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ABSTRACT 

 

  

 

ADVANCING FLOOD FLOW PREDICTION MODELS FOR UNGAUGED BASINS  
 

  

 

Rachel Walton       Advisor:  

University of Guelph, 2018     Dr . Bahram Gharabaghi 

 

Predicting peak flows at ungauged basins has been a notable focus in water resources research, 

however the majority of methods are only appropriate for a small area, cannot be translated to 

other jurisdictions, or require variables that are difficult to measure or obtain. 

Through the analysis of over 7000 stream gauges from the USA, this work presents a simplistic, 

unified equation to predict return period peak flows, incorporating influential and easy to obtain 

input variables. Two novel variables are introduced: the Land Use Soil (LUS) factor and the 2 ï 

year return precipitation effect (PE2). The equation achieved an R2 of 0.95, 0.83 and 0.86 on the 

training, testing and southern Ontario data sets, respectively, demonstrating high predictive 

capabilities.  

This research presents a logical method for predicting return period peak flows while advancing 

insight on the implications of land use, soil and precipitation on the magnitude of peak flows.  
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Chapter 1  

1.0 Introduction  

Estimating the magnitude of peak stream flows is an essential component to effectively design 

infrastructure to withstand storm events, protect the public from flooding hazards and to create 

an effective water resource management plan. To achieve these goals, it is necessary to know the 

range in magnitude and the associated frequency of occurrence for the various flood events that a 

basin experiences. For example, the smaller magnitude floods that occur at higher frequencies 

are an important aspect for watershed management, especially in terms of stream geomorphology 

(Shields et al., 2003). The stream flow known as the channel forming discharge causes the most 

change in the channel shape over time and this value is used in tasks such as channel design, 

restoration approaches, channel stability assessments and determining thresholds for sediment 

mobilization (Blanton et al., 2010; Shields, et al., 2003; Doyle et al., 2007). The high frequency 

of occurrence of the channel forming discharge inflicts more change over time on the channel in 

comparison to a high magnitude events that occur at low frequency.   

The high magnitude low frequency flood events are critical for risk management. From October 

2010 to September 2011, the United States of America (USA) reported a total cost of $8.41 

billion dollars of flooding damage, floods which resulted in 108 reported deaths (NOAA, 2013). 

On an annual basis, floods procure the most disaster recovery costs in Canada, being the most 

commonly occurring natural hazard (Natural Resources Canada & Public Safety Canada, 2017). 

Major flooding events can be divided into four main categories: flash floods, urban flooding, 

riverine flooding and coastal flooding (Georgakakos et al., 2014). The severity of flash and urban 

floods is influenced by the amount of precipitation, where basin influences can exacerbate the 

effects of riverine flooding. Coastal flooding is typically the product of hurricanes, which in turn 

can cause inland flash floods, urban floods or riverine flooding (Georgakakos et al., 2014). All of 

these flood types are interrelated, regardless of the flooding type, it is prudent to be able to assess 

the risks of occurrence and the magnitude of the event. 

If a basin has a stream gauge with consistent long-term data, the range of flood flows can be 

determined through a frequency analysis. However, due to lack of resources, rivers worldwide 

are ungauged with minimal historical flow data available. The lack of measured stream flow data 

makes it difficult to determine the range of flows needed for the many aspects of water resource 
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management. This has inspired decades of research dedicated to determining methods to predict 

flood flows at ungauged basins (Hrachowitz et al., 2013). Current prediction methods are 

typically region specific, require difficult to measure or obtain input variables and cannot be 

efficiently to translated to other geographic areas. Storms are now more frequent and severe 

(Hirabayashi et al., 2013; Slater & Villarini, 2016), therefore the ability to develop an accurate 

prediction method has increased in priority. Identifying this gap in knowledge this work presents 

an improved method to predict the magnitude of floods occurring at various frequencies in the 

United States, using hydrologically significant and easily obtained input variables, without 

requiring regionalization. The 2 ï year return period began as the initial prediction focus, which 

is further expanded upon to predict up to the 100 ï year return period.   

A review by Nash & Sutcliffe (1970), emphasized the reality that each river system is part of a 

catchment that is interconnected by common geomorphological and climatic characteristics. This 

idea is the overarching inspiration for the work presented within. The ability to understand the 

catchment relationships from a hydrological perspective is the dominant driving factor in 

developing a good streamflow model (Hrachowitz et al., 2013; Kirchner, 2006). This important 

aspect is often lost in the complexity of modelling, when additional, perhaps redundant, input 

parameters are defined to build an accurate model (Kirchner, 2006). A modelôs ability to produce 

credible results is directly related to the quality of the input data (Ahn & Palmer, 2016; Besaw et 

al, 2010; Mohamoud, 2008; Ouali et al, 2016; Sanborn & Bledsoe, 2006). Taking this into 

consideration, accurate, significant and easy to obtain data is another focus of this study.  

Chapter 2: Literature Review  

2.1 Hydrologic Modelling  

A lack of stream gauges and historical data creates the need for methods to predict streamflow. 

Streamflow is just one aspect of the complex hydrologic cycle, which makes it difficult to 

determine without measurement. Numerous methods have been proposed to predict streamflow, 

all with varying success. Streamflow can be reported in various metrics, for example a daily time 

series of streamflow, the annual low flow statistic or annual peak flow statistics. Regardless of 

the desired streamflow format, prediction methods can be separated into three principal 

categories: physically-based models, conceptual and semi-distributed models, and data driven 

models (Razavi & Coulibaly, 2013). A clear commonality between each of these models is the 
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requirement for input data; however, the amount and complexity of input data varies between 

model types.   

For predicting streamflow, conceptual and physically based models focus on the form and 

functions of the stream system, to represent the hydrologic processes through mathematical 

approaches (Noori & Kalin, 2016; Zhang, Singh, Wang, & Yu, 2016). These models require an 

initial hypothesis on the hydrologic processes to develop a framework for the model. The 

structure of these models is defined by the coupled hypothesis and hydrologic theories initially 

made, which dictates the required input (Mount et al., 2016). This can introduce a large number 

of input parameters which can be hard to determine with accuracy (Noori & Kalin, 2016). 

Examples of conceptual streamflow models include the Soil and Water Assessment Tool 

(SWAT) and HBV (Razavi & Coulibaly, 2013). Physically-based streamflow models include 

MIKE-SHE, TR-55, and TOPMODEL (Beven & Kirkby, 1979; Razavi & Coulibaly, 2013). 

Physical and conceptual models, although similar, differ in the depth and scale of modelling. 

Conceptual models differ from physical models in the sense that they consider the physical real 

world process, but are in a more simplified form (Xu, 2002). The structure of physical models is 

based on the physical real world processes; in terms of hydrologic modelling, many are based on 

the St. Venant equations (Xu, 2002).   

Data driven models rely on historical data to derive a prediction method from relevant inputs. 

Patterns are deduced to structure the input to give the most accurate output based on the 

historical data (Zhang et al., 2016). The accuracy of the model is determined from a fitness 

function as dictated by the modeler. The residual from the fitness function presents an 

opportunity for the modeler to quantify the error and determine the source, which can be an 

opportunity for further model improvement (Mount et al., 2016). Data driven models also require 

the development of hypotheses, however, instead of affecting the model framework, the 

hypotheses are made regarding what input is pertinent to include (Mount et al., 2016). 

Historically, data driven models were derived from statistical approaches, such as regression 

analysis, which is appropriate for linear systems (Su, Yan, & Tsai, 2012; Zhang et al., 2016). 

Simplifying a complex system such as streamflow to a linear system creates many assumptions 

which can introduce error, therefore data driven model development has been improved by the 

use of soft computing techniques such as artificial neural networks (ANN) and gene expression 
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programming (GEP). The majority of the work involved in developing a data driven model is in 

data preparation. Sophisticated analysis of the data available should be conducted prior to 

modelling, as the output of the model can only be as strong as the input it is provided. A strong 

background and understanding of the processes are still required to ensure that causative input is 

used.  

The type of model chosen should depend on the overall purpose of the modelling activity. This 

work focuses on data-driven models, because once developed, there is no need for calibration, 

and they are typically simple to apply. They require less complex input data and can still produce 

accurate results (Makwana & Tiwari, 2014).  

2.2 Linear Regression  

Linear regression is a commonly used prediction method that relates various basin characteristics 

to the prediction of flood flow quantiles. The form is a linear combination of the prediction 

inputs, to mathematically determine the output. The simple form makes linear regression a 

popular foundation for many models and modelling exercises (Su, Yan, & Tsai, 2012). Although 

a powerful tool in hydrological modelling, without a deep insight into the governing hydrological 

processes, regression may result in predictor variables that lack actual physical relevance 

(Kirchner, 2006; Leclerc & Ouarda, 2007; Mohamoud, 2008).  

An investigation into the connections between basin characteristics and flooding using linear 

regression, conducted by Visessri & McIntyre (2016), found that using elevation as an input 

variable encompasses the effects of a regionôs slope, base flow, percent of open water and soil 

type and therefore was not necessary to include all input variables. Swain & Patra (2017), found 

that basing their prediction equation solely upon drainage area produced worse results when 

compared to a regression analysis using a combination of nine basin characteristics, which shows 

the importance of testing many combinations of input variables in regression. In a recent 

application, Jafarzadegan & Merwade (2017), developed a regression equation based on mean 

elevation, mean watershed slope and main stream slope to develop floodplain maps for ungauged 

basins in North Carolina. Using generalized least squares regression, Rutkowska et al, (2017) 

found that using rainfall, drainage area, elevation, and infiltration as inputs had the greatest 

influence on index flood predictions. These are examples of many applications where regression 

techniques have proved useful in streamflow modelling and flood frequency analysis.  
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2.3 Spatial Proximity  

Spatial proximity methods, which base predictions on the distance between gauged and 

ungauged locations, have produced good results in terms of regional flood frequency analysis 

(Merz & Blöschl, 2005; Oudin et al, 2008; Swain & Patra, 2017). This method assumes that 

neighboring regions should have homogenous climatic and geomorphic characteristics, therefore 

gauged data can be translated to an ungauged location within the region  (Oudin et al., 2008). 

Spatial proximity methods make use of the closest gauged location to translate the flow 

properties to the ungauged location; however, the nearest gauge may be a relatively large 

distance from the specified site, or the closest gauged location may not be representative of the 

ungauged area (Archfield & Vogel, 2010; Mohamoud, 2008). Using a combination of spatial 

proximity and basin characteristics, Merz & Bloschl (2005) found this produced the most 

accurate flow predictions. They have demonstrated that using the flow values from a catchment 

similar to the ungauged catchment should not be the basis of the prediction approach. It is 

important to incorporate basin specific characteristics in prediction.   

2.4 Regionalization  

Past studies have used the technique of splitting catchments into homogenous regions based on 

similar basin characteristics, in unison with regression techniques to develop more accurate 

equations (Zrinji & Burn, 1994). Regionalization is done to reduce prediction error by 

identifying areas with similar characteristics and creating the ability to ñdonateò prediction 

methods based on catchment similarity. Haddad & Rahman (2011), used generalized least 

squares and quantile regression to create flood quantile prediction equations for two separate 

regions in Australia that lacked homogeneity. More recently, Ding & Haberlandt (2017), used 

regionalization techniques to predict design peak flows and found that further effort needs to be 

made to determine the best predictor variables for parameter regionalization. Leclerc & Ouarda 

(2007), attempted to apply canonical correlation analysis to split the study region into 

homogenous catchments to develop regression equations, however, only 29 gauging stations 

were used, which did not produce successful results. Building on this study, Ouali, Chebana, & 

Ouarda (2016), collected data from 424 sites in North America and successfully used non-linear 

canonical correlation to predict flood frequency. This shows that it is critical to have a 

sufficiently large data set when developing a good model, encouraging a large compilation of 

data for this study.   
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2.5 Return Period Peak Flows 

In flood frequency analysis, peak flows are frequently referred to in terms of return period. 

Return period defines the probability that a certain magnitude of streamflow will be exceeded in 

any given year. The common return periods defined in the water resource field are the 2-year, 5-

year, 10-year, 25-year, 50-year and 100-year return period. Out of these listed probabilities, the 

2-year return period has the highest probability of occurring, where the 100-year return period 

has the smallest probability of occurring in any given year. In this study, the 2-year return period 

began as the initial focus. This specifically means there is a 50 percent chance that the flow will 

be equaled or exceeded in any given year (USGS, 2016). This flow is important to know for 

water resource applications. The approximate range of the 1.5 year to 2 ï year return period has 

been related to the channel forming discharge in many studies (Blanton et al., 2010; Shields, et 

al., 2003; Dolye et al. 2007). Channel forming discharge is often related to the bankfull depth in 

a stream, which is further related to the same range of return periods  (Bunte et al., 2014; Pickup 

& Warner, 1976; Schneider et al., 2011). Bankfull refers the depth of water in the channel at 

which the main channel is at full capacity; any higher depth would result in flow onto the 

floodplain. The flow associated with bankfull depth is important for assessing channel capacity.  

In stormwater management design, peak flows ranging from the 2 ï year to the 10 -year are used 

in sizing the minor system which typically consists of storm sewers, ditches and swales (Ontario 

Ministry of the Environment, 2003). These are examples of how the 2 ï year peak flow is useful 

in water resources. It is critical to know for floodplain mapping, assessing floodplain health and 

risk assessment.  

Knowledge of higher return periods is also needed for many aspects of design and risk 

assessment. The National Flood Insurance Program uses the 100-year flood as the base flood that 

must be designed for to acquire insurance in any new development (FEMA, 2006). Under the EU 

Flood Directive, areas that are under high risk of flooding require the development of flood 

hazard and flood risk maps which identify various flooding scenarios, such as the areas at risk of 

at least up to the 100-year flood, more extreme flooding events, and events with high probability 

of occurrence such as the 2-year flood (European Commission, 2013). Due to the natural 

evolution of streams overtime, along with human impacts, land use change and climate change, 

long term data along with current data is valuable in understanding and developing accurate 

predictions for flood flows (Parkes & Demeritt, 2016). A fundamental problem stemming from 
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the requirement of the 100-year flood for design and flood protection is that there are very few 

gauges or data sets internationally that have collected information for over 100-years (Parkes & 

Demeritt, 2016). This means that the 100-year flood must be extrapolated from relatively short-

term data. Having an accurate prediction method for the frequently measured events such as the 

2 ï year peak flow gives more confidence in predicting the higher return periods. Therefore the 2 

ï year return period is the initial focus in this study. 

2.6 USGS Prediction Equations  

The United States Geological Survey (USGS) has developed an extensive set of regression 

equations for predicting return period peak flows at ungauged basins within the USA. This has 

provided a prediction solution for the lack of streamflow data within the USA.   

Table 1 displays the generic form of the 2 ï year peak flow prediction equation developed by the 

USGS for 17 states in the USA. Table 2 provides explanations for each variable abbreviation 

found in the Table 1 equations. Each equation set is published in a separate report by the USGS 

which is referenced in Table 1. For the remainder of this report, the USGS reports referenced in 

Table 1 will be referred to collectively as the USGS annual exceedance reports. For the full set of 

regression equations developed for each state refer to Appendix A   

The equations in Table 1 are called generic because each state, excluding Vermont and Alaska, 

has been divided into different regions for prediction which has resulted in multiple different 

prediction equations for each state. The single alphabetic letters represent numeric coefficients 

which vary depending on the region. The number of regions for each state range from one region 

to eight regions. Counting each regions equation, Table 1 represents 76 USGS developed 

equations from the 17 listed states.  

Different region delineation techniques were used depending on the state. The first technique 

based delineation on similarities between physiographic regions, basin characteristics and 

geographic features. The second technique involved performing a preliminary regression 

analysis and then grouping gauges with similar residuals together to form regions. In the second 

technique some scientific expertise was given based on physiographic regions. Delaware, 

Minnesota, Montana, Washington, Tennessee and Idaho developed the regions based on the first 

method (Berenbrock, 2002; Law & Tasker, 2003; Lorenz, Sanocki, & Kocian, 2010; Mastin et 

al., 2016; Parrett & Johnson, 2004; Ries III & Dillow, 2006), where West Central Florida, 
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Pennsylvania, New York, New Jersey, Ohio, Wisconsin, Iowa and Arkansas used the latter 

method (Eash, Barnes, & Veilleux, 2013, 2016; Hammett & DelCharco, 2005; J.F. Walker and 

W.R. Krug, 2003; Koltun, 2003; Lumia, Freehager, & Smith, 2006; Roland & Stuckey, 2008; 

Watson & Schopp, 2009). The problem with developing regions based on the residuals from a 

preliminary regression analysis is that the regions will be subject to bias based on the initial 

variables included and the initial return period the regression is based on. New Yorkôs regions 

were based on the residuals from predicting the 50 ï year return period, where Pennsylvaniaôs 

regions were based on the residuals from predicting the 100 -year return period. These states 

boarder each other which compounds the inconsistencies between the neighbours.   

Each regionalized equation is very successful at predicting peak flows when compared to the 

observed stream gauge data. The difficulty with these equations arises when attempts are made 

to apply them to other regions. The equations have variables that are specific to the region and 

the numerical constants in the equation are specifically calibrated for that area. For example, 

Iowa includes the variable DESMOIN, which is the percent of the basin cover within the Des 

Moin Lobe landform region. This variable is specific to Iowa and is irrelevant to flood prediction 

in other areas. Idaho includes two very specific slope variables, NF30 and S30, which represent 

the percent of north facing slopes greater than 30% and the percent of all slopes greater than 

30%. NF30 is only included in region 5 and S30 is only included in region 8. It does not seem 

logical that the direction of the slope face would impact the peak flow, and considering it is only 

used in 1 of 76 equations adds further question to the significance. In many of the states snow 

fall contributes seasonally to the overall precipitation received by a basin, however it is only 

incorporated as a variable in some form in two equations overall. New York only uses MXSNO 

in region 3 and Wisconsin uses SNOW in region 4. It is likely that in most of the other equations 

snowfall is incorporated into the equation through another variable. For example, floods in 

Montana are often driven by snowmelt however snow is not provided as input in any direct form. 

ELEV and E6000 are used as inputs which indicate mountainous areas. The mountainous areas 

typically receive more snow, and therefore this may be an indirect method to describe the snow 

impacts. Idaho is another state that receives snowfall but does not incorporated it directly as an 

input. Idaho incorporates ELEV instead and describes in the annual exceedance report that the 

areas with higher ELEV receive more precipitation.  
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Although many inconsistencies regarding the equations were noted above, analyzing the 

equations, many similarities are also noticed. Every equation incorporates DA. MAP is the most 

frequently used precipitation variable. Land cover variables tend to be either FOR or STOR. The 

multiplicative form is the most common equation structure. These similarities urge the 

hypothesis, that a single equation using the most influential basin characteristics can be created 

to represent the 2-year peak flows produced by basins of diverse climatic, topographic and 

geological properties. Although just the generic form of the 2 ï year peak flow is represented in 

Table 1, the USGS has developed equations covering a range of return periods for each state. 
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Table 1: The generic form of the 17 states set of regression equations, developed by the USGS, and used for analysis in this study. The number of regions used indicates the 

number of equations developed. 

State Generic Form of 2-Year Peak Flow Regression Equation Number 

of 

Regions 

Reference 

Alaska a (DA)b (MAP)c 1 (Curran, Barth, Veilleux, & 

Ourso, 2016)  

Arizona** a (DA)b (MAP)c 5 (Paretti, Kennedy, Lovina A. 

Turney, & Veilleux, 2014)  

Arkansas*, * *  a (DA)b (MAP)c (SL)f (BSHAPE)u  5 (Eash et al., 2016)  

Delaware* a (DA)b (FOR+g)h (SOILA+1)i (IMP)j (SL)f 2 (Ries III & Dillow, 2006) 

Idaho* a (DA)b (MAP)c (FOR+g)h (ELEV/k)k2 (NF30+1)l (SL)f (S30+1)m 9 (Berenbrock, 2002) 

Iowa**  (DA)a10(C-D*I24H10Y-t*CMM^E)(DESMOIN+1)^F  3 (Eash et al., 2013) 

Minnesota * a (DA)b (SL)f (STOR+d)e (SOILA+1)i (ROFF)o 6 (Lorenz et al., 2010) 

Montana a (DA)b (MAP)c (FOR+g)h (ELEV/k)k2 (E6000+1)p 8 (Parrett & Johnson, 2004)  

New Jersey * a (DA)b (STOR+d)e (SL)f (POP_DEN+1)q 5 (Watson & Schopp, 2009)  

New York a (DA)b (MAP)c (STOR+d)e (FOR+g)h (ROFF)o (LAG+1)w (MXSNO)x (SR)z (EL12+1)y (SL)f 6 (Lumia et al., 2006) 

Ohio * a (DA)b (STOR+d)e (SLPFM)f 3 (Koltun, 2003) 

Pennsylvania a DA)b (ELEV)k2 (0.1STOR+d)e (0.01PER_CB+1)A (0.01PER_UR+1)B 4  (Roland & Stuckey, 2008) 

Tennessee * a (DA)b (SL)f (CF2)r 5 (Law & Tasker, 2003) 

Vermont * a (DA)b (MAP)c (STOR+d)e 1 (Olson & Veilleux, 2014) 

Washington*, * *  a (DA)b (MAP)c 4 (Mastin et al., 2016)  

West-Central 

Florida * 

a (DA)b (STOR+d)e (SLPFM)f 4 (Hammett & DelCharco, 2005) 

Wisconsin  a (DA)b (STOR+d)e (SL)f (FOR+g)h (PERM)n (I24H25Y-4.2)t (SNOW)s 5 (J.F. Walker and W.R. Krug, 

2003) 

*Data set used in training 

** Generic form varies from region to region, most common generic form displayed (refer to Appendix A for full set of equations)   

*** Single alphabetic letters represent a numerical coefficient associated with the variable, which differs over the various regions  
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Table 2: Definition of the abbreviations used in the Table 1 equations 

Abbreviation Definition Units 

BSHAPE Basin shape factor - 

CCM Constant of channel maintenance mi2/mi 

CF2 Climate factor with a 2-year recurrence interval  - 

DA Contributing drainage area mi2 

DESMOIN Percent of basin area within Des Moines Lobe landform region % 

E6000 Percent of basin with an elevation above 6000 feet % 

EL12 Percent of basin at or greater than 1,200 ft above sea level % 

ELEV Mean basin elevation  ft 

FOR Percent of basin area covered by forest % 

IaHbY Mean a-hour rainfall intensity that can be expected to be 

equalled or exceeded on average every b years within the 

drainage basin  

inches 

IMP Percent of basin area with impervious ground cover % 

KSATSSUR Average saturated hydraulic conductivity of soil µm/s 

LAG Basin lag factor- main channel length divided by the square 

root of (upper basin slope+1) + (lower basin slope+1) 

- 

MAP Mean annual precipitation  inches 

MXSNO Seasonal maximum snow depth, 50th percentile  inches 

NF30 Percent of north facing slopes greater than 30%  % 

PER_CB Percent of carbonate bedrock in basin % 

PER_UR Percent of urban area in basin % 

PERM Average soil permeability rate in/hr 

POP_DEN Population density  capita/mi2 

ROFF Generalized mean annual runoff in/yr 

S30 Percent of all slopes greater than 30% % 

SL Slope of main channel ft/mi, -, deg, % 

SNOW Mean annual snowfall  inches 

SOILA Percent of soil in hydrologic soil type A  % 

SR Slope ratio (SL/BS) - 

STOR Percent of basin area covered by water storage (lakes, 

wetlands, etc.) 

% 
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2.6.1 Developing the USGS Equations  

The equations developed by the USGS employed ordinary least squares regression (OLS) or 

generalized least squares regression (GLS). OLS uses equal weights for all flow estimates 

regardless of reliability, where GLS accounts for variability in the accuracy and length of record 

of flow estimates (Stedinger & Tasker, 1985). GLS considers differences in record lengths of 

data on the dependant variable. The annual peak flow series from the gauged stations vary in 

record length, therefore GLS is the preferred regression technique for this situation. (Aziz, 

Rahman, Fang, & Shrestha, 2014; Haddad, Rahman, & Kuczera, 2011; Haddad & Rahman, 

2012; Stedinger & Tasker, 1985). In the case of the USGS equations OLS was usually applied 

first to determine the input variables to include and GLS was then used to refine the equation.  

The peak flow statistics used to regress the USGS prediction equations were derived from the 

annual maximum peak stream flow records from each gauge. The annual maximum peak 

streamflow series consists of the maximum instantaneous streamflow value recorded in each 

water year for the period of record. A problem with using this method is that high peaks may 

occur at multiple times within the year but are not included because they are not the maximum 

(Nagy, Mohssen & Hughey, 2017). Some years may have relatively low peaks compared to the 

average which introduces outliers. Another approach that can be used is the partial duration 

series. The partial duration series includes all peaks in the water year above a certain threshold. It 

is not commonly used because there is a lack of guidance on determining an appropriate 

threshold (Nagy et al. 2017).  

The maximum peaks were fit to the Log-Person Type III statistical distribution as per 

Interagency Advisory Committee on Water Data (1982). Using the Log-Pearson Type III 

distribution the peak flow return periods were determined incorporating only stations that had at 

least 10 years of recorded annual peak discharges. Stations that are significantly impacted by 

regulation were eliminated from analysis to better represent natural flow regimes.  Log-Pearson 

Type III distribution calculates the exceedance probability by calculating the log base 10 of the 

annual peak flow discharge, Qx, at the selected exceedance probability P:  

ÌÏÇὗ ὢ ὑὛ 

Equation 1: Log-Person Type III exceedance probability of the annual peak flow discharge Qx 

Where:  
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Equation 2: Mean of the annual peak flow  

Ὓ
Вὢ ὢ

ὔ ρ

Ȣ

 

Equation 3: Standard deviation of the mean X 
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Equation 4: Skew coefficient of X, as per Log Person Type III probability 

X represents the logarithm of the annual peak flow, N represents the number of data points, ὢ is 

the mean of X, S is the standard deviation of X and G is the skew coefficient of X. The skew 

coefficient quantifies the inequality between the annual peaks, which is influenced by high or 

low outliers. To overcome the bias inflicted by high or low outliers the skew coefficient is 

weighted by a regional skew coefficient. The regional skew coefficients for the USA can be 

taken from a National map depicting the values in Bulletin 17 B. K is a function of G and is 

determined based on the exceedance probability in question. For values of K, one is refereed to 

Interagency Advisory Committee on Water Data (1982), Appendix 3, where the values are listed 

depending on the exceedance probability P and the skew coefficient G.  

2.7 Case Studies  

The equations from the USGS annual exceedance reports are an example of a very large-scale 

regression analysis. In addition to the USGS studies, research studies performing similar 

analyses in locations around the world were investigated. Haddad, Rahman, & Kuczera (2011) 

used GLS to create empirical equations to predict a range of return periods, from the 2-year to 

the 100-year return period in New South Wales Australia. Two regions were defined to create the 

equations because of distinct differences noted in hydrological characteristics between the 

western and the northern region. The equations developed rely on drainage area (DA) and the 

design rainfall intensity, which presents a simplistic approach to peak flow prediction. The 2-

year return period equations (Equation 5, Equation 6) for both regions are: 

ÌÏÇ ὗς  σȢτφρȢςυÌÏÇὈὃ ςȢτπÌÏÇ Ὅȟ  

Equation 5: 2 - year return period prediction equation developed by Haddad et al (2011) for Eastern New South Wales, Australia 
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ÌÏÇ ὗς  σȢυχρȢσφÌÏÇὈὃ ςȢρψÌÏÇ Ὅȟ  

Equation 6: 2 - year return period prediction equation developed by Haddad et al (2011) for Western New South Wales, 

Australia 

Analyzing the regional equations developed in the study, it is interesting to note that the 

coefficients associated with DA and the design rainfall intensity are very similar, which adds 

strength to the hypothesis developed herein, that regionalization is not necessary. Similar to the 

many USGS equations, DA is important, along with a climatic variable, showing the importance 

of these two variables in flood prediction, in a climate scenario different that the USA.  

An additional study conducted by Haddad & Rahman (2012) implemented a Bayesian GLS 

regression technique with the region of influence approach (ROI) to conduct regional flood 

frequency analysis in ungauged catchments. This study disagreed with geographic and 

administrative boundaries dictating the division of homogenous regions for flood frequency 

analysis. Using the ROI approach, the regions were formed based on the similarity in catchment 

attributes and geographic characteristics, instead of political boundaries. When examining the 

return periods, they found that the 2-year peak flow had greater spatial variability compared to 

higher return periods, which indicates this smaller return period is dominated by local basin 

factors.  

A study carried out in Australia by Zaman, Rahman, & Haddad (2012) conducted a flood 

frequency analysis, using OLS regression, on arid and semi-arid regions. Similar to the study 

conducted by Haddad & Rahman (2011), DA and the design rainfall intensity were found to be 

the most important predictor variables for determining the peak flows at ungauged basins 

although this study looked at the mean annual flood, instead of predicting specific return periods. 

Equation 7 is the prediction equation developed.  

ÌÏÇὗ  ρȢσωπȢτωÌÏÇὈὃ σȢσυὍ  

Equation 7: Mean annual flood prediction equation for arid/semi arid region in Australia developed by Zaman et al (2012) 

It was found that the prediction accuracy using the equation was smaller than in non-arid regions, 

which highlights that by using the same variables for prediction between arid and non-arid 

regions an important variable is missing. Aridity adds an additional complexity to the 

hydrological cycle, as rainfall is less frequent, but severe floods still do occur. Further 

investigation into factors controlling floods occurring in arid regions is required.  
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Comparing the case studies, the most interesting difference between Equation 5 and Equation 6 

developed by Khaled et al. (2011) and Equation 7 developed Zaman et al (2012) is the emphasis 

on DA. In Equation 7, DA plays a smaller role in prediction overall, which is augmented by the 

higher influence of precipitation. Another interesting dimension of Equation 7 is that MAP is not 

used for predicting the average flow, instead, I12_2 is used, which is the design rainfall intensity of 

the 2 ï year return period for a 12-hour duration. In the majority of the USGS equations in Table 

1, MAP is the climatic precipitation variable used for prediction.  

2.8 Artificial Neural Networks (ANN)  

ANN is a type of machine learning gaining popularity in solving complex water resource 

problems. The ANN model has the capability to empirically create solutions from a set of data 

without any prior understanding (Burn et al, 1999). Consisting of a diverse network of layers 

interconnected by neurons, an ANN network mimics the way a human brain is capable of 

learning from the given input data to derive patterns that lead to the specified output (Atieh et al., 

2015). This modelling is a black box approach in terms of performance, however, these models 

have brought to light some very important aspects of hydrological modelling. Kumar et al. 

(2015), compared the use of ANN, fuzzy computing and L-moments to create a regression 

equation relating catchment area and flood quantiles. They were able to develop a physical 

equation, however, accuracy was improved by the use of soft-computing techniques (Kumar et 

al., 2015).  

Besaw et al. (2010) were successful in developing an ANN model to predict streamflow for a 

specific drainage basin and translate this model to predict stream flows at another basin. They 

attribute their success to the similar basin characteristics used in the training and testing sets. 

They suggest further work should be applied to see how robust the ANN models are at predicting 

streamflow at basins with varying characteristics.  

Using streamflow data and catchment climatic data from 452 gauging stations in eastern 

Australia, Aziz et al. (2014) conducted a flood frequency analysis using both the traditional 

quantile regression approach and ANN modelling. They used inspiration from past flood 

frequency analyses to determine the most influential variables for prediction, and then applied 

various combinations of these variables to predict the peak flows, determining an optimal 

combination. Regionalization was used to develop the equations, however, instead of basing the 
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regions on state boundaries, two regions were developed based on whether precipitation was 

dominant in the summer or the winter. This is a more hydrologically justified approach to 

regionalization; however, regionalization may have still been avoided by including a variable 

that would represent this precipitation variation.  They found that the best peak flow predictions 

were obtained from the ANN approach using only DA and design rainfall intensity.  

Aziz, Rai, & Rahman (2015) conducted a flood frequency analysis using a genetic algorithm 

approach to ANN, referred to as GAANN and back propagation technique for ANN, referred to 

as BPANN. Similar to Aziz et al., (2014), the data used in this study came from 452 stream 

gauging stations located in eastern Australia. They found both ANN methods, using just DA and 

design rainfall intensity, outperformed the traditional regression equations.  

DA and design rainfall intensity have been highlighted in a vast number of studies as the best 

predictor variables, regardless of the method used to generate the prediction (Aziz et al., 2014, 

2015; Khaled Haddad & Rahman, 2011; Zaman et al., 2012). This emphasizes the importance of 

understanding the relation between DA and rainfall intensity. Each ANN case study investigated 

connects the variables in a different manner so although the input remains the same, the 

statistical results vary. It is difficult to understand the connection between the two variables with 

the ANN approach.  The user supplies input, and then through the hidden layers the desired 

output is generated. This shadows how these variables are connected to generate the output. 

Dawson et al. (2006) used ANN modelling for flood frequency analysis and pointed out that 

ANN cannot account for physical processes occurring, and that results can be highly variable 

dependent on the amount of input data available. Little justification has been provided in the 

papers examined as to why DA and design rainfall intensity are good predictor variables aside 

from they have been frequently used in the past and they produced the best statistical results. 

There is no question that DA and precipitation play a dominant role in the magnitudes of peak 

flows, however, this study aims to shed more light on the role each variable plays in the 

equation.  

2.9 Gene Expression Programming (GEP)  

GEP is another machine learning tool that is more recently being applied in hydrologic 

modelling. Seckin & Guven (2012) were the first to apply GEP to predict peak flows at 

ungauged streams in Turkey. They created a GEP model using DA, ELEV, longitude, and 
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latitude of the basin to predict peak flows. The GEP model achieved an R2 of 57.4%, 

outperforming the classical logistic regression model which achieved an R2 of 42.3%.  

Zorn & Shamseldin (2015) used GEP to develop prediction equations for the 10-year and 100-

year peak flows for the Auckland Region in New Zealand. The best GEP equations developed 

were based on DA, catchment slope, and the elevation ratio. It was surprising that precipitation 

was not included, however, they emphasized that the study area was small, so precipitation could 

be assumed constant across the study area, which may not be the case if this model was applied 

to other study areas. The GEP model outperformed the traditional regression techniques applied, 

however, it was recommended that GEP is used as an enhancement to traditional techniques and 

not purely as a replacement.  

Creating flow duration curves (FDC) at ungauged basins, Hashmi & Shamseldin (2014) 

demonstrated the usefulness of GEP modelling in determining the most relevant input 

parameters. In addition to the FDC creation, they also developed an equation for predicting the 

median annual flow, based on DA and MAP. GEP, along with other machine learning tools can 

be helpful in not only developing a model but illuminating relationships that may not be 

outwardly apparent (Tayfur, 2017). Hashmi & Shamseldin (2014) did not check for correlation 

between input parameters because as they stated, GEP is capable of reducing redundant inputs. 

Although this is true, higher trust and greater understanding of the model will be gained if 

appropriate measures are taken to select appropriate input data prior to modelling.   

Chapter 3: Objectives and Scope  
The objective of this work is to develop one equation that can accurately predict the 2-year peak 

flow at ungauged basins within the USA by developing an understanding of each variableôs 

hydrological significance. A river is a river, regardless of its geographical location, using key 

parameters one can describe the nature of a river (Wolock et al, 2004). With a strong 

understanding gained, the combination of the most influential variables will predict the peak 

flows for catchments extremely diverse in climate, topography, and hydrology. The main 

hypothesis formed, shaping the research conducted, is that by learning from the driving factors 

behind each variable involved in current regression models, the 2-year peak flow can be 

predicted to a high degree of accuracy using a single equation for basins diverse in nature. To 

test the transferability of the equation, it will be tested on another area outside of the USA. A 
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similar methodology will be applied to determine if the same combination of variables can be 

applied to predict peak flows from higher return periods.   

The development of the equation was carried out in four main phases, with each phase building a 

foundation for the next. The first phase involved analyzing the regionalized regression equations 

developed by the USGS for inspiration and guidance on key variables and equation structure. 

Taking this insight forward, one equation was developed. To improve the predictive validity of 

the equation, two new variables were generated, the Land Use Soil (LUS) factor and the 2 ï year 

precipitation effect (PE2) variable. These new variables present a novel twist on hydrological 

principles known to impact peak flows, adding a unique flavour to this equation. The fourth 

phase expanded upon the equation to predict higher return periods, up to the 100 ï year return 

period. This introduced the DA exponent (Ŭ) and the precipitation increase (Ix) concept. 

Once the equation was developed, to further test the suitability of using PE2 over MAP, two GEP 

models were generated. Additionally, the GEP phase was motivated by the curiosity to establish 

if a more complex model could produce significantly better predictions than the equation.  

The final step of the study was to test the equation on an area outside of the USA. Southern 

Ontario was chosen because data was available, and the close proximity to the USA made it a 

logical first application outside the original study area.  

The remaining chapters outline the methods followed to develop the equation, the results 

obtained and a discussion on the insight and relevance of the results, followed by conclusions, 

limitations, and recommendations.    

Chapter 4: Materials and Methods  

4.1 Site Selection and Analyzing the USGS regression equations  

The USA was chosen as the area of focus for this study due to the large amount of stream 

gauging data available and its expansive land mass covering a wide area of differing climatic, 

topographic and hydrological characteristics. This fits within the requirements to create a robust 

equation and prove the overall hypothesis of the study; one equation can predict peak flows for a 

very diverse area.  

The USGS has a very diverse network of stream gauging stations, with a rich set of historical 

data. This information is publicly available on the USGS National Water Information System: 



 

19 

 

Web Interface (USGS, n.d.). Current stream conditions are available for 15 to 60-minute 

intervals at 10,126 sites. Historical observations are available for 16,275 active and discontinued 

sites. For defined periods of records daily data is also available for 27,815 stream gauges 

monitored by the USGS (USGS, n.d.). Although this seems like a large number of stream 

gauges, this only covers approximately 10% of all the streams in the USA (Besaw et al., 2010).  

To develop an appropriate data set, only stream gauges that were included in a USGS annual 

exceedance report were included initially . Reports developed for 17 states were initially 

collected: Alaska, Arizona, Arkansas, Delaware, Idaho, Iowa, Minnesota, Montana, New Jersey, 

New York, Ohio, Pennsylvania, Tennessee, Vermont, Washington, West-Central Florida and 

Wisconsin. These reports discuss the methods followed to develop the regression equations. The 

equations were developed using regionalization techniques, therefore a total of 76 equations for 

the 17 states were collected. Each report also included the peak flow data that was used to 

develop the regression equation sets, along with all the basin characteristics needed for input to 

apply the equations. To ensure that only the highest quality data were included, the set of 

equations developed for each state were tested on the data provided. Statistical measures, 

displayed in Table 3, were calculated for each state for assessment. Three statistical measures 

were chosen, as they each give a different indication of how well the data fits the observed 

predictions. R2 indicates variance, Nash-Sutcliffe coefficient of efficiency (NASH) demonstrates 

the predictive power and mean absolute percentage error (MAPE) expresses the forecasting error 

as a percentage. These statistical measures are used throughout the study for various analyses.  
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Table 3: Statistical measures used in this study 

Statistical Measure Abbreviation Equation* Range 

Coefficient of 

Determination  

R2 

Ὑ

ụ
Ụ
Ụ
ợ

В ὕ ὕ ὖ ὖ

В ὕ ὕ В ὖ ὖ Ứ
ủ
ủ
Ủ

 

0 to 1 

  

with 1 being 

the best 

Nash and Sutcliffe 

Coefficient of 

Efficiency 

(Nash & Sutcliffe, 

1970)  

NASH 
ὔὃὛὌρ

В ὕ ὖ

В ὕ ὕ
 

Њ to 1 

 

with 1 being 

the best 

Mean Absolute 

Percent Error  

MAPE 
ὓὃὖὉ

ρππ

ὲ

ȿὕ ὖȿ

ὕ
 

0 to Ð 

 

with 0 being 

the best 

*O represents observed values, P represents predicted values, n represents number of observation used  

 

To further understand each of the equations from the 17 states, the equations were manipulated, 

and the coefficients were optimized using Microsoft Excelôs Solver function. Solver is an 

analysis tool that is capable of optimization, by either maximizing or minimizing, the value of an 

objective cell. It achieves optimal parameters by changing the values in a specified set of cells 

that the objective cell is dependent on. In this case, the statistical measures were optimized by 

changing the coefficients assigned to each basin characteristic. The equations were generalized, 

to eliminate regionalization, making one equation applicable for each state. The goal of the 

generalization process was to see if one equation could statistically outperform the regionalized 

equations. If accuracy was lost an opportunity arose to investigate the importance of 

regionalization. If the original equation had unacceptable prediction abilities (R2< 0.7, 

NASH<0.7) and optimization did not significantly improve the results the state and its data set 

was eliminated from further analysis. Only the best preforming equations were desired.   

Testing each regression equation brought to light many similarities between each of the 

equations. The equations that used similar inputs were grouped together, which highlighted six 

common variables, as summarized in Table 4. If the stream gauging station did not report each of 
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the six variables in Table 4, it was also eliminated for further analysis. After the statistical 

comparison, optimization, variable checks, and data QA/QC the final compilation of the training 

data set consisted of 1509 stream gauges. These stream gauges represented data from 10 states: 

Arkansas, Delaware, Idaho, Minnesota, New Jersey, Ohio, Tennessee, Vermont, Washington and 

Florida.  

Table 4: The range and average of basin characteristics used in the training and testing data sets 

Variable Unit  Training Testing 

Minimum Maximum Average Minimum Maximum Average 

DA km2 0.1 24319 305 0.02 55817 943 

MAP mm 225 4608 1164 102 3835 864 

ELEV m 7.3 2639 510 4 3595 786 

FOR % 0 100 44 0 100 44 

STOR % 0 95 4 0 95 2 

SL m/km 0.001 125 7 0.0006 9 0.35 

Q2 m3/s 0.05 2203 62 0.03 3993 86 

 

The variables reported in Table 4 are common in other flood prediction studies. The most 

common variable, included in every peak flow equation developed by the USGS, is DA. DA has 

been highlighted in numerous other studies, and is evident as the most influential parameter 

when predicating peak flows (Aziz et al., 2014; Di Prinzio, Castellarin, & Toth, 2011; Gizaw & 

Gan, 2016; Haddad & Rahman, 2011; Hashmi & Shamseldin, 2014; Kumar et al., 2015; Muttiah, 

Srinivasan, & Allen, 1997; Seckin & Guven, 2012; Shu & Burn, 2004; Swain & Patra, 2017; 

Zaman et al., 2012; Zorn & Shamseldin, 2015; Zrinji & Burn, 1994). This is intuitive from a 

hydrological perspective, as the larger the land contributing to the stream, the more runoff is 

generated, therefore a larger peak flow will result (Saharia et al., 2017). In the USGS annual 

exceedance reports, DA is typically calculated using topographic maps in GIS to digitize the 

basin outline. The topographic maps are most commonly from the USGS or the National 

Elevation Dataset, but source varies by state.  

MAP is the most common climatic variable included in the USGS regression equations. The 

frequency of flooding events experienced by an area has been found to correlate with MAP, 

proving its importance in prediction (Saharia et al., 2017; Slater & Villarini, 2016). It is included 

in 8 of the 17 equations in Table 1, and other past peak flow studies (Aziz et al., 2015; Besaw et 

al., 2010; Dawson et al., 2006; Di Prinzio et al., 2011; Ding & Haberlandt, 2017; Swain & Patra, 
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2017). According to the USGS annual exceedance reports, precipitation is commonly sourced 

from the Parameter-elevation Regressions on Independent Slopes Method (PRISM), data from 

1971-2000 (PRISM Climate Group, n.d.).  

ELEV and channel slope (SL) were the topographic variables most commonly included. They 

are frequently used in past studies, (Atieh et al., 2015; Ding & Haberlandt, 2017; Jafarzadegan & 

Merwade, 2017; Swain & Patra, 2017), the Table 1 equations, and are obtained easily through 

GIS techniques. ELEV and SL are indicative of whether the area has mountainous or flat terrain, 

which in turn can help describe the type of soil that may be encountered in the catchment 

(Visessri & McIntyre, 2015). To eliminate redundant parameters, it is desirable to include 

variables that can describe multiple parameters, which can be the case with SL and ELEV. 

According to the USGS annual exceedance reports, SL was obtained for each basin using the 10-

85 method. This means the elevations at 10 percent and 85 percent of the main channel length 

are subtracted and divided by the distance between the two points. These measurements were 

taken from GIS using digital elevation maps (DEMs) of resolution varying from 10-meter to 30-

meter. ELEV was obtained through GIS using topographic maps.  

To ensure the model developed is robust to dynamically changing landscapes, it is imperative to 

consider a land use variable (Visessri & McIntyre, 2015). The land use variables most commonly 

incorporated in the Table 1 equations were forest cover (FOR) and storage (STOR). 11 of 17 

equations in Table 1 used at least one of these variables. Both FOR and STOR have been 

negatively correlated with peak flows. FOR will increase evapotranspiration and increase 

abstractions which decrease the magnitude of flow in the stream. It is interesting to note, Preti, 

Forzieri, & Chirico (2011), found that the influence of FOR on peak flow diminished as the DA 

increased. STOR will retain runoff during peak events, again decreasing the magnitude of flow 

in the stream. According to the USGS annual exceedance reports, these variables were obtained 

from the National Land Cover Dataset (NLCD).  

DA, MAP, ELEV, FOR, STOR, SL, and Q2 were all obtained from the USGS annual flow 

exceedance reports to compile the data set to develop a new equation. This data set, containing 

1509 stream gauges, is referred to as the training data set.  



 

23 

 

4.2 ANN Modelling  

The inclusion of each variable listed in Table 4 was justified through literature review and 

review of the equations in Table 1, however, to further quantify the importance of each variable 

on the magnitude of the 2-year peak flow, ANN modelling was employed. ANN is a powerful 

tool as it can derive connections and patterns in data sets that may not be obvious. Palisade 

Corporation NeuralTools was the ANN software used, which is an add-in to Microsoft Excel. To 

develop an ANN model using this software, four steps were followed: Data preparation, 

Training, Testing and Prediction (Palisade Corporation, 2010). Data preparation involved 

organizing the data into the excel spreadsheet and defining the independent and dependent 

variables. For this analysis, Q2 was set as the dependent variable, and the chosen inputs for 

prediction were set as the independent variables. Once the data was prepared, training and testing 

were conducted in the same step. In this study, 80% of the data was used for training and 20% of 

the data was used for testing the ANN model. Training involves taking the random split of 80% 

of the data points and learning off the data by interpolating connections between the independent 

and dependant variables (Palisade Corporation, 2010). Testing takes the remaining 20% of the 

data and uses the connections derived from the training step to predict the dependant variable. 

The success of the testing was measured by statistics such as the percent of correct predictions, 

compared to the observed values of Q2 (Palisade Corporation, 2010). Caution should be taken in 

the training and testing stages to ensure that the model is not over fit to the data set provided. To 

avoid this, a large data set should be used (>1000 data inputs) and the training should not be run 

to excess. The ANN modelling was limited to 100 trials to limit overfitting. During the training 

and testing stage, the variable impacts were calculated, which ranks the inputs in terms of 

influence on the calculated output. This is highly beneficial as it illuminates the most important 

variables. Once the training and testing step produced satisfactory results, the prediction step was 

conducted. The prediction step took the ANN model developed during the training and testing 

and used it to predict a Q2 value for each data point (Palisade Corporation, 2010). 

ANN modelling was not used extensively in this study because it does not explicitly show the 

connections between variables. This inhibits the goal of the study because one of the main points 

is to determine how each variable works together to influence the magnitude of the peak flow 

and to create a simple equation. ANN was applied to justify and rank the variable importance.  
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4.3 Testing Data 

Once the USGS equations in Table 1 were analyzed and optimized, StreamStats was used to 

collect a larger data set with stream gauges in states that were not previously included in the 

regression equation analysis. StreamStats is an open-access online data base that uses GIS to 

allow users to access information including basin characteristics and streamflow statistics for 

stream gauging stations in the United States (Reis III et al, 2008). Only stream gauges that 

reported the same variables reported in Table 4 were included in the set, which led to a larger set 

of 5750 stream gauges, covering 40 states. The range of values in the testing data set are reported 

in Table 4. The locations of the gauges used for training and testing are displayed in Figure 1. 

 

Figure 1: Locations of USGS stream gauging stations used for training and testing the developed equation 

This unconventional approach to developing the training and testing data was taken because as 

the study progressed, it was determined that the scope could be expanded to cover a wider range 

of stream gauges.  The original 1509 training gauges were taken from the USGS annual 

exceedance reports and covered an appropriate range of states to develop the equation on a wide 

range of variables. After the training set was established further investigation into StreamStats 

led to the acquisition of 5750 additional gauges which reported the desired variables. This larger 
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set allowed for testing the equation on the majority of the mainland USA. Testing the equation 

on a larger set of data shows that the model was not over fitted to the training data.  

Both sets have a wide range of values for each parameter and have similar average values, ideal 

for training and testing. Figure 2 a) to n) shows the distribution of each input parameter for both 

the training and testing data set.  

 

 

 

0

200

400

600

800

1000

0

1
0

4

2
0

7

2
8

5

3
3

7

3
8

8

6
4

7

1
0

3
6

1
5

5
4

2
0

7
2

2
5

9
0

7
7

7
0

F
re

q
u

e
n

c
y

Training DA(km 2)

a

0

500

1000

1500

2000

2500

0

1
0

4

2
0

7

2
8

5

3
3

7

3
8

8

6
4

7

1
0

3
6

1
5

5
4

2
0

7
2

2
5

9
0

7
7

7
0

F
re

q
u

e
n

c
y

Testing DA(km2)

b

0

100

200

300

0

5
0

8

1
0

1
6

1
5

2
4

2
0

3
2

2
5

4
0

3
0

4
8

3
5

5
6

4
0

6
4

4
5

7
2

F
re

q
u

e
n

c
y

Training MAP (mm)

c

0

200

400

600

800
0

3
8

1

7
6

2

1
1

4
3

1
5

2
4

1
9

0
5

2
2

8
6

2
6

6
7

3
0

4
8

3
4

2
9

3
8

1
0

F
re

q
u

e
n

c
y

Testing MAP (mm)

d

0

20

40

60

80

100

120

140

0

2
1

3

4
2

7

6
4

0

8
5

3

1
0

6
7

1
2

8
0

1
4

9
4

1
7

0
7

1
9

2
0

2
1

3
4

2
3

4
7

2
5

6
0

F
re

q
u

e
n

c
y

Training ELEV(m)

e

0

100

200

300

400

0

2
4

4

4
8

8

7
3

2

9
7

5

1
2

1
9

1
4

6
3

1
7

0
7

1
9

5
1

2
1

9
5

2
4

3
8 0

F
re

q
u

e
n

c
y

Testing ELEV (m)

f



 

26 

 

 

 

 

0

50

100

150

200

250

300

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

F
re

q
u

e
n

c
y

Training FOR

g

0

200

400

600

800

1000

1200

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

F
re

q
u

e
n

c
y

Testing FOR

h

0

200

400

600

800

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

F
re

q
u

e
n

c
y

Training STOR 

i

0

500

1000

1500

2000

2500

3000

3500

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

F
re

q
u

e
n

c
y

Testing STOR 

j

0

100

200

300

400

500

600

0

1
1

2
3

3
4

4
5

5
7

6
8

8
0

9
1

1
0

2

1
1

4

1
2

5

F
re

q
u

e
n

c
y

Training SL (m/km)

k

0

1000

2000

3000

4000

5000

6000

0.0 1.9 3.8 5.7 7.6 9.5 11.4

F
re

q
u

e
n

c
y

Testing SL (m/km)

l



 

27 

 

 

Figure 2: Histograms representing input variable distribution for comparison between training and testing data sets a) DA in 

training b) DA in testing c) MAP in training d) MAP in testing e) ELEV in training f) ELEV in testing g) FOR in training h) FOR 

in testing i) STOR in training j) STOR in testing k) SL in training l) SL in testing m) Q2 in training n) Q2 in testing  

The DA exhibits a right skew distribution for both the training and testing data set. The majority 

of the data lies within the 52 to 104 km2 range, with the maximum DA at 24,319 km2 for training 

and 55,814 km2 for testing. MAP exhibits a normal distribution showing an appropriate range of 

values for both training and testing sets. Similar to DA, ELEV exhibits a right skewed 

distribution. However, the testing data set contains 271 data points that have elevations greater 

than 2650 m. The testing data set contains stream gauges from more mountainous areas such as 

the Rocky Mountains and the Appalachian Mountains which explains the higher elevations. The 

frequency of FOR from 0-100% is evenly distributed for both the training and testing data set, 

both having most of data points at 10%. STOR also has very similar distributions between the 

two sets. The most frequently occurring STOR falls at 10%. The distribution of SL in the 

training and testing data sets are not consistent. The training set is right skewed, with the 

majority of data points falling in the 2 m/km category, representing flat terrain. The maximum 

slope is greater than 125 m/km which is a very steep slope, characteristic of a mountainous area. 

In the testing data set the majority of the points also lie within the 2 m/km range, however, the 

maximum slope is only 9.5 m/km. The data sets were kept because most of the points lie within 

the same range, however, SL was used with caution as the study proceeded due to the distinct 

differences in distribution.  

The distribution of the 2-year peak flow for both data sets are almost identical in terms of shape. 

Both exhibit a bimodal right skewed distribution. The largest peak, corresponding to the highest 

frequency occurs at 3 m3/s, and the second peak occurs at 28 m3/s. The distribution of the 2-year 
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peak flow shows that although this flow is defined with the same frequency of occurrence, it 

varies in magnitude depending on stream gauge location.  

The similar distributions between DA and Q2 in both data sets further shows the importance of 

the size of the DA on the magnitude of the peak flow. The correlation was tested between DA 

and Q2, shown in Figure 3. Consistent with past findings an increasing trend was found. This 

articulates the predictive power of DA on Q2, necessary for the success of the desired equation.  

 

Figure 3: Correlation between the basinôs DA and observed Q2 from the training data set 

4.4 Developing the Equation  

The equation was developed through an iterative optimization process. A multiplicative form of 

the equation was chosen because it has been used in the USGS equations in Table 1 and is an 

easy form to manipulate without the aid of machine learning techniques. Each of the six 

variables in Table 4 was set to the power of an arbitrary coefficient and multiplied together; the 

form is depicted in Equation 8.  
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Equation 8: Generic equation form used in the trial and error optimization approach to develop the prediction equation 

The resulting Q2 for each gauge was compared to the observed Q2 reported by the USGS for 

that gauge. Excel solver was used to optimize the coefficients associated with each of the six 

variables, by minimizing the sum of the error squared, as calculated by Equation 9 and 

maximizing the correlation, as calculated by Equation 10.  
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Equation 9: Error squared equation used in the equation optimization process 
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Equation 10: Correlation equation used in the equation optimization process 

Many iterations of excel solver were conducted. Each iteration used either Equation 9 or 

Equation 10 as the fitness function. Once the optimization process was exhausted to a seemingly 

optimal state, the processes was ended, and the first iteration of the equation was formed.  

4.5 Development of the Land Use Soil (LUS) Factor 

Motivated to improve the satisfactory results from training and testing of the equation, further 

improvements beyond the relying on inputs similar to the USGS equations was investigated. A 

scaling factor, known as the LUS factor, was calculated by determining the difference between 

the predicted output from the trained equation, and the observed data for each equation. This 

factor was mapped for each gauge using ArcGIS to show a visual representation of variation 

across the USA, to determine any spatial patterns. Spatial patterns were observed by relating the 

LUS to the variations in land use and soil group across the country.   

4.5.1 Land Use Data 

The NLCD 2011, created by the Multi-Resolution Land Characteristics Consortium (MRLC)  

was obtained from ArcGIS online and imported as a layer in ArcGIS, shown in Figure 4 

(Uneplive_team, 2017). The NLCD is a data set that classifies land cover at a spatial resolution 

of 30 meters across the United States. NLCD determines land classification based on a decision-

tree classification using the 2011 Landsat satellite data. Land cover is separated into 16 classes in 

the NLCD, however for the purpose of this study the land use was narrowed into four broader 

classifications based on the 16 classes: water, developed, forest and agriculture.  

Table 5 shows the combination of the original classes that make up the four classification groups. 

The decision to include shrub/scrub in the forest category was made because the canopy cover is 

greater than 20% of the total vegetation, similar to the deciduous, evergreen and mixed forest 

classes. The shrub class includes young trees, and therefore has the potential to grow into a forest 

land class. The grassland/herbaceous category was put into the forest class, instead of agriculture 
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because it is not subject to management or tilling like the agricultural lands are. It has greater 

than 80% vegetative cover and therefore fits better in the forest classification. In both situations 

the error value was very close to the error value in the forest category. More information on each 

of the land classifications can be found at the MRLC under NLCD2011 database (Homer et al., 

2015).  

 

Figure 4: National Land Cover Database for the conterminous USA obtained from ArcGIS online, developed by Homer et al. 

(2015) 
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Table 5: Categorization of the NLCD categories for the purpose of the study and LUS development 

Land Classification for LUS  Land Classifications from NLCD 

Water Open Water 

Woody Wetlands 

Emergent Herbaceous Wetlands 

 

Developed Developed, Open Space 

Developed, Low Intensity  

Developed, Medium Intensity 

Developed, High Intensity  

Barren Land 

   

Forest Deciduous Forest  

Evergreen Forest 

Mixed Forest 

Shrub/Scrub  

Grassland/Herbaceous 

Agriculture  Pasture/Hay  

Cultivated Crops  

 

4.5.2 Hydrologic Soil Group Data 

A soil map depicting the hydrologic soil groups across the USA was obtained from ArcGIS 

online and imported as a layer in ArcGIS, shown in Figure 5. The layer was created from the 

gSSURGO 30-meter for the contiguous USA and 10-meter rasters for other regions, developed 

by the Natural Resources Conservation Services (Esri, 2017).  The GIS layer depicts the spread 

of soil groups based on seven classifications, Groups A, B, C, D, A/D, B/D and C/D. For the 

purpose of this study, the hybrid soil groups were categorized into the original soil groups, 

therefore soils were only classified into groups A, B, C and D. This was done because soils are 

usually only classified into the four main groups, therefore this will make the LUS factor easier 

to determine when the equation is applied outside of the USA. These hydrologic soil groups are 

based on those developed for the SCS curve method. Musgrave (1955) defined the four 

hydrologic soil groups, A, B, C, and D, which provided the foundation for the development of 

the SCS curve (Williams et al, 2012). Soils in group A have the highest infiltration rates, 

consisting of deep sand and aggregated silts with minimal clay and colloid (Musgrave, 1955). 

Group B consists of sand and silt loams of average depth, with moderately high infiltration rates 

(Musgrave, 1955). Group C is classified by shallow soils with below average infiltration rates 
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(Musgrave, 1955). Group D is composed of soils with high clay and colloid content, which 

results in the lowest infiltration rates (Musgrave, 1955). The map had some gaps, where soil data 

had not yet been collected for certain areas. The gaps were small, soil information for the 

majority of each state was available. Points that did not have soil data were eliminated from the 

study.  

 

Figure 5: Hydrologic soil group information for LUS determination obtained from ArcGIS online  

4.5.3 Spatial analysis using ArcGIS 

The land class and soil group information were linked to each gauge using the ArcGIS spatial 

analysis extraction tool. This extracts information from the raster grid cell where the point 

feature is located and adds this information to the point feature attribute table. The interpolation 

option was left at the default setting which takes the information at the center of the grid cell. 

The extraction was performed on both the land class and soil layer. The gauges, with the 

additional land and soil raster information, were then sorted by soil group and land use to 

determine the connection with the LUS factor. A strong correlation was found between gauges 

with the same land and soil combinations and the back calculated error. This led to the 
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development of a set of 16 LUS combinations to incorporate into the equation for the 2-year flow 

prediction.  

4.6 Development of the 2-year return precipitation effect variable (PE2) 

In addition to developing the LUS factor, the 2-year precipitation effect coefficient (PE2) was 

developed as an input variable for the equation. Originally, MAP was chosen as the climatic 

input because it was reported for many gauges (>7000) and it was frequently incorporated in the 

USGS equations. To determine if MAP was the ideal input to describe the climatic contribution 

to the 2-year peak flow, the developed equation was rearranged, and the ideal contributing 

precipitation event was calculated based on Q2 and the other basin related inputs. This revealed 

that in many cases the precipitation influencing Q2 was very different than MAP. Using ArcGIS 

spatial analyst, inverse distance weighted interpolation (IDW) tool, this back calculated 

precipitation factor, deemed the 2-year return precipitation effect (PE2), was mapped for the 

entire USA. IDW interpolation determines the value for each grid cell linearly based on 

surrounding sample points and their inverse distance, with the underlying assumption that 

sample points closer together should have similar values. Within the IDW interpolation tool, the 

variable search radius was selected, which allows interpolation to occur in varying radii from the 

sample point. This was done because some areas have gauges spread further apart, and therefore 

if the search radius was limited, these points would not develop the desired PE2 representation. 

Kriging is another interpolation method in ArcGIS. IDW interpolation was chosen over Kriging 

interpolation as it had better predictive capabilities, with an R2 of 0.73 when compared to 

Kriging interpolation with an R2 of -0.09. Atieh, Gharabaghi, & Rudra (2015), confirmed that 

IDW interpolation performed better than Kriging when mapping MAP on ArcGIS. 

To test the accuracy of the PE2 map, 281 USGS stream gauges outside of the training and testing 

data set were randomly selected. Using ArcGIS, the PE2 value for the gauge was extracted and 

the Q2 was calculated and compared to the observed Q2 at the location. The location of the 

additional 281 stream gauges is shown in Figure 6.  
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Figure 6: Location of USGS stream gauges used to test the applicability of the generated PE2 map 

4.7 Expanding to Higher Return Periods  

The initial focus of the study was to develop an equation for the 2-year peak flow. Once this 

equation was established, the same methodology was applied to determine equations for higher 

return periods. The DA exponent, coined Ŭ, was optimized for the increasing return periods. This 

was done because in all the USGS equations, the variable coefficients changed between return 

periods. As the storms increase in magnitude, the size of the basin has less influence as the 

amount of precipitation takes over. Using excel solver, Ŭ was optimized for each return period, to 

account for the differing influence DA has on increasing return period, and to determine if there 

was a relevant pattern between return periods.  

The governing difference between return periods in the same basin is the amount of precipitation 

received. Therefore, another aspect to modify the equation between return periods was to 

determine a suitable factor to increase the precipitation variable. A comparison between return 

periods at the same gauge was conducted to determine a possible connection or factor that could 

be introduced to linearly increase PE2, without having to modify the existing equation structure. 

The correlation between adjacent return periods is shown graphically in Figure 7 a) ï e).  




























































































































