cannot record any word order, n-grams with n > 1 can record some

order in the document. Previous research shows bigrams can improve text classifi-

cation [6, 16, 76]. However, using n-grams with n > 1 adds sparsity to the feature

vector because a mix of words occur fewer times in comparison with single words in

a document. Despite the weaknesses of the BOWs model, it has been the standard

approach for many years and produced good results. In our experiments with classic

machine learning algorithms (i.e., Naïve Bayes, Maximum Entropy, and SVM), we

compare unigram features with unigram + bigram features. We do not use n-grams

with n > 2 for two reasons. First, our records are short with an average of three

words per record. Second, short text suffers from sparsity. Using greater n-grams

adds to the problem of sparsity. As will be discussed later in Section 3, our feature

vector is binary. A binary feature vector only records occurrences of words (one if

a word exists, and zero if it does not exist). The disadvantage of a binary feature

vector is that all of the features are equally important, and feature weighting methods

cannot be used. Feature weighting methods [79] assign weights to features based on

their importance to the classification.

More recently, deep learning models use distributed text representations instead

of BOWs. Distributed representations of words, also called , map

words to a real-valued dense vector so that the attributes of the features (in this case,

words) can be represented through distance. As a result, words that are syntactically

and semantically similar, are located close together in the embedding space. How-

ever, word embedding models have a considerably higher training time than BOWs

models. Embeddings can be learned during the text classification process in a su-

pervised manner. The vectors are initialized with small random numbers and are

updated in the training process. Another approach is to use embeddings that are

pre-trained in an unsupervised manner on a large corpus. In this case, the words

in the text are replaced with their word embedding by a look-up table. If the em-
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bedding for a word is not available, the vector for the word is randomly initialized.

There are two generic methods to learn word embeddings, and

methods. Count-based models count co-occurrences of neighboring words in a large

corpus and then map these statistics to a dense vector for each word.

[48] is an example of a commonly used count-based

embedding. GloVe captures the global statistics of the co-occurrences of words in

the entire corpus. Predictive models try to predict between a center word and its

neighbors in terms of learned dense vectors. [42] is an example of a com-

monly used predictive embedding. The and the

are two algorithms proposed for learning word2vec vectors. Given a center

word, the skip-gram model predicts words appearing within a window of the center

word. For instance, given the sentence “the Director of school of computer science”,

the skip-gram model identifies the words and the context they appear in. Assuming

a window size of one, the skip-gram model creates the dataset of (context, center)

pairs such as V = {([the, of], Director), ([of, of], school), ([of, science], computer),

([computer], science)}. The skip-gram model predicts ‘the’ and ‘of’ from ‘Director’,

‘of’ from ‘school’, ‘of’ and ‘science’ from computer, and ‘computer’ from ‘science’.

Given the same data, the CBOW model, predicts the center word based on a number

of previous or future words.

2.2.3 Feature Selection

For many classification problems, the data may have redundant or irrelevant

features that may have a negative effect on the classification results. Removing less

relevant features has proven to decrease the risk of overfitting as well as improve the

accuracy and speed of the classification for long texts by removing noise. Therefore,

techniques are used to select a subset of features from the training

data that are the most relevant for prediction [60]. However, feature selection on

short text is challenging since the text lacks enough context to confidently extract
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the word relations and importance [68]. Short text also suffers from feature sparsity.

Therefore, traditional feature selection methods can even decrease the classification

accuracy [38, 49]. In the previous work on occupation coding, Kirby et al. [32]

used feature selection, while many other researchers did not use feature selection at

all [9, 18, 58]. To examine the effect of feature selection, we compare two of the

well-known feature selection methods: and

X2 on our data. DF suggests that terms that appear in more documents are more

important. For each term, the frequency of documents in which it occurred are

calculated. If document frequency of a feature is not within a threshold, that feature

can be removed. X2 examines the dependency between a feature and the target class.

If a feature is independent of the target class, it can be removed. Both methods are

further explained in [80]. Yang et al [80] report DF, X2, and Information Gain (IG)

as the best feature selection methods for text categorization. In another study on

short text feature selection, Rosa and Ellen [53] reported that X2 and DF preformed

better than IG and Mutual Information feature selection methods. Rogati et al. [52]

also reported that X2 constantly outperformed other feature selection methods for

text classification.

2.2.4 Multi-label Classification

In problems, a record can belong to more than one

class. One approach to solving multi-label classification problems is to transform the

problem to one or multiple single label classifications. The most common problem

transformation methods are a random selection of one class per record; removal of all

records associated with more than one class; combining the multiple labels associated

with one record as one class, and implementing a binary classifier for each class.

As discussed in Section 3, some of the occupations in our data are associated with

more than one SOC code. Therefore, we transform the multi-label occupation coding

problem to n binary classification problems, where n is the number of classes. Figure
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2.6 shows the multi-label classification process. The binary classifiers output a level of

confidence (probability or distance from the hyper-plane) for each class. The records

are classified as positive or negative based on the confidence level. The classifiers are

independent; therefore, there is the possibility that an occupation is assigned more

than one code or an occupation is not assigned any code.

Figure 2.6: Multi-label classification

2.2.5 Hierarchical Classification

SOC is organized in a hierarchy of four levels, where each child node has only one

parent node. There are two general approaches to solving hierarchical text classifica-

tion problems. The method ignores the hierarchy. All classifiers

are trained and tested only on one level of the hierarchy. The flat classification is

simpler to implement, but its disadvantage is that one classifier needs to differentiate

between a large number of classes without considering the parent-child relationship.

Figure 2.7 shows the flat approach in a hierarchy with two levels. The flat classifier is

trained and tested on the second level to differentiate between the four classes. The

flat classifier is unaware of the existence of the higher levels of the hierarchy.
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Figure 2.7: The Flat classification approach

The method recognizes the hierarchy in that we train a

binary classifier for each node of the hierarchy except the root. Each node represent

a class in the SOC hierarchy. The hierarchical classifier can classify a record to a

leaf node or any node in the hierarchy depending on the design. The disadvantage

of hierarchical classification is that errors in the higher levels of the hierarchy are

propagated to the rest of the classification. Figure 2.8 shows the hierarchical approach

on a hierarchy with two levels. A binary classifier is trained for each of the nodes that

chooses whether an example belongs to the node or not. In this work, we implement

a hierarchical model that classifies records to the leaf nodes. A binary classifier is

implemented for each node of the hierarchy. If the leaf node and its ancestor nodes

create a path from the first level to the last level of the hierarchy, the path is assigned

to the record . If at least one path does not exist, we implement a flat classifier on

the last level and infer its ancestor nodes.

Figure 2.8: The hierarchical classification approach
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2.3 Classifiers

We compare the performance of Naïve Bayes, Maximum Entropy (MaxEnt), and

Support Vector Machines (SVM) classifiers on occupation coding. SVM maximizes

a geometric margin between classes. Naïve Bayes and MaxEnt both are probability

based, except that Naïve Bayes assumes that all features are independent. Kazama

and Tsujii [29] report that SVM outperformed MaxEnt on the classification of ab-

stracts. In another study, MaxEnt performed better than SVM with small training

data but was outperformed by SVM with larger training data [77]. Both studies use

unigram features. Other studies also report SVM performing better than Naïve Bayes

on short text [53]. We also apply a Convolutional Neural Network (CNN) that has

recently gained popularity in text classification. We explain each of the classifiers in

the following subsections.

2.3.1 Naïve Bayes

As explained in [41], Naïve Bayes is a probabilistic learning algorithm that

learns p(Xjy) and p(y), where y is the class label, and X is the vector of features

(x1; x2; x3; :::; xn). In other words, Naïve Bayes learns the features conditioned on

each of the classes and the prior probability of each of the classes. Given a new X,

the model computes p(yijX) and use this probability to pick the best class. According

to the Bayes Theorem, p(yijX) is computed as shown in equation 2.1.

p(yijX) =
p(Xjyi)p(yi)

p(X)
(2.1)

The numerator of the fraction is equal to:
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p(x1; x2; :::; xnjyi)p(yi) = p(x1; x2; :::; xn; yi)

p(x1; x2; :::; xn; yi) = p(x1jx2; :::; yi)p(x2; :::; xn; yi)

= p(x1jx2; :::; yi)p(x2jx3; :::; xn; yi)p(x3; :::; xn; yi)

= :::

= p(x1jx2; :::; xn; yi)p(x2jx3; :::; xn; yi):::p(xn�1jxn; yi)p(xnjyi)p(yi)

Naïve Bayes assumes that all features are independent of each other. Therefore,

the conditional probability p(xjjxj+1; :::; xn; yi) becomes equal to p(xjjyi). So, the

equation can be rewritten as:

p(yijX) / (

j=nY
j=1

p(xjjyi))
p(yi)

p(x1; x2; :::; xn)

Since p(x1; x2; :::; xn) is a constant for all the classes, the equation can be rewrit-

ten as:

p(yijX) / (

j=nY
j=1

p(xjjyi))p(yi)

Naïve Bayes algorithm is based on the naive assumption that features are in-

dependent, implying that the occurrence of one word does not affect the occurrence

of another word. However, this assumption is generally incorrect. For example, the

phrase “Hong Kong” contains two words that almost always occur together.

2.3.2 Support Vector Machines

The goal of SVM is to find a hyper-plane that maximizes the margin between the

data points of different classes [19]. This margin is the distance of the hyper-plane

from the closest data points of each class. These usually small subsets of data that
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specify the hyper-plane are called support vectors. A large margin can be expected

to produce a small number if incorrect classifications provided there are enough data

samples in the margin area to accurately map this critical region. SVM algorithm

performs well in the high dimensional space since it does not depend on all of the

features [11]. Figure 2.9 shows a simple linear SVM that finds the optimum hyper-

plane between empty and filled circles.

Figure 2.9: A linear SVM with the optimum hyper-plane between two classes

We use Scikit-learn [47] implementation of linear SVM that solves the problem

in equation 2.2 where y 2 f1;�1gn. In this equation, n is the set of labels, w is

the weight vector, and y represents the labels. The C parameter ensures a balance

between maximizing the margin and correctly classifying as many points as possible.

As recommended by Hsu et al. [22], we use to find a reasonable value for C.

Grid search is a technique that compares the performance of a classifier with different

values of its parameters. The parameter values that lead to the best performance

in the are used for the classification. The validation set is a separate

subset of the data that is used for parameter tuning.

min
1

2
w2 + C

nX
i=1

max(0; 1� yi(w:xi � b)) (2.2)
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2.3.3 Maximum Entropy

Maximum Entropy is a probability estimation model that is based on the

. This principle suggests that we model what we know and

assume nothing about what we do not know. In other words, it models the constraints

that are derived from the training data, and distributes the rest of features as uni-

form as possible. Entropy measures the uncertainty of a distribution. The MaxEnt

algorithm finds the model that maximizes the entropy from the models that satisfy

the constraints [29]. Given an event x, an output y, and a set of features F (x; y), the

empirical expectation of the model is equal to equation 2.3 and the model expectation

is equal to equation 2.4. ep(x) and ep(yjx) are probabilities derived from the training

set.

Ep̃[fi] =
X
x;y

ep(x)ep(yjx)fi(x; y) (2.3)

Ep[fi] =
X
x;y

ep(x)p(yjx)fi(x; y) (2.4)

MaxEnt chooses the model that maximizes the entropy shown in equation 2.5

conditional on Ep̃[fi] = Ep[fi].

H(p) = �
X
x;y

ep(x)p(yjx)logp(yjx) (2.5)

There are many algorithms for parameter estimation of MaxEnt. We used

Limited-memory BFGS (LBFGS) algorithm as recommended by [40]. MaxEnt ex-

tracts all constraints from the training data. Consequently, it can be prone to over-

fitting, mainly, if the training data is small and sparse. Therefore, we use L2 regu-

larization (equation 2.6). L2 adds a penalty of sum of squares of weights w to the

MaxEnt’s cost function.
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L2 =
nX

i=1

w2
i (2.6)

We use the Scikit-learn’s implementation of MaxEnt with L2 regularization,

which minimizes the cost function in equation 2.7. In order to choose a reason-

able value for the regularization variable C, which controls the strength of the L2

regularization, we used grid search on the validation set.

min
1

2
w2 + C

nX
i=1

log(exp(�yi(x
T
i w + c)) + 1) (2.7)

2.3.4 Convolutional Neural Network

CNN has been successful in computer vision for tasks such as image classification

and object detection. More recently, CNNs have been used in NLP. CNN has been

particularly successful in text classification tasks [28, 31]. Often, the equivalent of a

pixel in an image classification is a vector representation for a word in text classifi-

cation. However, the vector representation of characters and sentences can also be

used. CNN consists of multiple convolution and pooling layers with a fully connected

layer at the end. In text classification, CNN learns dense real valued vectors that

represent words and then applies convolving filters over the word vectors [31]. We

implemented a wide CNN that has one convolution, one max-pooling, and one fully

connected layer. To choose the CNN architecture, we compared the performance of a

CNN with multiple convolution and pooling layers with a CNN with one convolution

and one pooling layer. We decided to use a CNN with one convolution, one pooling,

and one fully connected layer since its performance was the same as the deeper CNN.

Next, we use the mathematics notations used in [31] and [28] to describe CNN.

In the first layer, called the embedding layer, the words are replaced with their

vector representation. The records are padded to have the same length n. If the i’th

word in the record is represented with a k dimensional vector xi 2 Rk, the entire
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record would be represented as in equation 2.8, where xi:n refers to concatenation of

words x1 x2; x3; :::; xn.

x1:n = x1 � x2 � ::: � xn (2.8)

Next, the Convolution layer detects features in the data by applying convolution

filters on different window sizes of words. For instance, we can have filters that are

applied to bigrams and trigrams. Sequence ci is computed by the dot product of

filter w 2 Rhk and a window size h and is passed through a nonlinear function f(x)

as shown in equation 2.9.

ci = f(wxi�h+1:i + b) (2.9)

In the wide type of convolution, the index i ranges from 1 to n + h � 1. The

result of applying the filter w to all possible windows of length h is a feature map

C = [c1; c2; :::; cn+h�1] 2 Rn+h�1.

The features extracted in the convolution layer are passed through the pooling

layer to reduce the representation, aggregate the information in a feature map, and

make sure that all of its outputs have a fixed dimension. The max pooling extracts

the maximum value from the feature map resulting in Ĉ = maxfCg. CNN has filters

with different sizes that create multiple feature maps. Therefore, given m filters,

Z = Ĉ1 � Ĉ2 � ::: � Ĉm is passed to the next layer.

In the final layer, Z is passed through a fully connected Sigmoid layer as shown

in equation 2.10. The Sigmoid function assigns an independent probability to each

label allowing multi-label classification.

Y = Sigmoid(w(z)Z + b) (2.10)

Figure 2.10 shows the architecture of the CNN given p records with length n,

and k dimensional word vectors. Filter size is represented by h, number of classes is

represented by j, and the number of filters is represented by m.
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Figure 2.10: CNN Architecture

2.4 Related Work

Occupation coding methods are mainly divided into , ,

and . Figure 2.11 shows an overview of occupation coding approaches.

Historically, the task of classifying job titles was done manually by professional

coders based on specific instructions. Manual coding is time-consuming and costly.

Restricted availability of professional coders is also a problem [46]. To demonstrate

how challenging manual occupation coding is, Patel et al. [46] conducted a study

where a human coder was given the same 165 job titles with a 15 month gap. The

codes matched on only 76% of occupations across the two submissions. In another

study conducted by Koeman et al. [33], two human coders classified 220 job titles.

The two coders agreed on only 55% of the codes. To ensure high quality, training,

specific coding instructions, and evaluation rounds are provided for human coders.

For example, American Community Survey coders are expected to have less than 5%

coding error [67]. Manual classification of occupation titles with high quality is very
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Figure 2.11: An overview of the occupation coding approaches

expensive. For instance, United States Census Bureau spent approximately seven

million dollars on manually coding occupation titles in 1980 [10]. Automating the

process of occupation coding can solve many of the issues discussed above.

In computer-assisted coding, a computer software is used to simplify coding.

The software suggests a number of suitable categories, then the human coder decides

the best option [58]. Computer-assisted coding is more time and cost effective than

manual coding. However, it still depends on a human coder to make the final decision.

The computer-assisted Structured Coding Tool (CASCOT) [71] was produced by the

University of Warwick and is available for coding to the U.K. standard occupational

classification.

In the case of automatic occupation coding, a computer program assigns a class

to the job titles. Automatic occupation coding is time and cost effective, and it is

not prone to human errors. However, achieving fully automatic occupation coding

with high quality remains challenging [18]. One approach to solving this problem is
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to automate the coding of easier to code entries with a high accuracy and to leave the

harder to code records for manual coding [18, 46, 67]. In other words, if the accuracy

of automatic classification falls below a certain threshold, a human coder is asked to

categorize the occupation. Manual inspection can help with keeping a high accuracy

rate as well as understanding the reasons that an algorithm was not able to classify

the text correctly [67]. Previous work on automatic classification of occupations can

be further divided into three main categories: the approach, the

approach, and the approach. These three approaches are discussed in

the following sections. Table 2.3 summarizes the performance of the previous studies

on automatic occupation coding. Production rate represents the desired proportion

of occupations to be coded automatically. For a given production rate, accuracy

represents the proportion of occupations that were coded correctly.

Algorithm Production Rate accuracy Data Size classification Number of classes
Dictionary 43% 94.14% 2.3 million SOC 840
(ACS)

Ensemble 100% 44.5% 76,983 SOC 840
(SOCCER) 76.3% 23

Hierarchical SVM + KNN 100% 80% 2 million SOC-ONET 1,800
Flat KNN 68%
(Carotene)
Naïve Bayes 100% 63.23% 32,882 German 1,286
Boosting 100% 63.64%

Rules + MaxEnt 73% 98% 2 million data+3,800 rules Korean 450
Rules + SVM 100% 74.8% 20,066 data+3,551 rules Japanese 200

KNN 100% 65% 9,137 ISCO
Exact Match + SVM 100% 65% (53% duplicates) 399

SVM 100% 55.6% 412 CP2011 62
Perceptron 100% 48.3%

Partial match 100% 50%
Rules 100% 44.4%

Table 2.3: A summary of the performance of occupation coding models

2.4.1 Rule-Based Approach

A uses a number of rules, which are created based on expert

knowledge and previous data analysis to classify free-text job titles. In a rule-based

system, each rule can contribute to more than one class, and each class can be as-
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sociated with more than one rule. If a rule leads a job title to be classified to more

than one class, a scoring mechanism is used. In this scoring mechanism, if a job

title matches a rule, the corresponding classes each receive a score. This procedure

is repeated for each rule, and scores are accumulated for each class. In the end, the

answer is classified to the class with the highest score [18].

A simple technique is to use a database of job titles and their codes. If the new

job title is identical to a job title in the database, the corresponding code will be

assigned [18, 58]. This method is known as the or the .

Another technique uses language similarities between new job titles and the job titles

in the database. Jung et al. [27] used Cosine Similarity and Kirby et al. [32] used

Edit Distance to assign the occupation code that is the most similar to the job title

that is being classified. This technique is known as the . Partial matches

can produce a score that shows the strength of the match. A method that is used by

many organizations is to create dictionaries of keywords and occupation codes that are

commonly associated with these keywords. The keywords usually include unigrams,

bigrams, and trigrams in a job title. Different weights are assigned to entries in the

dictionary based on their frequency. Phrases that correspond to fewer codes have

a higher weight than phrases that correspond to many different occupation codes.

Depending on the system’s design, an exact match, a partial match, or both would

be allowed.

Rule-based methods have been extensively used by governmental institutions

in many countries. Automatic Coding by Text Recognition (ACTR) [69, 78] is a

dictionary based software created by Statistics Canada to code survey responses to

standard classifications. ACTR is a general system, meaning that it is not specific

to a language or a classification, as long as the user prepares the relevant dictionary.

ACTR achieved 42.7% production rate and 31.1 error rate when coding occupations

in 1991 Census [54]. ACTR was later used in Italian language [39]. The CHUM

research center, university of Bordeaux, and French National Public Health agency
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created the Caps-Canada website [14]. Caps-Canada uses partial matching for coding

occupations to different classifications. The U.S. Census Bureau has implemented

numerous automated coding systems since the mid-1960s [30]. The Bureau created

a dictionary based Automated Industry and Occupation Coding System (AIOCS)

for coding industry and occupations of the 1990 Census [15]. The Washington State

Department of Health used word matching with a dictionary [45]. The U.S. Census

Bureau also used dictionaries to automatically assign 43% of SOC codes for 2012

American Community Survey (ACS) with 95% accuracy [67]. The U.S. Information

Technology Support Center (ITSC) produced the OccuCoder software [43] for coding

occupations to SOC. OccuCoder uses word matching with ONET database. The

U.S. National Institute for Occupation Safety and Health (NIOSH) produced a web-

based system that classifies industry and occupation titles called NIOSH Industry

and Occupation Computerized Coding System (NIOCCS) [66]. NIOCCS uses exact

and partial matches as well as logical rules, to code occupations to SOC.

Many rule-based techniques have been implemented by statistical agencies in

different languages. However, expert knowledge, manual analysis, and huge amounts

of labeled data are used for creating and updating the rules. Machine learning algo-

rithms could be an efficient and reliable alternative to rule-based methods.

2.4.2 Machine Learning Approach

infers patterns and rules from a training dataset

that is already labeled with correct labels, and then uses these patterns to classify a

new instance. Various authors used supervised machine learning algorithms to code

occupations to standard classifications. Different accuracy rates have been achieved,

depending on the size of the training data, the level of clarity of the data, and the

algorithm used. Gweon et al. [18] implemented K-Nearest Neighbor (KNN) with a

cosine similarity measure to classify occupations from the German General Survey

(ALLBUS) to ISCO. In this procedure, a new record was assigned the occupation
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code of its nearest neighbor. Duplicates are considered nearest neighbors with zero

distance. Their method uses a cosine similarity measure to identify how similar

two entries are, with one indicating duplicates and 0 indicating no similarity. They

achieved 65% accuracy rate by using 10-fold cross-validation on 9,137 records, which

52.6% of them were identical. Kirby et al. [32] used Naïve Bayes algorithm for

coding Scottish occupation records to Historical International Standard Classification

of Occupations (HISCO). They were able to code 9,400 records with a 0.75 micro F1.

Amato et al. [3] compare the performance of hand-crafted rules, partial match, SVM,

and Perceptron classifier for coding job advertisements to an Italian classification

called CP2011. SVM outperformed the other three methods.

Some authors have explored the use of . Ensemble classification

models combine multiple classifiers to achieve a better performance than each of the

classifiers alone. Russ et al. [55] developed an ensemble algorithm called Standard-

ized Occupation Coding for Computer-assisted Epidemiologic Research (SOCCER)

to assign SOC codes to job titles. This model combined the results of classifiers based

on Job Title, Industry Title, and Task Description into one score that identifies how

closely the occupation matches a SOC code. They achieved 44.5% agreement rate with

human coders on the test set. Schierholz et al. [58] reported that Naïve Bayes and

boosting methods achieved 63.23% and 63.64% accuracy respectively while coding the

32,882 job titles in the ALWA Survey to German national occupation classification.

Javed et al. [25] created an occupation title classification software called Carotene.

The system has a hierarchical structure. SVM is used for coarse classification in the

first level of the SOC-ONET classification system and KNN is used for fine grained

classification for the lower levels of SOC-ONET. Another version of Carotene used

flat classification with KNN [26].
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2.4.3 Hybrid Approach

are a combination of rule-based and machine learning algo-

rithms. For instance, Jung et al. [27] offered a web-based occupation and industry

coding system in the Korean language. The system uses a mix of hand-crafted rules

and a Maximum Entropy model. In the first step, logical rules are used to classify

the input. If no class was assigned, a Maximum Entropy algorithm is used to assign a

class. They were able to achieve 98% accuracy at 73% production rate on the Korean

2005 Census. Takahashi et al. [64] implemented hand-crafted rules and SVM in the

same manner. The authors reported that the combination of the two methods per-

formed better than each of them individually. Gweon et al. [18] proposed a hybrid

algorithm that combines a rule-based method (exact match) and a machine learning

algorithm (SVM). This method can be divided into two steps. First, exact matches

after removing the stop words are identified between the training and testing data.

Then the machine learning algorithm classifies the remaining occupations in the test

data based on trends learned from the training data.
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Chapter 3

Data Analysis and Evaluation Measures

This Chapter presents a detailed analysis of the SOC labelled data and the

appropriate evaluation measures. Section 3.1 describes the data acquisition process.

Section 3.2 discusses occupations that have more than one SOC code. Section 3.3

analyzes the word counts and repetitions in records. Section 3.4 discusses the data

coverage for the four levels of the SOC hierarchy. Section 3.5 summarizes the data

attributes. Finally, Sections 3.6 and 3.7 introduce the evaluation measures and the

statistical analysis process respectively.

3.1 Data Acquisition

The SOC labelled data is aggregated from publicly available data from the

, the , and the

websites in the form of CSV files. These three sources overlap on

some occupation titles. The data from these sources were compared to each other to

keep the unique occupation title and codes. As a result of this comparison, a data

set of 65,962 unique job titles and their corresponding SOC-2010 codes was created.

The following is a detailed description of each of the sources.

3.1.1 U.S. Census Occupational index (U.S. Census Bureau)

Census occupational index [72] is a list developed for classifying occupations re-

ported in Census Bureau demographic surveys. The Census occupational index lists

32,076 unique occupation titles with their SOC, North American Industry Classifica-
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tion System (NAICS) [23], and Census occupation and industry codes. We use the

2010 U.S. Census occupational index since it is the most recent occupational index

with SOC codes at the time of this research. The data includes occupations that

are coded to more than one SOC code. Same occupation titles may have different

SOC codes based on their industries. For instance, an account analyst in insurance

related activities is assigned 13-1031 (Claims Adjusters, Examiners, and Investiga-

tors) SOC code, whereas an account analyst in banking occupations is assigned a

43-3021 (Billing and Posting Clerks) SOC code. Figure 3.1 shows a snapshot of the

unprocessed Census data obtained from the website. The “2010 SOC CODE” and

the “2010 OCCUPATION TITLE” columns were collected for the final dataset.

Figure 3.1: The 2010 Census occupational index before pre-processing

3.1.2 SOC Structure and Direct Match Title Files (U.S. Department of

Labor)

The SOC Structure File [73] contains 1,421 titles in all four levels of hierarchy,

which are broken down into 23 major groups, 97 minor groups, 461 broad groups, 840

detailed occupations. Figure 3.2 shows a snapshot of SOC Structure File before pre-

processing. The ‘Detailed occupation’ and ‘Occupation Title’ columns were collected
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for the final dataset.

Figure 3.2: SOC Structure File before pre-processing

Direct Match Title File [73] is published by the U.S. Department of Labor. It

contains 6,576 unique job titles and their SOC codes. This file also includes some job

titles that are coded to more than one SOC code. Figure 3.3 shows a snapshot of

the direct match file before pre-processing. The ‘2010 SOC Code’ and the ‘2010 SOC

Direct Match Title’ columns were collected for the final data set.

Figure 3.3: Direct Match Title File before pre-processing
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3.1.3 ONET Occupation Datasets

Occupational Information Network (ONET) [1] datasets are produced with the

support of the U.S. Department of Labor/Employment and Training Administration

(USDOL/ETA). ONET contains occupation titles with their corresponding SOC, Oc-

cupational Information Network-Standard Occupational Classification (ONET-SOC),

and NAICS codes. It also includes information on knowledge, skills, abilities, educa-

tion, experience, training, interests, tools and technology, work values, work styles,

and tasks related to each occupation. ONET-SOC is developed based on SOC six-

digit codes. ONET-SOC includes the six-digit SOC code followed by two decimal

digits, which provide a more detailed occupation classification. ONET-SOC is com-

patible with the SOC system, and the SOC code is accessible by removing the decimal

integers. Figure 3.4 shows ONET-SOC to SOC crosswalk.

Figure 3.4: ONET-SOC crosswalk to SOC

Figure 3.5 shows a snapshot of one of the ONET occupation dataset, the ‘ONET-

SOC code’ and the ‘Title’ columns are collected from the data. The ONET-SOC codes

were converted to SOC codes to create the final SOC labeled dataset. By combining

all ONET databases, we collected 58,911 unique job titles and SOC codes. This

dataset also contains job titles that are coded to more than one SOC code.
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Figure 3.5: ONET dataset before pre-processing

3.1.4 Final Dataset

The final data is a collection of the datasets discussed above. It contains 65,962

unique job titles with their corresponding six-digit SOC codes. The data contains

two fields, the and the . The final dataset has overall 11,251

unigram features. Figure 3.6 shows a snapshot of the final dataset.

Figure 3.6: First 20 records of the final dataset
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3.2 Occupations with Multiple SOC Codes

Since some of the records are associated with more than one class, we treat the

coding problem as a multi-label classification. This means that some occupation titles

can be associated with more than one SOC code due to two main reasons. The first

reason is that the occupation titles are sometimes not as specific as the SOC codes.

As can be seen in fig. 3.7, professors have different SOC codes based on their field of

work. Therefore, ‘professor’ alone as a job title is very generic and can be associated

with many codes. The second reason is that an occupation title can have a different

SOC code based on the industry (Section 3.1.1). In this case, the SOC codes are

different from the first level of the hierarchy.

Figure 3.7: SOC hierarchy for computer science professors

As can be seen in Table 3.1 most of the occupations (85%) have only one SOC

code. 11% of data has two SOC codes, 2% of data has three SOC codes, and 2% of

data has more than three SOC codes. Table 3.2 shows some of the occupations that

are associated with many codes.

Table 3.1: Number of SOC codes associated with a single job title
Number of SOC Codes Number of Records Percentage of Records

1 56,130 85%
2 7,053 11%
3 1,577 2%

4 to 57 1,202 2%
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Table 3.2: A sample of occupation titles with the most SOC code variability
Occupation title Number of Different SOC Codes
Machine operator 57

Professor 52
Instructor 43

Faculty member 28
Teacher 28
Installer 19

Production manager 16

3.3 Record Length

After lowercasing the text, removing numbers, and punctuation, we analyze the

record lengths (number of unigrams as the unit) and term frequency in the records.

Figure 3.8 shows the frequency of different record lengths in the data. The longest

job title in the data has 24 unigrams, and the shortest job titles in the data have one

unigram. The average and median number of unigrams per record is approximately

3.

Figure 3.8: Frequency of record lengths in the data (number of unigrams as the unit)
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Most of the records (70%) contain a short text with two or three unigrams, which

leads to a sparse feature space. There are a few exceptions where the record contains

a long description. Table 3.3 shows some of the longest records in the data. These

records contain many abbreviations and repeated terms.

Table 3.3: Some of the longest records in the data
Job Title Number of unigrams

ceo leed ap o m director of sustainability chief environmental officer leadership in energy
and environmental design applications operations and management director of sustainability 24

aegis weapon system mk bl technician aegis fire control system mk operational readiness test
system mk tk i or ii supervisor 21

hvac sensor and digital control designer heating ventilation and air conditioning sensor and
digital control designer 16

3.3.1 Term Frequency

represents the number of times a term is repeated in one record.

If there is no repetition of terms in a record, we say it has term frequency of one.

In this thesis, if there is at least one term in the record that is repeated twice, we

say the record has term frequency of two. As shown in Table 3.4, the records have

term frequency of one for approximately 98% of the data. These records have an

average record length of 3. Few records (2%) contain terms that are repeated two

or three times. The average record length for this 2% of data is approximately 7.

Furthermore, the average ratio of term counts to unique term counts in the record is

1.02.

Table 3.4: Term frequency and average length of records
Percentage of Data Average Record Length

Records with term frequency of 1 97.9% 3
Records with term frequency of 2 or 3 2.1% 7

Feature weighting techniques such as Term Frequency (TF) and Term Frequency-

Inverse Document Frequency (TF-IDF) assign weights to terms based on their impor-

tance to the classification and the importance of a term is usually determined based
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on the frequency of that term in a record. In the majority of records, there is no

term repetition. Therefore, the feature vector is a binary vector that only captures

occurrences of terms. As a result, feature weighting techniques do not have a notable

effect on the classification.

3.4 Coverage

In this section, the data coverage for each of the four levels of the SOC hierarchy

is analyzed. Records represent occupation titles and classes represent the SOC codes.

As we move down the hierarchy, the number of records for each class decreases.

Therefore, the classification quality is expected to decrease as we move down the

SOC hierarchy. In the first level of the hierarchy, the least frequent class has 452

records, whereas in the fourth level of the hierarchy, the least frequent class has

four records. Furthermore, the records are not evenly divided between classes (Fig.

3.9). For instance, the class 51-Production occupations and its child nodes have a

significantly higher frequency than the rest of the classes: 27% of records belong to

the class 51-Production occupations, while the rest of the 22 classes each have 0.6%

to 9% of the records.

3.4.1 First Level of the Hierarchy

The data covers all 23 first level SOC classes (major groups). The most frequent

class is the with 19,103 records. The least frequent class

is the with 452 records. Figure 3.9 shows the data coverage for

the 23 first level classes. The average frequency per class is 3,110, and the median

frequency per class is 2,250.
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Figure 3.9: Frequency of SOC major groups

3.4.2 Second Level of the Hierarchy

The data covers all 97 second level SOC classes (minor groups). The most

frequent class in the second level is with 9,824

records, and the least frequent class is

with 73 records. The average frequency is 781 records per class, and the median

frequency is 460 records per class.

3.4.3 Third Level of Hierarchy

The data covers all 461 third level SOC classes (broad occupations). The most

frequent class in the third level is with 4,868

records, and the least frequent class is

with 11 records. The average frequency of records per class is 173,

and the median frequency is 98.

3.4.4 Fourth Level of the Hierarchy

The data covers all 840 fourth level SOC classes (detailed occupations). The

most frequent class in the fourth level is
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with 3,177 records and the least frequent class is with four

records. The average frequency of records per class is 98, and the median frequency

of records per class is 59.

3.5 Summary of Data Attributes

We collected 65,962 unique job titles and their corresponding SOC codes from

three publicly available sources. Since some of the occupation titles are associated

with more than one SOC code, our classification problem is multi-labelled. Most

of the records (74%) are short with less than four words leading to sparse feature

vectors. Since all features in 98% of records have term frequency of one, the feature

vector is binary. The data covers all SOC codes. However, the coverage decreases

as we move down the hierarchy since the number of classes increases. Therefore, it

is expected that accuracy will decrease in the lower levels. The data also has class

imbalance, where the data is not divided equally between classes. Table 3.5 and 3.6

show a summary of the most important data attributes.

Table 3.5: Summary of data attributes
Number of Records 65,962

Number of Unigram features 11,251
Records with Single SOC Code 56,130 (85%)

Average Number of Unigrams per Record 3

Table 3.6: Summary of data coverage
Number of Records per Class
Average Median

First Level 3,110 2,250
Second Level 781 460
Third Level 173 98
Fourth Level 98 59
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3.6 Evaluation Measures

The quality of automated occupation coding can be expressed by three measures

[51]: , , and . Production Rate represents the desired

proportion of occupations to be coded automatically. For a given production rate,

accuracy represents the proportion of occupations that were coded correctly (i.e., that

agree with the human coder). Speed measures the time that is required to code one

record. However, in this study, we are not focused on improving the speed of the

classification. There is always a trade-off between production rate and accuracy. The

higher the production rate, the lower the accuracy. Many researchers decide on a

that determines the production rate. In other words, the cut-off determines the

amount of data coded automatically, and the amount of data to be coded manually

[18, 58]. The cut-off chooses the production rate that produces the most reasonable

accuracy. At this point, a higher production rate leads to a notable fall in the accuracy.

The accuracy of a classifier is determined based on how well it performs on the test

data. We use [34] for evaluating the classification models.

Since our data has class imbalance, we use stratified sampling algorithm for multi-

label data by Sechidis et al. [59] to create the k folds. The K-fold cross-validation

steps are as follows.

1. Randomly divide the dataset into K folds

2. Use the first fold as the test set and the combination of the other K � 1 folds

as the training set

3. Calculate the accuracy on the test set

4. Repeat steps 2 and 3, K times using a different fold as the test set

5. Calculate the accuracy as the average of the accuracies of the k test sets

Accuracy is calculated with equation 3.1, where TPi is the num-

ber of records that belong to class i, and are classified to class i; TNi
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is the number of records that do not belong to class i, and are not classified to class

i either; FPi is the number of records that do not belong to class i,

but are incorrectly classified to class i; FNi is the number of records

that belong to class i, but are incorrectly not classified to class i. However, accuracy

is not an appropriate measure where the test data are not evenly distributed across

the classes. Since an algorithm that simply picks the majority class every time can

easily achieve a high accuracy. As was discussed earlier, our data is not distributed

equally among classes. Therefore, we need to use , , and ,

which are the three performance measures commonly used for evaluating classifiers

with imbalanced test data [8]. Precision (P) is the fraction of records classified to

class i that truly belong to class i. Recall (R) is the fraction of records in class i that

are classified correctly to class i. There is a trade-off between recall and precision:

the higher the precision, the lower the recall. Therefore, F1-score, which is a weighted

harmonic mean of precision and recall, provides a composite measure for evaluating

the classification. Equations 3.2 and 3.3 show precision and recall for class i.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Pi =
TPi

TPi + FPi

(3.2)

Ri =
TPi

TPi + FNi

(3.3)

When multiple binary classifiers are used, and

are the two common methods for averaging the related precisions and recalls. Macro-

average calculates the mean of the measures for binary classifiers with equal weights

for all classes. Macro-average gives even weights to all classes. Therefore, macro F1

tends to over emphasize the smaller classes. Micro-average sums the corresponding

TPi, TNi, FPi, and FNi to calculate an overall score. Micro-average gives equal
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weights to each record in the test set. Therefore, micro F1 is dominated by the larger

classes that have more records. In most research, micro F1 and macro F1 are both

given to allow the classification to be fairly evaluated. Equation 3.4 and 3.5 show

how macro F1 and micro F1 are calculated as described in [81].

MacroF1 =
1

jN j

NX
i=1

2PiRi

Pi + Ri

(3.4)

MicroF1 = 2
PR

P + R
(3.5)

P =

NX
i=1

TPi

NX
i=1

(TPi + FPi)

R =

NX
i=1

TPi

NX
i=1

(TPi + FNi)

For multi-label classifications, hamming loss is often used in addition to precision,

recall, and F1-score. Hamming loss evaluates how many times a label belonging to

a record is not predicted or a label not belonging to a record is predicted [70]. The

hamming loss value is always between zero and one, with hamming loss = 0 being

the best performance. Equation 3.6 shows hamming loss where p is the number of

records in the test set, q is the number of labels, and � is the symmetric difference

between the predictions h(xi) and the true value yi for each record.

HLoss =
1

p

pX
i=1

1

q
jh(xi)�yij (3.6)
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3.7 Statistical Analysis

We use statistical analysis to determine whether a significant difference exists

between the performance of different models. Many statistical tests can be used for

this purpose. These tests are divided into and tests based

on the assumptions they make about the data. In the following subsections, two

commonly used significance tests are described.

3.7.1 Significance Test

Parametric statistical tests have prior assumptions about the data and non-

parametric statistical tests do not make specific assumptions about the data [75].

The is a parametric test that examines the null hypothesis that

there is no statistically significant difference between the means of two samples. The

compares the mean of two dependent groups (e.g., a comparison of two

different treatments that are performed on the same subject). The student’s t-test

assumes that the samples are from a population that follows a normal distribution.

As a result, we first need to check if our samples follow a normal distribution. If the

data is not following a normal distribution, a non-parametric test should be used.

The is a non-parametric test that examines the

null hypothesis that there is no statistically significant difference between the means

of two dependent samples. It does not assume that the data is following a specific

distribution. We use the normality test described below to test if our data comes from

a normal distribution. Since we could not confidently prove normality, we use paired

Wilcoxon signed rank test to compare the performance of the classification models.

3.7.2 Normality Test

Many statistical tests for normal distribution are available. The

[61] examines the null hypothesis that a sample follows a normal dis-
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tribution. Razali and Yap suggest [50] to use Quantile-Quantile plots (Q-Q plots) in

addition to the Shapiro-Wilk normality test. Therefore, we use Shapiro-Wilk normal-

ity test and Q-Q plots to determine normality of the data. The Q-Q plots, plot the

data quantiles against a normal distribution quantiles. If the quantiles of the dataset

and the normal distribution form a straight line, it means that the data is normally

distributed.
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Chapter 4

Classification with Classic Machine Learning

Techniques

In this Chapter, we use Naïve Bayes, MaxEnt, and SVM classifiers for coding

occupation titles to SOC. Figure 4.1 shows an overview of the classification scheme

used in this chapter. Section 4.1 reviews the hyper-parameter tuning process for SVM

and Maxent classifiers. Section 4.2 describes data pre-processing methods. Section

4.3 describes feature selection methods. Section 4.4 presents the flat classification

model. Section 4.5 presents the hierarchical classification model. Finally, Section 4.6

presents the results and discussion.

Figure 4.1: An overview of the classification scheme
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4.1 Hyper-parameter Tuning

We use stratified sampling algorithm for multi-label data by Sechidis et al. [59]

to create a validation set, which is used for tuning the hyper-parameters of the flat

and hierarchical classification models. More specifically, 15% of all 840 classes in the

fourth level of the SOC hierarchy are randomly sampled in our dataset, resulting in

a validation set of 9,928 records. The higher level classes are embedded in the fourth

level classes and can be inferred from the fourth level classes.

We use the validation set on the first level of the hierarchy to decide the best

values for the hyper-parameters. Among the three classifiers, Naïve Bayes does not

need parameter tuning. To choose a suitable value for SVM’s penalty of the er-

ror term, we use grid search on a range of exponentially growing values of C =

(2�5; 2�4; :::; 24; 25) on the validation set. In the case of MaxEnt, we use grid search

on the regularization parameter C = (2�5; 2�4; :::; 24; 25) and the number of iterations

I = (10; 20; :::; 90; 100). The values that led to the best micro/macro F1 on the val-

idation set are C = 1 for SVM and C = 16 and I = 50 for MaxEnt. The detailed

results of the grid search are presented in Appendix A. To compare the performance,

we evaluate the models using 10-fold cross-validation on the 56,034 remaining records

of the dataset.

4.2 Data Pre-processing

We normalize the data by lowercasing the alphabetic letters, removing punctua-

tion, and numbers. Stemming and stop words removal are known to have a positive

effect on the classification of long text. However, they may not be as effective on short

text. Therefore, we try to examine the effects of removing stop words and stemming

on the first level of the SOC hierarchy with out dataset.
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4.2.1 Removing Stop Words

We use the intersection of , , , lists of stop

words to create a stop word list. Since these words are shared among multiple sources,

there is a higher chance that the useful content words are not removed in the process.

The intersection of these four lists contains 107 stop words, among which 42 are

detected in our dataset. The most frequent stop word is ‘and’, which is also the

second most frequent word in the dataset after the word ‘operator’. A summary of

the stop words characteristics is shown in Table 4.1. The stop words are repeated

6,487 times and affected 6,312 records (10% of the data). In this 10%, the stop

words appear with an average of 1.03 per record and the average record length is

approximately five (the average record length for the entire data is approximately

three). The longest record with stop words has 24 unigrams, and the shortest record

has two unigrams. More detailed information about the stop words can be found in

Appendix B.

Table 4.1: Summary of the characteristics of stop words in the dataset
Number of Records with Stop Words 6,312 (10% of entire data)

Frequency of Stop Words 6,487
Average Stop Words per Record in the 10% 1.03

Average Length of Records in the 10% 5

As discussed in Section 3.6, micro F1 is biased towards the popular classes and

macro F1 is biased towards less popular classes. Therefore, we use both micro and

macro F1. The effect of removing stop words on the micro/macro F1 is shown in Table

4.2. As can be seen, removing the stop words has no impact on the micro/macro F1

of the three classifiers. However, since stop words such as ‘and’ have high frequencies

in the data we decide to remove the stop words.
1http://snowball.tartarus.org/algorithms/english/stop.txt https://bitbucket.org/kganes2/

text-mining-resources/downloads/ https://www.nltk.org/ http://scikit-learn.org/stable/
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4.2.2 Stemming

We used the Porter Stemmer from NLTK package for stemming. Table 4.2 com-

pares micro/macro F1 before and after stemming. Stemming the features slightly

decreased the F1. In some cases one root replaced six or seven different words that

have different meanings. For instance stem “anim” replace six words including “ani-

mator” and “animal”, which are related to different job classes (Table 4.3). By taking

into account that our data is very short, these issues can lead to over generalization

and loss of information. Therefore, we decide not to use stemming.

Table 4.2: The effects of removing stop words and stemming
NB MaxEnt SVM

None Micro 0.72 0.74 0.75
Macro 0.67 0.70 0.70

Stop words removal Micro 0.72 0.74 0.75
Macro 0.67 0.70 0.70

Stemming Micro 0.71 0.74 0.74
Macro 0.66 0.69 0.70

Table 4.3: Example of multiple words stemmed to the same root
words Stem
animal anim
animals
animated
animation
animator
anime
author author
authors
authoring
authority

authorization
authorizer
authorizers
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4.3 Feature Selection

In this section, we test document frequency (DF) and Chi-square (X2) feature

selection methods on the first level of the SOC hierarchy.

4.3.1 Document Frequency

As discussed earlier, the data has 11,251 unigram features. In the first set

of experiments, features with a minimum document frequency of N where N =

1; 2; 3; :::; 10 are used for the classification. Table 4.4 shows micro and macro F1

for the three algorithms after removing the features that have document frequency of

less than N . All three classifiers achieve the highest score when all features are used

(N = 1) and the micro/macro F1 of all three gradually decrease as more features are

removed.

Table 4.4: Micro F1 (left) and Macro F1 (right) for Naïve Bayes (NB), MaxEnt, and
SVM as we remove the features with document frequency less than N = 1; 2; 3; :::; 10
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In the second set of experiments, N features with the highest document frequency

are used for the classification. The results of the second experiment are shown in Table

4.5. As the number of features increases, the micro/macro F1 also increase. However,

the highest score achieved by each classifier is the same score as in Table 4.2. Overall,

DF does not improve the results.

4.3.2 Chi-Square

We also explore the use of X2 feature selection. Table 4.6 shows micro and macro

F1 after choosing the N features with the highest X2 score. As is with DF, the

performance of the classifiers increases as the number of features increases. However,

the highest scores achieved by each classifier are the same as those in Table 4.2. As a

result, X2 does not improve the results. Overall, feature Selection does not improve

the micro/macro F1. As mentioned in Section 2.2.3, feature selection on short text

is often not as effective as on normal text. Therefore, we decide not to use feature

selection in our experiments.
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Table 4.5: Micro F1 (left) and Macro F1 (right) for Naïve Bayes (NB), MaxEnt, and
SVM while using N best features based on document frequency
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Table 4.6: Micro F1 (left) and Macro F1 (right) for Naïve Bayes (NB), MaxEnt, and
SVM while using N best features based on X2
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4.4 Flat Classification Model

In this section, we use classification to code occupations to SOC.

In multi-label classification (Section 2.2.4), a binary classifier is trained for each class

to identify whether a job title belongs to that class or not. Since these binary classifiers

are independent, multiple classes or no classes might be assigned to a record. If an

occupation is not assigned a class, the recall decreases for the classes that it truly

belongs to, hence decreasing the overall micro/macro F1. Production rate represents

the percentage of the occupations that are assigned a class. There is a trade-off

between Production rate and precision. The higher the production rate, the lower

the precision. When the production rate is not 100%, a part of the data can be

classified automatically, but the rest has to be classified manually. Since, we do not

have resources to manually classify a portion of data, we propose a method that

assigns at least one class to every occupation title.

The binary classifiers each output a confidence level. This confidence level is a

probability value for Naïve Bayes and MaxEnt and distance from the hyper-plane for

SVM. SVM uses a hyper-plane to separate positive examples from negative examples

for a class. If a record is classified as negative by all classes, we simply choose the

class for which the record has the least distance from the hyper-plane. For instance,

23 classifiers are used for the first level of the SOC hierarchy. If all 23 classifiers

classify a record as negative, no code is normally assigned to that record. To increase

the production rate, we instead pick the class for which the record is classified as

negative, but has the least distance from the hyper-plane. MaxEnt and Naïve Bayes

assign a class to a record if its probability for the class is higher than a threshold.

Such a threshold is normally 50%, but can be lower if needed. Again when, no code is

assigned to a record, we just select the class with the highest probability to maximize

the production rate. We train a flat classifier with SVM, MaxEnt, and Naïve Bayes

for the four levels of the SOC hierarchy and present the results in Section 4.6.
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4.5 Hierarchical Classification Model

The SOC has a hierarchical structure. Therefore, a parent-child relationship

exists between the four levels of the SOC hierarchy. However, flat classification does

not use such parent-child information. Therefore, we explore using a multi-label

hierarchical classification algorithm for coding occupations to SOC. We implement

a binary classifier for each class in the hierarchy. The hierarchical approach assigns

classes to a record if all the classes form a path from the first to the fourth level of

the hierarchy. If no class is assigned to the record at a middle level, we roll back to

the flat classification model to compute its class at the fourth level of the hierarchy,

and then infer its ancestor classes along its path to the root. The reason is that in a

hierarchical structure, a record in a lower level class also belongs to all of its ancestor

classes. Since the classification is multi-labelled, more than one possible path can

exist from the first level to the fourth level. As long as at least one class forms a path

from the higher levels, the algorithm will continue to the next level of the hierarchy.

Four scenarios are possible during the hierarchical classification.

1. The second level does not belong to the same path as the first level

2. The third level does not belong to the same path as the second level

3. The fourth level does not belong to the same path as the third level

4. All four levels form at least one path from the first to the fourth level

If at least one path exists for the majority of the records (fourth scenario), the

hierarchical algorithm can improve the confidence of the decisions. However, if the

other three scenarios happen for many records, the performance of the hierarchical

algorithm might be the same or even worse than the flat models in some levels of the

SOC hierarchy. Table 4.7 shows an example for each of the four scenarios.

is an example of the case where the second level does not belong to

the same path as the first level. The first level predicts class 15, but the second level
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predicts class 131. Therefore, the algorithm jumps to the fourth level and assigns

the fourth level prediction (131111) and its ancestor classes to the record. In the

case of , the first and second levels form a path (17,

172). However, the third level prediction does not belong to the same path (51801).

Therefore, the fourth level prediction (172161) and its ancestor classes are assigned

to the record. The first three levels form a path for (51, 512,

51202). However, the fourth level does not belong to the same path (519199). As a

result, the fourth level prediction and its ancestor classes are assigned to the record.

In the case of , all four classifiers agree on a path from the

first level to the fourth level that is assigned to the record.

Table 4.7: Examples of the hierarchical classification process for four different
scenarios

Occupation Title First Level Second Level Third Level Fourth Level Final Path
information technology analyst 15 131 - 131111 (13, 131, 13111, 131111)
nuclear power plant engineer 17 172 51801 172161 (17, 172, 17216, 172161)

assembler refrigerator 51 512 51202 519199 (51, 519, 51919, 519199)
funds development director 11 112 11203 112031 (11, 112, 11203, 112031)

Algorithm 1 shows the hierarchical classification algorithm, which is implemented

with MaxEnt and SVM. The input of the algorithm is the SOC codes tree S, the oc-

cupation titles X and their corresponding SOC codes Y . The SOC codes tree is a list

containing each SOC code and its child codes, which can also be interpreted as each

node and its adjacent nodes in a graph. X and Y are divided into training and test-

ing sets: Xtrain; Xtest; Ytrain; Ytest. Furthermore, Ytrain1 ; Ytrain2 ; Ytrain3 ; Ytrain4 represent

the first, second, third, fourth level SOC codes for the training set respectively. The

same is true for Ytest. The algorithm outputs a list of paths from the first to fourth

level for each of the records.

First, a classifier is trained on each level of the hierarchy (lines 4-7). Then, a

for loop goes over the records in the test set. The classifier predicts the first level

and second level codes for the record (lines 9-10). In line 11, we use a Depth First

Search (DFS) to find the paths from the first level predicted codes to the second level

56



predicted codes. The DFS is explained in algorithm 2. For every path that exists,

we move to the third level of the hierarchy. For every third level predicted code, we

check for a path from the second level (lines 12-14). If a path exists, we move to the

fourth level of the hierarchy. If at least one path exists from the third level predicted

codes to the fourth level predicted codes, we turn on a flag (lines 15-19). If at any

of the steps, the if statement is false, the algorithm checks the flag. If the flag is off

(algorithm could not find at least one path), the fourth level predictions and their

ancestors are chosen as the path (lines 20-22). We then add the path variable that

contains all the paths from the first to fourth level for the record i to the output F .

This process is repeated for every record i in the test set.

Algorithm 2 shows the Depth First Search [65] algorithm. The inputs of the

algorithm are the SOC codes tree, a list of start nodes and a list of end nodes. The

algorithm looks for paths from any of the start nodes to any of the end nodes. The

output of the algorithm is a list of paths from the start nodes to the end nodes (if

a path exists) and the list of end nodes that a path exists for them from the start

nodes.

Starting from a Start node, the algorithm marks the current node as visited.

Then, it explores the adjacent nodes that are not marked as visited. In lines 3 and 4,

the algorithm loops over the start and end nodes. For every start node, the algorithm

pushes the Start node and the visited nodes into the stack (line 5). In the beginning,

the start and visited nodes are the same. As long as the stack is not empty, the pair

containing the current node and the visited nodes are popped from the stack, and

the adjacent nodes of the current node that are not visited are recorded in variable

unseen (lines 6-8). The algorithm visits every node in unseen. If the End node is

visited, the path from the Start node to the End node as well as the End node are

recorded (lines 9-13). If the End node is not visited, the unvisited adjacent nodes of

the current node are explored in the same manner until the End node is visited.
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Algorithm 1 Hierarchical classification (finding all possible paths from the first to

the fourth level of the SOC hierarchy for each record)
Input: S = {SOC codes tree}, X = {Occupation Titles}, Y = {Labels}

Output: F = {A list of paths from the first to the fourth level for each record}

F = []

Train_First_Level (Xtrain; Ytrain1)

Train_Second_Level(Xtrain; Ytrain2)

Train_Third_Level (Xtrain; Ytrain3)

Train_Fourth_Level(Xtrain; Ytrain4)

for record 2 Xtest do

Level_1  Predict_First_Level (record)

Level_2  Predict_Second_Level (record)

path, vertex_2  DFS (S, Level_1, Level_2)

if vertex_2 is not empty then

Level_3  Predict_Third_Level (record)

path, vertex_3  DFS (S, vertex_2, Level_3)

if vertex_3 is not empty then

level_4  Predict_Fourth_Level (record)

path, vertex_4  DFS (S, vertex_3, Level_4)

if vertex_4 is not empty then

Flag  1

if Flag == 0 then

Level_4  Predict_Fourth_Level (record)

path  DFS (S, Level_4/10000, Level_4)

F.append(path)
return F
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Algorithm 2 Depth First Search algorithm
Input: S = {SOC codes tree}, START = {start nodes}, END = {end nodes}

Output: F = {Paths from Start nodes to End nodes}, V = {The end nodes in

F}

for start 2 START do

for end 2 END do

stack  [(Start, Start)]

while stack do

(node, path)  stack.pop()

unseen  S[node] - path

for vertex 2 unseen do

if vertex == End then

F.append(path + [next])

V.append(vertex)

break

else

stack.append((vertex, path + [vertex]))
return F, V
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4.6 Results and Discussion

In this section, we present the results and discussions on the flat and hierarchical

models with classic machine learning algorithms.

4.6.1 Experiments with the Flat Classification Model

Tables 4.8 to 4.11 present the results for the flat classification of the first to the

fourth level of the SOC hierarchy respectively. The performance measures are micro

and macro F1, precision, recall, production rate, and hamming loss. Numbers in

bold are the best performance, and number with a * have no statistically significant

difference from the best performance. Each classifier is first implemented with uni-

gram features and then with unigram + bigram features. The results are compared

with the same models with Full Production Rate (FPR). The FPR classifiers assign

at least one class to every record. The normality test and Wilcoxon signed rank test

details are shown in Appendix C.

Table 4.8: The results of the first level for Naïve Bayes (NB), SVM, and MaxEnt
Classifier Micro-f1 Macro-f1 Precision Recall Production Rate Hloss
NB-unigram 0.72 0.67 0.71 0.73 88% 0.03
NB-bigram 0.75 0.70 0.73 0.76 92% 0.02

NB-FPR-unigram 0.72 0.68 0.68 0.77 100% 0.03
NB-FPR-bigram 0.75 0.71 0.71 0.79 100% 0.02
SVM-unigram 0.75 0.70 0.82 0.69 83% 0.02
SVM-bigram 0.76 0.71 0.83 0.70 83% 0.02

SVM-FPR-unigram 0.76 0.73 0.76 0.76 100% 0.02
SVM-FPR-bigram 0.77 0.74 0.77 0.78 100% 0.02
MaxEnt-unigram 0.74 0.70 0.81 0.69 82% 0.02
MaxEnt-bigram 0.75 0.70 0.84 0.68 80% 0.02

MaxEnt-FPR-unigram 0.76 0.73 0.76 0.76 100% 0.02
MaxEnt-FPR-bigram 0.77 0.73 0.77 0.77 100% 0.02
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Table 4.9: The results of the second level for Naïve Bayes (NB), SVM, and MaxEnt
Classifier Micro-f1 Macro-f1 Precision Recall Production Rate Hloss
NB-unigram 0.60 0.56 0.57 0.64 82% 0.01
NB-bigram 0.62 0.57 0.57 0.67 88% 0.01

NB-FPR-unigram 0.60 0.57 0.54 0.69 100% 0.01
NB-FPR-bigram 0.62 0.58 0.55 0.70 100% 0.01
SVM-unigram 0.63 0.59 0.75 0.55 71% 0.01
SVM-bigram 0.64 0.58 0.76 0.55 71% 0.01

SVM-FPR-unigram 0.66 0.63 0.66 0.66 100% 0.01
SVM-FPR-bigram 0.67 0.63 0.67 0.66 100% 0.01
MaxEnt-unigram 0.62 0.58 0.73 0.54 70% 0.01
MaxEnt-bigram 0.62 0.55 0.77 0.52 66% 0.01

MaxEnt-FPR-unigram 0.66 0.63 0.65 0.66 100% 0.01
MaxEnt-FPR-bigram 0.66 0.62 0.67 0.65 100% 0.01

Table 4.10: The results of the third level for Naïve Bayes (NB), SVM, and MaxEnt
Classifier Micro-f1 Macro-f1 Precision Recall Production Rate Hloss
NB-unigram 0.52 0.46 0.49 0.56 78% 0.003
NB-bigram 0.51 0.44 0.45 0.60 83% 0.003

NB-FPR-unigram 0.52 0.48 0.46 0.61 100% 0.003
NB-FPR-bigram 0.51 0.45 0.43 0.64 100% 0.003
SVM-unigram 0.56 0.48 0.71 0.47 64% 0.002
SVM-bigram 0.55 0.45 0.71 0.45 62% 0.002

SVM-FPR-unigram 0.59 0.53 0.60 0.58 100% 0.002
SVM-FPR-bigram 0.59 0.52 0.60 0.58 100% 0.002
MaxEnt-unigram 0.55 0.46 0.69 0.46 62% 0.002
MaxEnt-bigram 0.52 0.41 0.72 0.41 55% 0.002

MaxEnt-FPR-unigram 0.59 0.52 0.59 0.58 100% 0.002
MaxEnt-FPR-bigram 0.58* 0.51 0.60 0.57 100% 0.002
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Table 4.11: The results of the fourth level for Naïve Bayes (NB), SVM, and MaxEnt
Classifier Micro-f1 Macro-f1 Precision Recall Production Rate Hloss
NB-unigram 0.49 0.43 0.46 0.53 76% 0.002
NB-bigram 0.46 0.39 0.39 0.56 81% 0.002

NB-FPR-unigram 0.49 0.44 0.43 0.58 100% 0.002
NB-FPR-bigram 0.46 0.41 0.38 0.60 100% 0.002
SVM-unigram 0.53 0.43 0.69 0.43 61% 0.001
SVM-bigram 0.51 0.40 0.68 0.41 58% 0.001

SVM-FPR-unigram 0.56 0.49 0.57 0.55 100% 0.001
SVM-FPR-bigram 0.55* 0.48 0.57 0.54 100% 0.001
MaxEnt-unigram 0.52 0.41 0.68 0.42 58% 0.001
MaxEnt-bigram 0.48 0.35 0.70 0.36 50% 0.001

MaxEnt-FPR-unigram 0.55* 0.48 0.56 0.55 100% 0.001
MaxEnt-FPR-bigram 0.55* 0.47 0.56 0.53 100% 0.001

� SVM and MaxEnt performed similarly, with SVM having a slightly higher recall.

� The overall performance of Naïve Bayes was poor in comparison with the other

two classifiers. Therefore, hierarchical classification was not implemented with

Naïve Bayes. One of the reasons for this poor performance may be the feature

dependency in the data.

� Naïve Bayes had the highest recall and MaxEnt had the highest precision at all

levels of the hierarchy.

� Recall is notably improved in FPR classifiers. However, this improvement comes

at the cost of loosing precision. Increasing the production rate to 100%, im-

proved the overall performance of SVM and MaxEnt since the increase in recall

was more notable than the decrease in precision.

� If macro F1 is notably lower than micro F1, it means that the performance of

the less frequent classes are significantly lower than the more frequent classes.

As we move down the hierarchy, the difference between micro F1 and macro

F1 increases. In the first level, the maximum difference is 5%, while in the

fourth level, the maximum difference is 13%. The performance of the classifi-

cation generally decreases in the lower levels since the data per class decreases,
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and the increase in the difference of micro F1 and macro F1 indicates that

the performance of less frequent classes decreases more significantly than more

frequent classes.

� Naïve Bayes performs better with unigram + bigram features in the first and

second level of the SOC hierarchy. However, it performs better with unigram

features in the third and fourth level of the SOC hierarchy. We cannot confi-

dently draw any conclusions on the effect of the type of features for SVM and

MaxEnt since the effect of the features differ based on levels and classifiers.

� Hamming loss is the fraction of incorrectly classified classes to the total number

of classes. Therefore, it is natural that hamming loss decreases as we move

down the hierarchy.

� Table 4.12 shows the running time for each classifier measured by the sum of

the running times for all four levels.

Table 4.12: Running time of the flat models
Classifier Time (minute)
NB-unigram 3.1
NB-bigram 4.8

NB-FPR-unigram 3.6
NB-FPR-bigram 6.1
SVM-unigram 11.2
SVM-bigram 18.2

SVM-FPR-unigram 11.3
SVM-FPR-bigram 19.8
MaxEnt-unigram 36
MaxEnt-bigram 94

MaxEnt-FPR-unigram 37
MaxEnt-FPR-bigram 95

As shown in Table 4.13, the frequencies of the classes are not in the same range.

Therefore, we look into the performance of the individual classes in the first level of
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the hierarchy with SVM-FPR-bigram. Class 51 (production occupations), which has

the highest frequency, has the highest recall (0.91) and the second highest F1-score

(0.85). Class 25 (education, training, and library occupations), which has a relatively

high frequency, has the highest F1-score (0.9) and precision (0.9). Class 45 (farming,

fishing, and forestry occupations) with an average of 136 records in the training data,

has the lowest F1-score (0.63) and recall (0.56). The lowest precision (0.63) belongs

to class 13 (business and financial operations occupations), which has an average

frequency of 177 records in the training data.

Table 4.13: Frequency, F1-score, precision, and recall of the 23 classes in the first
level of SOC hierarchy implemented with SVM-FPR-bigram

Class Frequency F1-score Precision Recall
11 325 0.68 0.66 0.71
13 177 0.64 0.65 0.63
15 107 0.74 0.75 0.73
17 210 0.75 0.75 0.74
19 177 0.68 0.74 0.63
21 72 0.7 0.72 0.69
23 36 0.77 0.81 0.73
25 273 0.9 0.9 0.9
27 284 0.81 0.83 0.78
29 227 0.82 0.84 0.8
31 54 0.66 0.71 0.61
33 98 0.74 0.75 0.73
35 60 0.75 0.79 0.72
37 53 0.7 0.77 0.64
39 123 0.67 0.73 0.62
41 162 0.77 0.81 0.74
43 329 0.69 0.71 0.68
45 136 0.63 0.71 0.56
47 297 0.72 0.77 0.67
49 486 0.83 0.82 0.84
51 1556 0.85 0.79 0.91
53 389 0.67 0.71 0.64
55 100 0.8 0.81 0.79
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