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ABSTRACT

ADVANCING FLOOD FLOW PREDICTION MODELS FOR UNGAUGED BASINS

Rachel Walton Advisor:
University of Guelph, 2018 Dr. Bahram Gharabaghi

Predictingpeak flows atingauged basins has beemogablefocus in water resources research,
however the majority ainethodsare only appropriate for a small area, cannot be translated to

other jurisdictionsor requirevariables that are difficult to measure or obtain.

Through the analysis of over 7000 stream gauges frotd$i#e this work presents a simplistic,
unified equation to prediateturn periogpeak flows incorporatingnfluentialand easy to obtain
input variables. Twmovel variables are introducetthe Land Use Soil (LUS) factor and thé 2
year return precipitation effect (PEThe equation ddevedan R?of 0.95,0.83and 086 on the
training,testingand southern Ontarigdata setsrespectively demonstrating high predictive

capabilities

Thisresearclpresents a logical method for predicting retpeniod peaKlows while advancing

insight on the implications of land use, soil and precipitation on the magnitude of peak flows.
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Chapter 1

1.0Introduction
Estimaing the magnitude of peatreamflows is an essential component to effectively design

infrastructure to withstand storm events, protect the public from flooding hazards and to create
an effective water resource management plarachieve thesgods, it is necessary to know the
range inmagnitude and thassociatedrequeng of occurrence for theariousflood events that a
basin experiencesor example,iie smallermagnitude floods that occat higher frequencies
are an important aspect for westieed managemergspeciallyin terms ofstreamgeomorphology
(Shields et al., 2003Yhe stream flow known as the channel forming discheagises the most
change in the channel shape over tand this value is used tasks such ashannel design,
restoration approacheshannel stability assessmeatsddetermining thresholds for sediment
mobilization(Blanton et al., 2010; Shields, et al., 20D®yle et al., 200)/ The high frequency
of occurrencef the channel forming discharge inflicts more chaoger timeon the channel in
comparison to a high magnitudeents that occur &w frequency.

The high magnitude low frequency flood events are critical for risk managefnemt.October
2010 to September 2011, the United StafeSmerica (USA)eported a total cost of $8.41

billion dollars of flooding damage, floods which resulted in 108 repaltadhgyNOAA, 2013)

On an annual basis, floods procure the most disaster recovery costs in, Qairagthe most
commorty occurring natural hazai@atural Resources Canada & Public Safety Canada, 2017)
Major flooding events can beviled into four main categories: flash floods, urban flooding,
riverine flooding and coastal floodir{eorgakakos etl., 2014) The severity of flash and urban
floodsis influenced by the amount of precipitation, where basin influences can exadkebate
effects ofriverine flooding. Coastal flooding is typically the product of hurricanes, which in turn
can cause inland flash floods, urban floods or riverine floofeegprgakakos et al., 2014l of
thes flood types are interrelatecbgardless of the floodirtgpe it is prudent to be able to assess

the risks of occurrence and the magnitude of the event.

If a basin has a streagauge with consistetdng-termdata, the range of flood flows can be
determined through a frequency analysis. Howewe,td lack of resources, rivers worldwide
are ungauged with minimal historical flow data availablee lack of measured stream floata

makes it difficult to determine thamge of flows needed for the maaspects of water resource



managemeniThis has inspired decades of research dedicated to deterrmathgds to predict
flood flows at ungauged basi(idrachowitz et al., 2013 Current prediction methods are

typically regionspecific require difficult to measure or obtain input varialdesicannot be
efficiently to translatd to other geographic aregdorms are ow more frequent and severe
(Hirabayashi et al., 2013; Slater & Villarini, 201&)erefore the ability to develop ancurate
prediction method has increased in prioritlentifying this gap in knowledg#is work presents

an improved method to predict the magnitude of floods occurring at various frequencies in the
United States, using hydrologically significant and easily obtained input variables, without
requiring regionalization. Thei2year return peod begaras the initial prediction focus, which

is further expanded upon to predict up to the iL§B8ar return period.

A review byNash & Sutcliffe(1970) emphasized the reality tha&ch river systens part of a
catchment that is interconnected by common geomorphological and climatic characteristics. This
idea is the overarching inspiration for the work presented within. The ability tostizuaethe
catchmentelationsipsfrom a hydrological perspéve is the dominant driving factor in

developing a good streamflow modklrachowitz et al., 2013; Kirchner, 2008)is important

aspect is often lost in the complgxof modelling, when additional, perhaps redundant, input
parameters are defined to build an accurate m@dedhner, 2006) A model 6s abi | it
credible results is directly related to the quality of the input @Fta & Palmer, 2016; Besaw et
al, 2010; Mohamoud, 2008; Ouali et al, 2016; Sanborn & Bledsoe, .ZD&Enhg this into

consideration, accurate, significant and easy to obtain datatisesfocus of this study.

Chapter 2: Literature Review

2.1 Hydrologic Modelling
A lack of stream gauges and historical data creates the neméttowddo predict streamflow.

Streamflow is just one aspect of the complex hydrologic cycle, which makes it difficult to
determine without measurement. Numerous methods have been proposed tstpeadnttow
all with varying successtreamflow can be reportéad various metrics, for exampéedaily time
series of streamflopthe annual low flow statistic @nnual peak flow statistics. Regardless of
the desired streamflow format, prediction methods can be separated into three principal
categories: physicallpased models, conceptual and selstributed models, and dadaven

models(Razavi & Coulibaly, 2013)A clear commonality between each of these models is the



requirement for input data; however, the amount and complexity of input data varies between

model types.

For predicting streamflow, conceptual and physically based models focus on the form and
functions of the streanystem, to represent thydrologic pocesses through mathematical
approachegNoori & Kalin, 2016; Zhang, Singh, Wang, & Yu, 201&hese models require an
initial hypothesis on the hydrologic processes to develop a framework for the model. The
structure of these models is defined by the coupled hypothesis and hydrologic theories initially
made, which dictates the required infMbunt et al., 2016)This can introduce a largeimber

of input parameters which can be hard to determine with acc(Maoyi & Kalin, 2016)

Examples of conceptual streamflow models incliresSoil and Water Assessment Tool

(SWAT) and HBV(Razavi & Coulibaly, 2013)Physicallybased streamflow naels include
MIKE-SHE, TR55, andTOPMODEL (Beven & Kirkby, 1979; Razavi & Coulibaly, 2013)
Physical and conceptual models, although similar, differ in the depth and scale of modelling.
Conceptual models differ from physical models in the sense that they consider the physical real
world processbut are in a more simplified forgXu, 2002) The structure of lpysical models is
based on the physical real world processes; in terms of hydrotagielling many are based on

the St. Venant equatioig¥u, 2002)

Data driven models rely on historical data to derive a prediction method from relevant inputs.
Patterns are deduced to structure the input to give the most accurate output based on the
historical datgZhang et al., 2016)The accuracy of the model is determined from a fitness
function as dictated by the modeler. The residual from the fitness function presents an
opportunity for the modeler to quantifiye error andletermine the sourcevhichcan be an
opportunity for further model improvemefMount et al., 2016)Data driven models also recgii
the development of hypotheséswever instead offfecting the nodel framework, the
hypotheseare made regarding what input is pertinent to inc{ddieunt et al., 2016)

Historically, data driven models were derived from statisticat@gches, such as regression
analysis, which is appropriate for linear syst€Bis, Yan, & Tsai, 201;2ZZhang et al., 2016)
Simplifying a complex system such as streamflow to a linear system creates many assumptions
which can introduce error, therefore ddtavenmodel development has been improved by the

use of soft computing techniques such as artificial neural netwoNd)And gene expression



programming (GEP). The majority of the work involved in developing a data driven model is in
data preparation. Sophisticated analysis of the data available should be conducted prior to
modelling, as the output of the model can dmdyas strong as the input it is provided. A strong
background and understanding of the proceasestill required to ensure that causative input is

used.

The type of model chosen should depend on the overall purpose of the modelling activity. This
work focuses on datdriven models, because once developed, there is no need for calibration,
andtheyare typically simpd to apply. They require less complex input data @anbtill produce

accurate result®akwana & Tiwari, 2014)

2.2Linear Regression
Linear regression is a commonly used prediction method that relates various basin characteristics

to the prediction of flood flow quantile$heform is a linear combination of the prediction

inputs, to mathematically determine themut. The simple formmakes linear regression a

popular foundation for many models and modelling exer¢SesYan, & Tsai, 2012)Although

a powerful tool in hydrological modelling, without a deep insight into the governing hydrological
processeggegression may result in predictor variables that lack actual physical relevance
(Kirchner, 2006; Leclerc & Ouarda, 2007; Mohamoud, 2008)

An investigation into the connectiobstween basin characteristics and floodismg linear
regressioncanducted by Visessri & Mcintyre2016, found that using elevation as an input
variable encompasses the effects of a regionb
type and terefore was not necessary to includergdut variablesSwain & PatraZ017), found

that basing their prediction equation solely upon drainage area produced worse results when
compared to a regression analysis using a combination of nine basin chatrestevhich shows

the importance of testing maopmbinationof input variables imegressionin a recent

application Jafarzadegan & Merwad2017), developed a regression equation based on mean
elevation, mean watershed slope and main stream slojewetopfloodplain maps for ungauged
basins in North Carolina. Using generalized least squares regrd3sikaywska et al(2017)

foundthat usingainfall, drainage area, elevation, and infiltrataminputs hathe greatest

influence on index flood predictions. These are examples of many applications where regression

technigues haverpved useful in streamflow modelling and flood frequency analysis.



2.3 Spatial Proximity
Spatial poximity methods, which base predictionstbe distance between gauged and

ungauged locations, have produced good results in terms of regional flood frequency analysis
(Merz & Bldschl, 2005; Oudin et al, 2008; Swain & Patra, 20T#)s method assumes that
neighboring regions should have homogenous climatic and geomorphic characteristics, therefore
gauged data can be translated to an ugea location within the regiofOudin et al., 2008)

Spatial proximity methods make use of the closest gauged location to translate the flow
properties to the ungauged location; however, the nearest gauge may be a relatively large
distance from the spe®fl site, or the closest gauged location may not be representative of the
ungauged are@Archfield & Vogel, 2010; Mohamoud, 2008)sing a combination of spatial
proximity and basin characteristidderz & Bloschl(2005 foundthis produced the most

accurate flow predictiong hey have demonstratétat usinghe flow values from &atchment
similar to the ungauged catchmehbuld not be the basis of the prediction approach. It is

important to incorporate basin specific characteristics in prediction.

2.4 Regionalization
Past studies have used the technique of splitting catchments into homogenous regions based on

similar basin characteristics, in unison with regression techniques to develop more accurate
equationgZrinji & Burn, 1994) Regionalization is done to reduce prediction error by
identifyingareaswit si mi | ar characteristics and creatin
methods based on catchment similaftaddad & Rahma(R011), used generalized least

squares and quantile regression to create flood quantile prediction equations for two separate
regions in Australia that lacked homogeneity. Moergly, Ding & Haberland{2017), used
regionalization techniqedo predict design peak flows andufad that further effort needs to be
made to determine the best predictor variables for parameter regionalizetitearc & Ouarda
(2007, attempted to apply canonical correlation analysis to split the study region into
homogenous catchments to develop regression equations, however, only 29 gauging stations
were used, which did nproduce successful results. Building on this st@lyali, Chebana, &
Ouarda(2016), collected data from 424 sites in North America and successfully usdahaan
canonical correlation to predict flood frequency. Tlievs that it is critical to have a

sufficiently large data set when developing a good model, encouraging a large compilation of

data for this study.



2.5Return Pend Peak Flows
In flood frequency analysis, peak flows are frequently referred to in t#rnasurn period.

Return period defines the probability that a certain magnitude of streamflow will be exceeded in
any given year. The common return periods defined in the water resource field ayetne?

year, 1Qyear, 25year, 50year and 10§earreturn period. Out of these listed probabilitits

2-year return period has the highest probability of occurring, where thgeldeturn period

has the smallest probability of occurrimgany given yearin this study, the-gear return period
beganas the initial focus. This specifically means there is a 50 percentekizat the flow will

be equaledr exceeded in any given ygatSGS, 2016)This flow is important to know for

water resource applicatioriBhe approximate range of tHe5 year to 2 year return period has
been related to the channel forming discharge in many st{Rla#on et al., 2010; Shields, et

al., 2003 Dolye et al. 200y Channel forming discharge is often related to the bankfull depth in
a stream, which is further related to the same range of return péBadseet al, 2014; Peckup

& Warner, 1976; Schneider et,a2011) Bankfull refers the depth of water in the channel at
which the main channel is at full capacity; any higher depth would result in flow onto the
floodplain The flow associated with bankfull depth is important for assessing channel capacity.
In stormwater management desigeak flows ranging from thei2year to the 10yearareused

in sizing the minor systemvhich typically consists of storm sewers, Hi#s and swalg®©ntario
Ministry of the Environment, 2003These are examples of how thé gear peak flow is useful

in water resources. It @itical to know for floodplain mapping, assessing floodplain health and

risk assessment.

Knowledge of higher return periods is also needed for many aspects of design and risk
assessment. The National Flood Insurance Progranthesé®0year flood as the base flood that
must be designed for to acquire insurance in any new develogateviA, 2006) Under the EU

Flood Directive, areas that are under high risk of flooding require the development of flood
hazard and flood risk maps which identify various flooding scenarios, such as the areas at risk of
at least up to the 10gear flood,moreextreme fboding events, and events with high probability

of occurrence such as they@ar flood(European Commission, 2013)ue to the natural

evolution ofstreams overtime, along with human impacts, laselchange and climate change,

long term data along with current data is valuable in understanding eeldpiag accurate

predictions forflood flows (Parkes & Demeritt, 2016 fundamental problem stemming from



therequirement of the 10@ear flood for design and flood protection is that there are very few
gauges or data sets internationally that have collected information for ovged@)Parkes &
Demeritt, 2016) This means that the 1§@ar floal must be extrapolated frorelatively short
termdata Having an accurate prediction method for the frequently measured events such as the
271 year peak flow gives more confidence in predicting the higher return pefioeieforethe 2

T year return periodsithe initial focus irthis study.

2.6 USGS Prediction Equations
The United States Geological Survey (USGS) has developed an extensive set of regression

equations for predictingeturn periogoeak flows at ungauged basins within the USAis has
providal a predictionsolutionfor the lack of streamflow dataithin the USA

Table 1 displays the generic form of thé gear peak flow prediction equatioleveloped by the
USGSfor 17 states in the USA.able?2 provides explanations for each variable abbreviation
found in theTablel equationsEach equation set is published isgparateeport by the USGS
which isreferenced in Table. For the remainder of this report, the USGS reports referenced in
Tablel will be referred to collectively as the USGS annual exceedance rdparthe full set of

regression equations developed for each state refer to Appendix A

The equations in Table 1 are called generic becadestate, excluding Vermont and Alaska,
hasbeendivided into different regions for prediction which has resulted in multiple different
prediction equations for each stafée single alphabetic letters represent numeric coefficients
which vary dependingn the regionThe number of regions for each state range from one region
to eight regionsCounting each regions equatidmable 1 represeni& USGSdeveloped

equationdrom the 17 listed states.

Differentregion delineation techniquegere used depentj on the staté hefirst technique

based delineatioan similarities betweephysiographic region$asin charactestics and
geographic feature¥he second technique involved performing a preliminaryessgon

analysis and then groupimguges with similar residuals together to form regiomghe second
technique some scientific expertise was given based on physiographic r&gilawgare,
MinnesotaMontana Washington Tennesseand Idaho developed the regions based on the first
method (Berenbrock, 2002; Law & Tasker, 2003; Lorenz, Sanocki, & Kocian, 2010; Mastin
al., 2016; Parrett & Johnson, 2004; Ries Ill & Dillow, 2006here West Cdral Florida,
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Pennsylvania, New York, New Jersé&hio, Wisconsinlowaand Arkansas used the latter

method(Eash, Barnes, & Veilleux, 2013, 206ammett & DelCharco, 2005; J.F. Walker and

W.R. Krug, 2003; Koltun, 2003; Lumia, Freehager, & Smith, 2006; Roland & Stuckey, 2008;

Watson & Schopp, 2009T he problem with developing regions based on the residuals from a
preliminary regression analysssthat the regions will be subject to bias based on the initial

vari ables included and the initial return per
were based on the residuals from predicting theyy® ar r et urn peri od, wher
regions were based on the residuals from predicting they£@0 return period. These states

boarder each othevhich compounds thiconsistenciebetween the neighbours

Each regionalized equation is very successful at predicting peak flows when compared to the
observed stream gauge data. The difficulty with these equatizeswhen attempts are made

to apply thento other regions. The equations have variables thapseificto the region and

the numerical constants in the equation are specifically calibrated for thafarexample,

lowa includes the variable DESMOIN, which is the percent of the basin cover within the Des
Moin Lobe landform regionThis variable $ specific to lowa and is irrelevatat flood prediction

in other aras. Idaho includetwo very specific slope variablddF30 and S30, which represent

the percent of north facing slopes greater than 30% and the percent of all slopes greater than
30%. NF3 is only included in region 5 and S30 is only included in regidhdbes not seem

logical that the direction of the slope face would impact the peak flow, and considering it is only
used in 1 of 76 equations adds further question to the significamcariyof the states snow

fall contributesseasonallyo theoverall precipitation received by a basin, however it is only
incorporated as a variable in some form in two equations overall. New York only uses MXSNO
in region 3 and Wisconsin uses SNOW in region 4. It is likely that in most of the other equations
snowfall isincorporated into the equatidmroughanother variable. For exampfoods in

Montana are ften driven by snowmelt howevenowis notprovided as input in any direct form.
ELEV and E600@re used as inputs whigidicatemountainous areas. The mountais@reas
typically receive more snow, and therefties may be an indirect method to describe the snow
impacts.ldaho is another state that receives snovefatldoes not incorporated it directly as an
input Idaho incorporates ELEMstead andlescribesn the annual exceedance report that the
areas withhigher ELEVreceive more precipitation.



Although manyinconsistenciesegarding the equations were noted aboralyaing the

equations, many similarities aaésonoticed Every equation incorporates DMAP is the most
frequently used precipitation variableand cover variables tend to be either FOR or STOR. The
multiplicative form is the most common equatgiructure. These similaritiesgethe

hypothesis, that a single equation using the most influential basin characteristics can be created
to represent the-gear peak flows produced by basins of diverse climatic, topographic and
geological propertielthough just the generic form of ti2a year peak flow is represented in

Table 1the USGS has developed equations covering a range of return periods for each state.



Tablel: The generic form of the Istates set of regression equations, developed by the USGS, and used for analysis in this study. The number of redioatesgbd in
number of equations developed.

State Generic Form of 2'ear Peak Flow Regression Equation Number Reference
of
Regions
Alaska a (DAY (MAP)® 1 (Curran, Barth, Vileux, &
Ourso, 2016)

Arizona** a (DAY (MAP)® 5 (Paretti, Kennedy, Lovina A.

Turney, & Veilleux, 2014)
Arkansas, ** a (DAY (MAP)® (SL)' (BSHAPEY 5 (Eash et al., 2016)
Delaware* a (DA)° (FOR+g}J (SOILA+1) (IMP) (SLY 2 (Ries Ill & Dillow, 2006)
|daho* a (DAY (MAP) (FOR+g)' (ELEV/k)** (NF30+1) (SL) (S30+1}" 9 (Berenbrock, 2002)
lowa** (DA)aldC—D*I24H10Y—t*CMM"E)(DESMOIN+1)"F 3 (Eash et aI., 2013)
Minnesota * a(DA)"(SL)' (STOR+d}(SOILA+1) (ROFFY 6 (Lorenz et al., 2010)
Montana a (DAY (MAP) (FOR+gJ (ELEV/k)*? (E6000+1}) 8 (Parrett & Johnson, 2004)
New Jersey * a (DA)° (STOR+dJ (SL)' (POP_DEN+19 5 (Watson & Schopp, 2009)
New York a (DAY (MAP)° (STOR+dJ (FOR+gJ' (ROFFY (LAG+1)" (MXSNO)* (SR} (EL12+1) (SL)' 6 (Lumia et al., 2006)
Ohio * a (DA) (STOR+d§ (SLPFMY 3 (Koltun, 2003)
Pennsylvania a DAY (ELEV)*?(0.1STOR+dj(0.01PER_CB+1)(0.01PER_UR+H 4 (Roland & Stuckey, 2008)
Tennessee * a (DAY (SL)' (CF2) 5 (Law & Tasker, 2003)
Vermont * a (DA) (MAP)® (STOR+d§ 1 (Olson & Veilleux, 2014)
Washingtot, **  a (DA)’ (MAPY 4 (Mastin et al., 2016)
WestCentral a (DA) (STOR+d§ (SLPFM) 4 (Hammett & DelCharco, 2005)
Florida *
Wisconsin a (DAY’ (STOR+dY(SL)' (FOR+g}' (PERM)' (124H25Y-4.2f (SNOWY 5 (J.F. Walker and W.R. Krug,

2003)

*Data setused in training
** Generic form varies from region to region, most common generic form disgl@fedto Appendix A for full set of equations)
*** Single alphabetitetters represent a numerical coefficient associated with the variable, which drfethevarious regions
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Table2: Definition of the abbreviations usedtime Table 1 equations

Abbreviation Definition Units
BSHAPE Basin shape factor -
CCM Constant of channel maintenance mi?/mi
CF2 Climate factor witha 2-yearrecurrence interval -
DA Contributing drainage area mi?
DESMOIN Percent of basin area within Des Moines Lobe landform re¢ %
E6000 Percent obasinwith an elevation above 6000 feet %
EL12 Percenbf basinat or greater than 1,200 ft above sea level %
ELEV Mean basin elevation ft
FOR Percent of basin area covered by forest %
laHbY Meana-hour rainfall intensity that can be expected to be inches

equalled or exceeded on average ewgrgarswithin the

drainage basin
IMP Percent of basin area with impervious ground cover %
KSATSSUR Averagesaturated hydraulic conductivity ebil pum/s
LAG Basin lag factormain channel length divided by the square -

root of (upper basin slope+t)(lower basin slope+1)
MAP Mean annual precipitation inches
MXSNO Seasonal maximum snow depth"g@rcentile inches
NF30 Percent of north facing slopes gexahan 30% %
PER_CB Percent of carbonate bedrockiasin %
PER_UR Percent of urban arealiasin %
PERM Average soil permeability rate in/hr
POP_DEN Population density capita/mf
ROFF Generalized mean annual runoff infyr
S30 Percent of all slopes greater than 30% %
SL Slope of main channel ft/mi, -, deg, %
SNOW Mean annual snowfall inches
SOILA Percenbf soil in hydrologic soil type A %
SR Slope ratio (SL/BS) -
STOR Percenbf basin area covered by water storage (lakes, %

wetlands, etc.)
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2.6.1Developing the USGS Equations
The equations developed the USGS employed ordinary least squares regression (OLS) or

generalized least squares regression (GO&YP uses equal weights for all flow estimates
regardless of reliability, where GLS accounts for variability in the accuracy and length of record
of flow estimategStedinger & Tasker, 1985BLS considerdifferences in record lengths of

data on the dependant variablée annual peak flow series from the gauged stations vary in
record length, therefore GLS is the preferred regression technique for this siti/sion.

Rahman, Fang, & Shrestha, 20Hgddad, Rahman, & Kucee 2011;Haddad & Rahman,

2012; Stedinger & Tasker, 198%) the @ase of the USGS equations OLS was usually applied

first to determine the input variables to include and GLS was then used to refine the equation.

The peak flow statistics used to regress the USGS prediction equagicnderivedrom the
annualmaximumpeak stream flowecords from each gaugehe annual maximum peak

streamflow series consists of the maximmstantaneoustreamflow value recorded in each

water year for the period of recor problem with using this method is that high peaks may

occur @ multiple times within therear butare notincluded because they are not the maximum
(Nagy, Mohssen & Hughey, 201 5ome years may have relatively low peaks compared to the
average which introduces outlieAnother approach that can be used is thagattiration

series. The partial duration series includes all peaks in the water year above a certain threshold.
is not commonly used because there is a lack of guidance on determining an appropriate
threshold(Nagy et al. 2017)

The maximum peaks wefie to the Log-Person Type llktatisticaldistribution as per

Interagency Advisory Committee on Water Data (1982)ng the LogPearson Type llI
distributionthe peak flow return periods were determined incorporatirhg stations that had at
least 10 yearsf recorded annual peak dischargéttions that are significantly impacted by
regulation were eliminated from analysis to better represent naturaldtpmes. Log-Pearson

Type Il distribution calculates the exceedance probability by calculating the log base 10 of the

annual peak flow dischargex,@t the selecteeixceedance probability P:
11T0C & 0°Y
Equationl: Log-Person Type Ill exceedance probability of the annual peak flow discharge Qx

Where:
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Equation2: Meanof the annual peak flow
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Equation4: Skew coefficient of X, as per Log Person Type Il probability

X represents the logarithm of the annual peak flow, N represents the number of datayeints,
the mean of X, S is the s@ard deviation of X and G is the skew coefficient ofTKe skew
coefficient quantifies the inequality between the annual peaks, which is influenced by high or
low outliers. To overcome the biadlicted by high or low outliershe skew coefficient is
weightedby a regional skew coefficierithe regional skew coefficientsr the USA can be

taken from aNational mapdepicting the valuei Bulletin 17 B K is a function of G and is
determined based on the exceedance probability in question. For vialjeme is refereed to
Interagency Avisory Committee on Water Dath982) Appendix 3, where the values are listed

depending on the exceedance probability P and the skew coefficient G.

2.7 Case Studies
Theequations from the USGS annual exceedance reporés aneample of a vergrgescale

regressioranalysis. In addition to the USGS studies, research stpelieemingsimilar

analy®s in locations around the wongereinvestigatedHaddad, Rahman, & Kucze(2011)

usedGLS to create empirical equations to predict a range of return periods, froryehe

the 100year return period in New South Wales Australia. Two regions were defined to create the
equations because of distinct differences noted in hydrological characteristics between the
western and the northern region. The equations developed rely on drainage area (DA) and the
design rainfall intensity, which presents a simplistic approach toffzealprediction.The 2

year return periogquatians (Equation5, Equation6) for both regions are:
1 10g o8 g pg U 1'Q@d ¢8 Ti1'QG
Equation5: 2 - year return period prediction equation devedal byHaddad et al (2011) for Eastern New South Wales, Australia
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Equation6: 2 - year return period preiction equation developed bladdad et al (2011) for Western New South Wales,
Austalia

Analyzing the regional equations develdpe the study, it is interestirtg note that the

coefficients associated with DA and the design rainfall intensity are very similar, which adds
strength to the hypothesis developed herein, that regionalization is not necessary. Similar to the
many USGS equations, DA is important, alavith a climatic variable, showing the importance

of these two variables in flood prediction, in a climate scerffierent that the USA

An additional study conducted bjaddad & Rahmar2Q12)implemented a Bayesian GLS
regressia technique with the region of influence approach (ROI) to conduct regional flood
frequency analysis in ungged catchments. This studisagreed with geographic and

administraitve boundaries dictating the divisionlmdmogenous regiorfsr flood frequency

analysis Using the ROI approach, the regions were formed based on the similarity in catchment
attributes and geographic characteristics, instead of political boundaries. When examining the
return periods, they found that the/@ar peak flow had greatspatial variability compared to

higher return periods, which indicates this smaller return period is dominated by local basin

factors.

A study carried out in Australia laman, Rahman, & Hadd#a012)conducted a flood
frequency analysis,sing OLS regression, on arid and semd regions. Similar to the study
conducted byHaddad & Rahmaf2011) DA and the design rainfall intensity were found to be
the most important predictor variables for determining the peak flows at ungauged basins
although this study looked #te meanannual flood, mstead of praicting specific return periods.

Equation? is the prediction equation developed.

110C pw e bl 'Qo om0
Equation7: Mean annual flood prediction equation for arid/semi arid region in Austrdd¢ieeloped by Zaman et al (2012)
It was found that the prediction accuracy using the equation was smaller tharandchi@gions,
which highlights that by using the same variables for prediction between arid aaddon
regions an important variablensissing. Aridity adds an additional complexity to the

hydrological cycle, as rainfall is less frequent, but sefleods still do occur. Further

investigation into factors controlling floods occurring in arid regions is required.
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Comparing the case stedi, the most interesting difference betwBenation5 andEquation6
developed bhaled et al. (2011andEquation7 developed Zaman et al (2012) is the emphasis
on DA. InEquation7, DA plays a smaller role in prediction overall, which is augmented by the
higher influence of precipitation. Another interesting dimensidagufation? is that MAP is not
used for predicting the average flowstead |12 2is used, which is the design rainfall intensity of
the 2i year return period for a 2our duration. In the majority of the USGS equation$aible

1, MAP is the climatic precipitation variablesed for prediction.

2.8 Artificial Neural Networks (ANN)
ANN is a type of machine learning gaining popularity in solving complex water resource

problemsThe ANN model has the capability empirically create solutions from a set of data
without any prior understandir@urn et al, 1999)Consisting of a diverse network of layers
interconnected by neurons, an ANN network mimics the way a human bcaipaible of

learning fromthe giveninput data toderive patterns that lead to the specified ougptieh et al.,
2015) This modelling is a black box approach in terms of performdrmeever these models
have brought to light sne very important aspects loydrological modellingKumar et al.

(2015) compared the use of ANN, fuzzy computing anchbments to create a regression
equation relating catchment area and flood quantiles. They were able to develop a physical
equationhowever accuracy was improved by the use of smiinputing technique@umar et

al., 2015)

Besaw et al(2010)were successfuh developingan ANN model to predict streamflow for a
specific drainage basin and translate this model to predict stream flows at another basin. They
attribute their success to thenilar basin characteristiassed in theéraining and testingets

They suggest furtr work should be applied to see how robust the ANN modekst predicting

streamflowat basins with varying characteristics.

Using streamflow data and catchment climatic data from 452 gauging stations in eastern
Australig Aziz et al.(2014)conducted a flood frequency analysis using both the traditional
guantile regression approach and ANN modellifigey used inspiration from past flood

frequency analyses to determine the most influentiahlbes for prediction, and then applied
various combinations of these variables to predict the peak flows, determining an optimal

combination. Regionalization was used to develop the equationgyver instead of basing the
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regions on state boundarjéso regions were developed basedvhether precipitation was
dominant in the summer or the winter. This is a more hydrologically justified approach to
regionalizationhowever regionalization may have still been avoided by includingriable

that woutl represent thiprecipitation variation. They found that the best peak flow predictions

were obtained from the ANN approach using only DA and design rainfall intensity.

Aziz, Rai, & Rahman 2015)conducted flood frequency analysising a genetic algorithm
approach to ANN, referred to as GAANN and back propagation technique for ANN, referred to
as BPANN. Similar tAziz et al.,(2014), the data used in this study came from 452 stream
gauging stations located in easterrsfalia. They found botANN methods, using just DA and
design rainfall intensityoutperformed the traditional regression equations.

DA and design rainfall intensityavebeen highlighted in a vast number of studies as the best
predictor variables, regardless of the method used to generate the prédizaet al., 2014,
2015; Khaled Haddad & Rahman, 2011; Zaman et al., 20h% emphsizes the importance of
understanding the relation between DA and rainfall intensity. Baiith case study investigated
connects the variables in a different manner so although the input remains the same, the
statistical results vary. It is difficult to derstand the connection between the two variables with
the ANN approachThe user supplies input, and then through the hidden layers theddesire
output is generated. Thihadowshow these variables are connediegeneratéhe output.
Dawsonet al.(2006)used ANN modelling for flood frequen@nalysisand pointed out that

ANN cannot account for physical processes occurring, and that results can be highly variable
depenént on the amount of input data available. Little justification has been provided in the
papers examined as to why DA and design rainfall intensity are good predictor variables aside
from they have been frequently used in the past and they produced thatiststal results.

There is no question that DA and precipitation plapaimantrole in the magnitudes of peak
flows, however this study aims to shed more light on the role each variable plays in the

equation.

2.9Gene Expression ProgrammingK&
GEPis another machine learning tool that is more recently begiptiea in hydrologic

modelling.Seckin & Guver(2012)were the first to apply GEP to predict peak flows at
ungauged streams in Turkey. They created a GEP model using DA, ELEV, longitdde
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latitude of the basin to predict peak floWsie GEP model achieved &3 of 57.4%,
outperforming the classical logistregression model which achievedRéof 42.3%

Zorn & Shamseldirf2015)used GEP to develop prediction eqaas for he 10year and 100

year peak flowsor the Auckland Region in New Zealanthe best GEP equations developed
were based on DA, catchment slpgedthe elevation ratio. It was surprising that precipitation
was not icluded,however they emphasizethat the study area wamall,so precipitation could

be assumed constant across the study afgah may not be the case if this model was applied
to other study area3he GEP model outperformed the traditional regregsidmiques applied,
however it wasrecommenddthat GERs used as an enhancement to traditional techniques and

not purely as a replacement.

Creating flow duration curves (FDC) at ungauged baglashmi & Shamseldi{2014)
demonstratethe usefulness of GEP modelling in determining the most relevant input
parameters. In addition to the FDC creation, they also developed an equation for predicting the
median annual flow, based on DA and MAP. GEP, along with other machinatg#sols can

be helpful in not only developingraodelbut illuminating relationships that mawpt be
outwardlyapparen{Tayfur, 2017) Hashmi & Shamseldi{2014)did not check for correlation
betweennput parameters becauas they stated, GEP is capable of reducing redundant inputs.
Although this is true, higher trust and greater understanding of the model will be gained if

appropriate measures are taken to select appropriate input data prior to modelling

Chapter 30bjectives and Scope

The objective of this work is to develop one equation that can accurately predigtahezak

flow at ungauged basins within the USA by developimgan der st andi ng of each
hydrological significance. Aiver is a river, regardless of its geographical location, using key
parameters one can describe the nature of a(iiVelock et al, 2004)With a strong

understanding gained, the combination of the most influential variables will predict the peak

flows for catchments extremely diverse in climasgographyand hydrology. The main

hypothesis formed, shaping the researaidocted, is that biearning fromthe driving factors

behind each variable involved current regression modetbe 2year peak flow can be

predicted to a high degree of accuracy using a single equation for basins diverse i aature.

test thetransferaility of the equation, it will be tested on another area outside of the AISA.
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similar methodology will be applied to determine if the same combination of variables can be

applied to predict peak flows from higher return periods.

The development of thequation was carried out in four main phases, with each phase building a
foundation for the next. The first phase involved analyzing the regionalized regression equations
developed by the USGS for inspiration and guidance on key variables and equatiomestru

Taking this insight forward, one equation was developed. To improve the predictive validity of

the equation, two new variables were generated, the Land Use Soil (LUS) factor 2ind/dze
precipitation effect (PE variable. These new variables present a niwvist on hydrological
principlesknown to impact peak flowsdding a unique flavour to this equation. The fourth

phase expanded upon the equation to predict higher return pepasthe 100 year return

period. This nt roduced the DA exponentydoridgpt. and t he p

Once the equation was developed, to further test the suitability of usiray&BMAP, two GEP
models were generated. Additionally, the GEP phase was motivated byribsityto establish

if a more complex model could produsignificantly betterpredictionsthan the equation.

The final step of the study was to test the equation on an area outside of the USA. Southern
Ontario was chosen because data was availahtethe close proximity to the USA made it a

logicalfirst application outside the original study area.

The remaining chaptemitline the methods followed to develop the equation, the results
obtained and a discussionthe insight and relevance of the results, followeddnyclusions,

limitations, andrecommendations

Chapter 4Materials and Methods

4.1 Site Selection anAinalyzing theUSGS regressiongeiations
The USA was chosen as the area of focus for thiy stud tothelarge amounof stream

gaugingdata available and its expansive land mass covering a wide area of differing climatic,
topographic and hydrological characteristics. This fits within the requirements to create a robust
equation and prove the overall hypothesis of the study; one equatigmmedict peak flows for a

very diverse area.

The USGS has a very diverse network of stream gauging stations, with a rich set of historical

data. This information ipublicly available on the USGS National Water Information System:
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Web InterfacUSGS,n.d.). Current stream conditions are available for 16Goninute

intervals at 10,126 sites. Historical observations are available for 16,275 active and discontinued
sites. For defined periods mcordsdaily data is also available for 27,8&feam guges

monitored by the USG@RJSGS, n.d.)Although this seems like a large number of stream

gauges, this only covers approximately 10% of all the streams in th€RESAw et al., 2010)

To develop an appropriate data set, only stream gauges that were inclad&iGis annual
exceedance rgpt were includedhitially . Reportsdeveloped for 1 states were initially
collected:Alaska, Arizona, Arkansas, Delaware, Idalmaya, Minnesota, Mordna, New Jersey,

New York, Ohio, Pennsylvania, Tennessee, Vermont, Washington;@éestal Florida and
Wisconsin These reports discuss the methods followed to develop the regression equations. The
equations were developed using regionalization technitjue®fore adtal of 76 equations for

the 17stateswvere collectedEach report also included tpeak flowdata thatvas used to

develop theegression equaticsets along with all the basin characteristics needed for input to
apply the equations. To ensure that only the highest qualityvéagancluded, the set of

equations developed for each state were tested on the data pr&atistical measures,

displayedn Table3, were calculated for each stdte assessment. Three statistical measures

were chosen, as they each give a different indication of how well th&tddke observed

predictions. Rindicates variance, NasButcliffe coefficient of efficiency (NASH) demonstrates

the predictive poweand mean absolute percentage error (MAPE) expresses the forecasting error

as a percentag&hese statistical measures are used throughout the study for various analyses.
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Table3: Statistical measures usétthis study

Statistical Measure Abbreviation Equation* Range
Coefficient of R? , Oto 1l
. . Yy - A oo 1)
Determination B 0O 0O U0 0 >
vy 11 1 . .
Ul — — i, with 1 being
u 0 0 B 0 0 (p thebest
Nash and Sutcliffe NASH e O 0 Hbto 1
Coefficient of U o YOp 5B ¢ T
Efficiency vV with 1 being
(Nash &Sutcliffe, the best
1970)
Mean Absolute MAPE ... pmm ©H Os 0 to
Percent Error vouv O e B
with O being
the best

*O represents observed values, P represents predicted values, n represents number of observation used

To further understand eaolithe equationfrom the 17statesthe equations wemanipulated,

and the coefficients were opti mSdverdanusi ng Mi c
analysis tool that is capable of optimization, by either maximizing or minimizing, the value of an
objective cell. It achieves optimal parameters by changing thevat a specified set of cells

that the objective cell is dependent on. In this case, the statistical measures were optimized by
changing the coefficients assigned to each basin characteristic. The equations were gkneralize
to eliminateregionalizationmakingone equation applicabléor each state. The goal tife
generalization processgas to see ibne equation could statistically outperform the regionalized
equations. If accuracy was lost an opportunity arose to investigate the importance of
regionaization If the original equation had unacceptable prediction abilitiés (R7,

NASH<0.7) and optimization did not sigmméntly improve the results the state andldasaset

was eliminatedrbm further analysisOnly the best preforming equations weesired.

Testing each regression equation brought to light many similarities between each of the
equations. The equations that used similar inputs were grouped together, which highlighted six

common variéles, as summarized Trable4. If the stream gauging station did not report each of
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the six variables ifTable4, it was also eliminated for further analysis. After the statistical
comparison, optimization, variable checaaddata QA/QC the final compilation of the training

data set consisted of 1509 stream gauges. These stream gauges represented data from 10 states:
Arkansas, Delaware, ldaho, Minnesota, New Jersey, Ohio, Tennessee, Vermont, Washington and

Florida.

Table4: The range and average of basin characteristics used in the training and testing data sets

Variable Unit Training Testing

Minimum Maximum Average Minimum Maximum Average
DA km? 0.1 24319 305 0.02 55817 943
MAP mm 225 4608 1164 102 3835 864
ELEV m 7.3 2639 510 4 3595 786
FOR % 0 100 44 0 100 44
STOR % 0 95 4 0 95 2
SL m/km 0.001 125 7 0.0006 9 0.35
Q2 md/s 0.05 2203 62 0.03 3993 86

Thevariables reported iable4 are commonn other flood prediction studie$he most
common variable, included in every peak flow equation devdlbgehe USGS, iDA. DA has
been highlightedh numerous other studieg)cis evident as the most influential parameter
when predicating peak flow#ziz et al., 2014; Di Prinzio, Castellarin, & To2011; Gizaw &
Gan, 2016Haddad & Rahman, 2011; HashmiShamseldin, 2014; Kumar et al., 2015; Muttiah,
Srinivasan, & Allen, 1997; Seckin & Guven, 2012; Shu & Burn, 2004; Swain & Patra, 2017,
Zaman et al., 2012; Zorn & Shamseldin, 2015; Zrinji & Burn, 1994)s is intuitive from a
hydrological perspectivas the larger the land contributing to the stream, the more runoff is
generated, therefore a larger peak flow will re€sitharia et al2017) In the USGS annual
exceedance reports, DA is typically calculated using topographic maps in GIS to digitize th
basin outline. The topographic maps are most commonly from the USGS or the National

Elevation Dataset, but source varies by state.

MAP is the most common climatic variable included in the USGS regression equatiens.
frequency of flooding events expenced by an area has been found to correlateMAR,

proving its importance in predictiq®aharieet al.,2017; Slater & Villarini, 2016)It is included

in 8 of the ¥ equations imablel, and other past peak flow stud{@giz et al., 2015; Besaw et

al., 2010; Dawson et al., 2006; Di Prinzio et al., 2011; Ding & Haberlandt, 2017; Swain & Patra,
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2017) According to the USG&nnual exceedanceports, precipitation is commonly sourced
from the Parameteglevation Regressiomms Independent Slopes Method (PRISM), data from
1971-2000(PRISM Climate Group, n.d.)

ELEV andchanneklope (SL) were the topographic variabhesst commonly included. They

are frequentlysed in past studie@itieh et al., 2015; Ding & Haberlandt, 2017; Jafarzadegan &
Merwade, 2017; Swain & Patra, 201#)eTablel equations, and are obtained easily through

GIS techniques. ELEV and SL are indicative of whether the area has mountainous or flat terrain,
which in turn can help describe the type of soil that may be encountered in the catchment
(Visessri & Mcintyre, 2015)To eliminate redundant parameters, it is desirable to include
variables that can describe multiple parameters, which can be the case with SL and ELEV.
According to the USGS annual exceedance reports, SL was obtained foasachsing the 10

85 method. This means the elevations at 10 percent and 85 percent of the main channel length
aresubtractednd divided by the distance between the two points. These measurements were
taken from GIS using digital elevation maps (DEMsjesfolution varing from 10-meter to 30

meter. ELEV was obtained through GIS using topographic maps.

To ensure the model developed is robust to dyoaltgichangingandscapes, isiimperative to
consider a land use varial{isessri & Mcintyre, 2015) The land use variables most commonly
incorporated in th@ablel equations were forest cav-OR) and storage (STOR). 11 of 17
equationsn Tablel used at least one of these variables. Both FOR and STOR have been
negatively correlated with peak flows. FOR will increase evapotranspiration and increase
abstractions which decrease the magte of flow in the stream. It is interesting tote, Preti,

Forzieri, & Chirico(2011J), found that the influence of FOR on peak flow diminished as the DA
increased. STOR will retain runoff dng peak events, again decreadimg magnitude of flow

in the stream. According to the USGS annual exceedance reports, these variables were obtained
from the National Land Cover Datagbi CD).

DA, MAP, ELEV, FOR, STOR, SlandQ2 were all obtained from the US@8nual flow
exceedanceeportsto compile the dataet to develop a new equation. This datac®itaining
1509 stream gauges,referredto as the training data set.
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4.2 ANN Modelling
The inclusion of each variable listedTiable4 was justified through literature revieand

review of the equations ifiablel, howeve, to further quantify the importance of eadriable

on the magnitude of theyear peak flow, ANN modelling was employed. ANN is a powerful

tool as it can derive connections and pattamrdata setshat may not be obvious. Palisade
Corporation NeuralTools was the ANN software used, which is amaddMicrosoft Excel. To
develop an ANN model using this software, four steps were followed: Data preparation,

Training, Testing and Predicti¢Ralisade Corporation, 201@ata preparation involved

organizing the data into the excel spreadsheet and defining the independent anehtlepend
variables. For this analysis, Q2 was set as the depewdriable, and the choserpirts for

prediction were set as the independent variables. Once the data was prepared, training and testing
wereconducted in the same step. In this study, 80% of the data was used for training and 20% of
the data was used for testing the ANN model. Trgjninvolves taking the random split of 80%

of the data points and learning off the data by interpolating connections between the independent
and dependant variabl@alisade Corporation, 2010)esting takes the remaini2§% of the

dataand uses the connections derived from the training step to predict the dependant variable.
The success of the testing was measured by statistics such as the percent of correct predictions,
compared to the observed values of(®alisade Corporation, 201@aution should be taken in

the training and testing stages to ensua¢ tifle model is not over fib the data set providedo

avoid this, a large data set should be used (>1000 data inputs) andhthg staould not be run

to excess. The ANN modelling was limited to 100 trials to limit overfitting. During the training

and testing stage, the variable impacts were calculated, which ranks the inputs in terms of
influence on the calculated output. Thisighly beneficial as it illuminates the most important
variables. Once the training and testing step produced satisfactory results, the prediction step was
conducted. The prediction step took the ANN model developed during the trainitesing

and used it to predietQ2 value for each data poifRalisade Corporation, 2010)

ANN modelling was not used extensively in this study because it does not explicitly show the
connections between variables. This inhibies goal othe study because one of thain poins
is to determine how each variable works together to influence the magnitude of the peak flow

and to create a simpéquation. ANNwasapplied to justify and rank the variable importance.
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4.3Testing D&a
Once the USGS equatiommsTablel1 were analyzednd optimizedStreamStats was used to

collect a larger data set with stream gauges in states that were not previously included in the
regression equation analysgireamsStatss an operaccess online data base that uses GIS to
allow users to access information including basin characteristics and streamflow statistics for
stream gauging stations in the United Stgess 1l et al,2008). Only stream gauges that
reported the same variables reportedatle4 were included in the set, which led to a larger set
of 5750 stream gauges, covering 40 states. The range of values in thed@atseg are reported

in Table4. The locations of the gauges used for training arthteare displayed ifrigurel.
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Figure 1: Locations of USGS stream gauging stations used for training and testing the developed equation

This unconventional approach to developing the training and testing datakea$ecause as

the study progressed, it was determined that the scope could be expanded to cover a wider range

of stream gauges. The original 1509 training gauges ¥aken from the USGS annual
exceedanceeportsand covered an appropriate range afes to develop the equation on a wide
range of variables. After the training set was establifimtiderinvestigation into StreamStats

led to the acquisition of 5750 additional gauges which repalnte desired variable$his larger
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set allowed for teshg the equation the majority of the mainland USA. Testing the equation

on a larger set of data shows that the model was not over fitted to the training data.

Both sets have a wide range of values for gachmeteand have similar average values, ideal

for training and testingzigure2 @) to n)shows the distribution of each input parameter for both

the training and testing data set.
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Figure 2: Histograms representing input variable distribution for comparison between training and testing data setsa) DA i
training b) DA in testing c) MAP in training d) MAP in testing e) ELEV in training f) ELEV in testing g) FOR in trainir@f) F

in testing i) STOR in training j) STOR in testing k) SL in training I) SL in testing m) Q2 in training n) Q2 in testing

The DA exhibits a right skew distribution for both the training and testing data set. The majority

of the data lies within the 52 to 104 knange, with the maximum DA at 24,319 kfar training

and 55,814 krhfor testing. MAP exhibits a normal distribution showing an appropriate range of
values for both training and testing sets. Similar to DA, ELEV exhibits a right skewed

distribution. However, the testing data set contains 271 data points that have eeyataber

than 2650 m. The testing data set contatrsam gaugesom more mountainous areas such as

the Rocky Mountains and the Appalachian Mountains which explains the higher elevations. The
frequency of FOR from-Q00% is evenly distributed for bothe training and testing data set,

both havingmost ofdata pointsat 10% STOR also has very similar distributions between the

two sets. The most frequently occurring STOR fatl$0%. The distribution of SL in the

training and testing data sets are rmisistent. The training set is right skewed, with the

majority of data points falling in the 2 m/km category, represeifitiderrain. The maximum

slope is greater than 125 m/km which is a very steep slope, characteristic of a mountainous area.
In the testing data set the majority of the points also lie within the 2 m/km raogesver the

maximum slope is only 9.5 m/km. The data sets were kept begestofthe points lie within

the same rangdowever SL was used with caution as the study proceededo the distinct

differences in distribution.

The distribution of the Year peak flow for both data setiealmost identical in terms of shape.
Both exhibit a bimodal right skewed distribution. The largest peak, corresponding to the highest

frequencyoccurs at 3 fis, and the second peak occurs at 38 niThe distribution of the-gear
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peak flow shows that although this flow is defined with the same frequency of occuitrence,

varies in magnitude depending on stream gauge location.

Thesimilar distributionsbetween DA and Q2 in both data sets further shows the importance of
the size of the DA on the magnitude of the peak flow. The correlation was testedrbbtvee

and Q2, shown ifrigure3. Consistent with past findings ancreasing trendias found. This
articulates the predictive power of DA on Q2, necessarth&succes®f the desired equation.

10000
1000
100
10

1

0.1
0.01
0.001

Q2 (n¥/s)

01 1 10 100 1000 10000100000
DA (km?)

Figure3: Corr el ati on bet weobservetQR? fomhha sainingddata sBtA a n d

4.4 Developing the Equation
The equation was developed throuwghiterativeoptimization process. A multiplicative form of

the equation was chosen because it has been used in the USGS equatbiesl and isan
easyform to manipulatevithout the aid of machine learning technigugach @ the six
variables inTable4 was set to the power of an arbitrary coefficient and multiplied together; the

formis depicted inEquation8.
0¢ 060 6 000 OBV YY'YU YD
Equation8: Generic equation form used in the trial and error optimization approactetelopthe prediction equation

The resulting Q2 for each gauge was compared to the observed Q2 reported by the USGS for
that gauge. Excel solver was usedpdimizethe coefficients associated with each of the six
variables, by minimizing the sum of the errquareal, as calculated bgquation9 and

maximizing the correlation, as calculatedBxyuationl10.
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Equation9: Error squared equation used in the equation optimization process

0 0

B 0O 0
O B 0 0

WEeE Il I Q(X(BBG Qf——+¢
U

Equation1Q: Correlation equation used ithe equation optimization process

Many iterations of exdesolver were conducted. Each iteration used either Equation 9 or
Equation 10 as the fitness functi@ncethe optimizationprocess wasxhausted to aseemingly
optimal state, the processeasended, and the first iteration of the equation was formed.

4.5 Development of the Land Use S&iUS) Factor
Motivated to improve the satisfactory results from training and testing of the equation, further

improvements beyond threlying on inputs similato theUSGS equations asinvestigated. A

scaling factor, known as the&JS factor, was calculated by determining the difference between

the predicted output from the trained equation, and the observed data for each equation. This
factor was mappefibr each gauge using ArcGIS to show a visual representation of variation
across the USA, to determine any spatial patterns. Spatial patterns were observed by relating the

LUS to the variations in land use and soil group across the country.

4.5.1Land Use Dt
TheNLCD 2011 created by the MulResolution Land Characteristics Consorti(MRLC)

was obtained from ArcGIS online and imported as a layer in Arc&i@wn inFigure4

(Uneplive_team, 2017)The NLCD is a data set that classifies land cover at a spatial resolution

of 30 metes across the United States. NLCD determines land classificatsaudn a decision

tree classification using the 2011 Landsat satellite data. Land cover is separated into 16 classes in
the NLCD,howeverfor the purpose of thistudythe land use was narrowed into four broader

classificationdased on the 16 classester, developeddrest and agriculture

Table5 shows the combination of the original classes that make up the four classification groups.
The decision to include shrub/scrub in the forest category was made because the canopy cover is
greder than 20% of the total vegetation, similar to the deciduous, evergreen and mixed forest
classes. The shrub class includes yawegs,and therefore has the potential to grow into a forest

land class. The grassland/herbaceous category was put into the forest class, instead of agriculture
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because it is not subject to management or tilling like the agricultural lands are. It has greater
than 80% vegetative cover atiterefore fits better in the forest classificatibmboth situations
theerror valuewvas very close to the errgaluein the forest categorore information on each

of the land classifications can be found atMRLC underNLCD2011 databas@Homer et al.,
2015)

MEXICO

Figure 4: National Land Cover Database for the conterminous USA obtained from ArcGIS online, developed by Homer et al.
(2015)
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Table5: Categorization of the NLCD categories for the purpose of the study and LUS development

Land Classification for LUS Land Classifications from NLCD
Water Open Water
Woody Wetlands

Emergent Herbaceous Wetlands

Developed Developed, Open Space
Developed, Low Intensity
Developed, Medium Intensity
Developed, High Intensity
Barren Land

Forest Deciduous Forest
Evergreen Forest
Mixed Forest
Shrub/Scrub
Grassland/Herbaceous

Agriculture Pasture/Hay
Cultivated Crops

4.5.2Hydrologic SoilGroup Data
A soil map depicting the hydrologic soil groups across the USA was obtained from ArcGIS

online and imported as a layer in ArcGEhown inFigure5. The layer was created from the
gSSURGO 3@ameter for the contiguous USA and-fr@eter rasters for other regions, developed
by the Natural Resources Conservation Serigssg, 2017) The GIS layer depicts the spread
of soil groups based on seven classifications, Groups A, B, C, D, A/D, B/D and C/D. For the
purpose of this study, the hybrid soil groups were categorized into the original soil groups,
therefore soils were only classified into groups A, B, C and D. This wash#doaese soils are
usually only classified into the four main groups, therefore this will make the LUS factor easier
to deternme when the equation is appliedtside of the USA. These hydrologic soil groups are
based on those developed for the SCS curve methagjrave (959 defined the four

hydrologic soil groups, A, BZ, and D, which provided the foundation for the development of
the SCS curvéWilliams et al, 2012)Soils in group A have the highest infiltration rates,
consisting of deep sand and aggregated silts with minimal clay and dMiosgrave, 1955)
Group B consists of sand and &éms of average depth, with moderately high infiltration rates

(Musgrave, 1955)Group C is classified by shallow soils with below average infiltration rates
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(Musgrave, 1955)Group D is composed of soils with high clay and colloid content, which
results in the lowest infiltration ratéslusgrave, 1955)The map had some gaps, where soil data
had not yet been cotteed for certain areas. The gaps were small, soil information for the
majority of each state was available. Points that did not have soil data were eliminated from the

study.
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Figure 5: Hydrologic soil group information for LUBetermination obtained from ArcGIS online

4.5.3Spatial analysis usingrcGIS
The land class and soil grougormationwere linked to each gauge usithg ArcGIS spatial

analysis extraction toolhis extracts information from the raster grid cell where the point
feature is locatednd adds this information to the point feature attribute table. The interpolation
option was left at the default setting which takes the information at the center ofitleelfri

The extraction was performed on both the land class and soil layer. The gauges, with the
additional land and soil raster information, were then sorted by soil group and land use to
determine the connection with the LUS factor. A strong correlatemfoundoetween gauges

with the same land and soil combinations and the back calculatedTdni®led to the
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development of a set of 16 LUS combinations to incorporate into the equation feyehefow

prediction.

4.6 Development of the-Rearreturn precipitation effect variabl® k)
In addition to developing the LUS factor, the/@ar precipitation effect coefficient (BBvas

developed as an input variable for the equation. Originally, MAP was chosen as the climatic
input because it was repied for many gauges (>7000) and it vileegjuentlyincorporated in the
USGS equations. To determine if MAP was the ideal input to describe the climatic contribution
to the 2year peak flow, the developed equation wessranged, and the ideal contributing
precipitation evenivas calculated based on @2dthe othebasin relatedhputs. This revealed
that in many cases the precipitation influencing Q2 veag different tharMAP. Using ArcGIS
spatial analysinversedistance weighted interpolation (IDW) tool, this back calculated
precipitation factor, deemdte 2year return precipitation effe(fPE), was mapped for the
entire USA. IDWinterpolationdetermines the value for each grid cell linearly based on
surroundng sample points and their inverse distance, with the underlying assumption that
sample points closéogether should have similar valu®githin the IDWinterpolationtool, the
variable search radius was selected, which allows interpolation to occuyimgveadi from the
sample point. This was done because some areas have gauges spread furthaddparefore

if the search radius was limitgithese points wouldot develop the desired PEepresentation
Kriging is another interpolation methad ArcGIS. IDW interpolation was chosewver Kriging
interpolationas it had better predictive capabilities, waith R of 0.73 when compared to

Kriging interpolation with an Rof -0.09.Atieh, Gharabaghi, & Rudrg2015, confirmedthat

IDW interpolationperformed better than Kriginghen mappig MAP on ArcGIS.

To test the accuracy of the PEap, 281 USGS stream gauges outside of the training and testing
data set were randomly selected. Using ArcGIS, thevRlde for the gauge was extracted and
the Q2 was calculated and compared to the observed Q2 at the location. The location of the

additional 281 stream gaugsshown inFigure®6.
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Figure 6: Location of USGS stream gauges used to test the applicability of the generatedPE

4.7 Expanding to Higher Return Periods
The initial focus of the study was to develop an equdtothe 2year peak flow. Once this

equation was established, the same methodology was applied to determine equations for higher
return periodsThe DA exponent, coined U, was optimize
was done because a@fl the USGS equations, the variable coefficients changed between return
periods As the storms increase in magnitude, the size of the basin has less influence as the
amount of precipitation takes ovéising excel solvel)  wogtsnized for each return ped, to
account for the differing influence DA has on increasing return peaiodito determine if there

was a relevant pattern between return periods

The governing difference between return periods in the same basin is the amount of precipitation
received. Therefore, another aspect to modify the equation between return periods was to
determine a suitable factor to increase the precipitation varialgemparison between return

periods at the same gauge was conducted to determine a possible connéatiom thrat could

be introduced to linearly increaB&, without having to modify the existing equation structure.

The correlation between adjacent return periods is shown graphickilyure7 a)i e).

34


























































































































































































