Knowledge Translation and Transfer: Nothing New or a New Science?

Ian Young and Andrijana Rajić

Science to Policy Division, Laboratory for Foodborne Zoonoses, Public Health Agency of Canada
Department of Population Medicine, Ontario Veterinary College, University of Guelph

GFSSS Symposium, October 25, 2011
Overview

• What is KTT?
 – Illustration through a 5-step KTT framework
 – Criticisms and challenges

• KTT in the Science to Policy Division, LFZ, PHAC

• Bridging the gap between science and policy in the agri-food sector (Lead: A. Rajić)

• Nothing new or a new science?
Rationale for KTT Science

• Research knowledge is underutilized by practitioners and policy-makers

• Many barriers towards integrating evidence into practice and policy:
 – Time and resources
 – Skills and training
 – Leadership and organizational capacity
 – Availability and quality of evidence
 – Contextual and political environment
 – Communication and collaboration

(Anderson et al., 1999; Lavis et al., 2005; Graham et al., 2006; Bowen et al., 2009)
What is KTT?

• CIHR Definition
 – “Dynamic and iterative process that includes synthesis, dissemination, exchange and ethically-sound application of knowledge to improve the health of Canadians, provide more effective health services and products and strengthen the health care system”

• Purpose
 – Increase the likelihood that the best available research knowledge will be used to inform policy and practice decisions
5-Step KTT Framework

• What should be transferred (*the message*)?
• To whom should it be transferred (*the target audience*)?
• By whom should it be transferred (*the messenger*)?
• How should it be transferred (*KTT processes and supporting infrastructure*)?
• With what effect should it be transferred (*evaluation*)?

(Lavis et al., 2003)
What Should Be Transferred?

- **Actionable messages**

- **Example**
 - MA of prevalence of ciprofloxacin-resistant *Campylobacter* in organic vs. conventional retail chicken

- **Message**
 - Increased risk of CIP-resistant *Campylobacter* in conventional chicken, but more research in Canada is needed
To Whom Should it Be Transferred?

- Target audience must be identified
- Multiple audience-specific messages
- Understand contextual decision-making environment
- Considerable investment of time and resources

Preempt probiotic reduced the risk of Salmonella colonization by 47% out of 100 in treated chickens compared to the control group
By Whom Should it Be Transferred?

• Credible and trustworthy messengers
• Ideal choice
 – Researchers with appropriate skills and experience
• Trusted intermediaries
 – Knowledge brokers, agricultural extension services
• Time-consuming and skill-intensive
How Should it Be Transferred?

• Passive processes ineffective
 – Requires more than researcher “push” or user “pull” of results

• Interactive and collaborative approaches recommended

• Importance of supporting infrastructure
With What Effect Should it Be Transferred?

• Evaluation must be appropriate to the target audience and objectives
 – **Instrumental**
 • Acting on research in specific and direct way
 – **Conceptual**
 • General and indirect form of enlightenment
 – **Symbolic**
 • To support or justify a position already held
KTT Criticisms and Challenges

- Inconsistent terminology and definitions
- Multitude of theoretical models and frameworks
- Lack of robust and high-level evidence for KTT
- Medical model of KTT does not fit with complex policy-making process

(Source: Bennett and Jessani, 2011)
Science to Policy Division, LFZ

- Synthesis expertise developed by Dr. A. Rajić and Dr. J. Sargeant (2004-2006)
 - >30 projects and >40 peer-reviewed publications completed with wide range of collaborators
 - >1,000 professionals trained in SR-MA methods in Canada and internationally

- Two recent KTT grants (Lead: Rajić/McEwen)
 1. Developing capacity for KTT in agri-food public health
 2. Bridging the gap between science and policy in the agri-food sector through KTT support tools
KTT Support Tools Objectives

1. Mixed-method review
 - Identify, characterize, and summarize methods to support KTT for policy- and decision-making in various sectors

2. Survey and focus groups
 - Determine applicability and usefulness for agri-food sector

3. KTT Handbook
 - 3-5 key methods will be prioritized and summarized

4. KTT workshop with agri-food professionals
 - Increase awareness of practical methods and tools for KTT
Mixed-Method Review of KTT Methods

Research Question
- What are the key KTT methods and characteristics?

Search Strategy
- Five databases
- Scopus web search

Data Characterization
- Extraction of key characteristics

Analysis and Summary
- Thematic analysis
- Narrative summary

Relevance Screening
- Pre-tested form
- Two key Qs

KTT Grant 2: “Bridging the gap between science and policy in the agri-food sector through KTT support tools”

Collaborators: Scott McEwen, Judy Greig, Mai Pham, Lisa Waddell, Barbara Marshall, Katarina Pintar, Kate Thomas, Javier Sanchez, Andrew Papadopoulos
Preliminary Results: Flow-Chart

Search
- Citations: 1105
- Excluded
 - Duplicates: 278

Relevance screening
- Citations: 827
- Excluded
 - Not relevant: 659

Characterization
- Articles: 168
- Excluded
 - Not relevant: 8
 - Case studies: Articles: 57
 - Prioritized for coding: 6
 - General overviews: Articles: 75
 - Prioritized for coding: 27
 - Detailed methods: Articles: 28

Analysis
- Thematic analysis
 - General KTT uptake: 13
 - KTT for policy-making: 20
- Overall interpretation
- Narrative summary
 - 3-5 methods prioritized
List of KTT Methods

<table>
<thead>
<tr>
<th>Synthesis</th>
<th>Dissemination</th>
<th>Exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Knowledge mapping</td>
<td>• Scientific journals</td>
<td>• Networks and communities of practice</td>
</tr>
<tr>
<td>• Scoping reviews</td>
<td>• Popular print media (e.g. newspapers)</td>
<td>• Knowledge brokering</td>
</tr>
<tr>
<td>• Systematic reviews-meta-analysis</td>
<td>• Websites and email</td>
<td>• Agricultural extension</td>
</tr>
<tr>
<td>• Stakeholder engagement in SRs</td>
<td>• Social media</td>
<td>• Consulting</td>
</tr>
<tr>
<td>• Mixed-method and qualitative reviews</td>
<td>• Conferences</td>
<td>• Journal clubs</td>
</tr>
<tr>
<td></td>
<td>• Workshops</td>
<td>• Policy dialogues</td>
</tr>
<tr>
<td></td>
<td>• Policy briefs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Evidence summaries</td>
<td></td>
</tr>
</tbody>
</table>
Systematic Reviews

• Review of clearly formulated question that uses systematic and explicit methods to identify, select, critically appraise, extract, and analyze data from relevant research

• May or may not include meta-analysis
Systematic Review Examples

The Effect of Hazard Analysis Critical Control Point Programs on Microbial Contamination of Carcasses in Abattoirs: A Systematic Review of Published Data

FOODBORNE PATHOGENS AND DISEASE
Barbara Wilhelmi,1,2 Andriana Rajo,1,3 Judy D. Greig,1 Lisa Waddell,1,2 and Janet Harris1

A systematic review/meta-analysis of primary research investigating swine, pork or pork products as a source of zoonotic hepatitis E virus

B. J. WILHELM1,2*, A. RAJIO,1,3, J. GREIG1, L. WADDELL1,2, G. TROTTIER*, A. HOUGE1, J. HARRIS1, L. N. BORDEN1, and C. PRICE1

Study name	Statistics for each study	Odds ratio and 95% CI	Relative weight
Ghaif et al., 2005 | 0.09 | 0.00-1.71 | 3.01
Phillips et al., 2003 | 1.21 | 0.35-4.15 | 17.51
Rose et al., 2002 | 1.77 | 0.10-33.06 | 3.10
Wagene, 1999 | 3.06 | 0.12-76.95 | 2.55
USDA-FSIS, 1998a | 0.84 | 0.46-1.53 | 73.82
Pooled estimate | 0.89 | 0.53-1.48 | 0.01

FIG. 2. Odds of *Salmonella* spp. contamination on beef carcasses before and after hazard analysis critical control point implementation.

Excluded (n = 156) irrelevant population or outcome (n = 137)
Foreign language (n = 137)

Excluded irrelevant study design (n = 57)
Foreign language (n = 9)
Literature review (n = 2)

Diagnostic test studies (n = 67) Part of another systematic review

Relevance screening level 1 (n = 1890)

Fig. 2. A summary of scoping study and systematic review results. Papers included in the scoping study are indicated in *italics*. Papers included in the systematic review are indicated in bold.
Stakeholder Engagement in SRs

- Ongoing interaction between researchers and end-users before, during or after a SR

Adapted from Keown et al., 2008
Stakeholder Engagement Examples

• Two ongoing scoping studies
 1) To evaluate pathways of human exposure to *Mycobacterium avium* ssp. *Paratuberculosis* (Lead: Lisa Waddell)
 2) To evaluate the potential public health risks of emerging zoonotic viruses in pigs and pork (Lead: Barbara Wilhelm)

• Diverse stakeholder committees
 – 3-4 conference calls during study

• Component of “Developing capacity for KTT” grant (Co-lead: Mai Pham)
Evidence Summaries

• Policy-makers prefer research evidence to be presented in a graded entry format (e.g. 1:3:25)

• 1- and 3-page summary sheets in development for published SRs in agri-food
 – 1 page of key messages
 – 3 page contextual summary
 – 25 page full report
Nothing New or a New Science?

• Many KTT elements have always been in place
 – KTT as a “new” science is aiming to formalize these methods and improve evidence-informed decision-making

• Several promising KTT methods exist, but their effectiveness and usefulness needs to be evaluated

• There is a need for:
 – Stronger researcher and knowledge user linkages
 – Cultural and organizational change
 – Genuine support, leadership, and commitment from all sides
Acknowledgements

• Scott McEwen, Judy Greig, Mai Pham, Lisa Waddell, Barbara Marshall, Katarina Pintar, Kate Thomas, Javier Sanchez, Andrew Papadopoulos

• Agri-Food and Rural Link KTT Funding
Questions?