Patterns and causes of oviposition in monarch butterflies: implications for milkweed restoration

by

Grace Pitman

A Thesis
presented to
The University of Guelph

In partial fulfillment of requirements
for the degree of
Master of Science
in
Integrative Biology

Guelph, Ontario, Canada

© Grace Pitman, May, 2017
ABSTRACT

PATTERNS AND CAUSES OF OVIPOSITION IN MONARCH BUTTERFLIES: IMPLICATIONS FOR MILKWEED RESTORATION

Grace Pitman
University of Guelph, 2017

Advisor: D. Ryan Norris

Effective habitat restoration requires an understanding of species habitat preferences and the associated mechanisms driving those preferences. We examined the patterns and causes of oviposition preference in the monarch butterfly, a rapidly declining species, in southwestern Ontario at multiple spatial scales. Oviposition preference was dependent on both the size and density of the milkweed patch, as well as landscape type. Small (<16 m²), low-density (0-2 milkweed per m²) milkweed patches in agricultural landscape had the highest egg density compared to all types of milkweed patches in non-agricultural and roadside landscapes. Medium-sized patches had the highest predator abundance. Variation in the diversity of predators and parasitoids, abundance of parasitoids, and occurrence of parasites of monarch eggs and larvae did not appear to coincide with preferred egg laying habitats. Our results have important implications for restoring milkweed as an approach to counteract monarch butterflies declines.
ACKNOWLEDGEMENTS

This work was supported by Syngenta Canada Inc. and the ENGAGE and Discovery Grants from the Natural Sciences and Engineering Council. A Wildlife Scientific Collector’s Authorization was obtained from the Ministry of Natural Resources (1079985) in order to collect monarchs. In addition, a research permit to conduct fieldwork on Nature Conservancy of Canada (NCC) land was obtained (AG-ON-2015-149612).

I would like to thank my advisor, Ryan Norris, for his substantial guidance and support to this project, and for providing this tremendous learning opportunity. I would also like to thank my advisory committee, Gard Otis and Alex Smith, for their helpful advice and support over the last two years. Tyler Flockhart provided considerable support and advice through all stages of this project.

My time during my masters was substantially enriched by the support of Norris lab mates, and WiP group members (Norris, Newman, McAdam, and Fryxell labs). I would especially like to thank my office mates, Danielle Ethier, Alex Sutton, Sam Knight, and Alana Wilcox for their friendship and unwavering support. I would like to extend my gratitude towards Brad Woodworth and Gustavo Betini who helped with analyses when all hope seemed lost.

At Bird Studies Canada I would like to thank Stuart Mackenzie, Myles Falconer, and Jon McCracken for aiding with field logistics. At the Long Point Bird Observatory I would like to thank Mark Conboy, and visiting researchers and volunteers who made my time in the field enjoyable. Fieldwork was made possible by the dedication of field assistants Anjuli Dabydeen, Aaron Drost, and Matthew Macpherson. Field volunteers, Caroline Gabani and Blair Fitz-gerald, time was greatly appreciated. I would also like to thank Ellen Richards and Kaelin Carbonetto who assisted with invertebrate predator and parasitoid identification. At Syngenta, I’d like to
thank Paul Hoekstra for providing agricultural field logistics, and Brian Woolley, Patricia Kloepfer, and Marijke Van Andel for field scouting and contacting landowners. I would also like to thank the Nature Conservancy of Canada for allowing me to conduct research on their properties and for having many properties with milkweed available.

Lastly, I would like to thank my family and friends for their endless support and encouragement, especially my parents, Toni and Robin Pitman, and Shane Carr, who never tired of me talking of monarchs and milkweed.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES ... vi

LIST OF FIGURES .. viii

INTRODUCTION .. 1

METHODS .. 6
 Study sites & experimental design .. 6
 Egg and larva monitoring ... 7
 Invertebrate predator and parasitoid abundance and diversity 8
 Parasitism of fifth instars ... 9
 Statistical analyses ... 10

RESULTS .. 12
 Egg density ... 12
 Invertebrate predator abundance and diversity ... 13
 Parasitoid abundance and diversity ... 14
 Parasitism by *Ophryocystis elektroscirrha* ... 15

DISCUSSION ... 16

REFERENCES ... 41

APPENDIX ... 59
LIST OF TABLES

Table 1. Number of monitored milkweed patches in each size category, by landscape type over 6-week periods in both 2015 and 2016.

Table 2. Parameter estimates from the top mixed effects generalized linear model (based on AIC model selection, see Table A-1) to explain egg density based on landscape type, Julian date, year, patch size, milkweed density, and patch ID. Note the intercept value represents the predicted egg density in large agricultural patches. We report 95% confidence intervals. ' * ' represents parameters that do not overlap with zero.

Table 3. Summary of the number of samples collected for invertebrate predator and parasitoid abundance and diversity sampling for each milkweed patch size and landscape type. Sampling was conducted every other week with a given patch being sampled a maximum of 3 times over the total 6-week period.

Table 4. Mean and total number (in brackets) of individual invertebrate predators and parasitoids by family per pan trap sample. * represents families that included both adults and larval stages.

Table 5. Parameter estimates from the top mixed effects generalized linear model to explain invertebrate predator abundance based on Julian date, year, patch size, and patch ID (based on AIC model selection, see Table A-2). Note the intercept value represents the predicted predator abundance in large patches. We report 95% confidence intervals. ' * ' represents parameters that do not overlap with zero.

Table 6. Parameter estimates from the top mixed effects generalized linear model to explain parasitoid abundance based on landscape type, Julian date, year, and patch ID (based on AIC model selection, see Table A-4). Note the intercept value represents the predicted predator abundance in agricultural landscapes. We report 95% confidence intervals. ' * ' represents parameters that do not overlap with zero.
Table 7. Infection rate of \textit{Ophryocystis elektroscirrha} (OE), a protozoan parasite, from adults
eclosing from collected 5th instars originating from different landscape types. The
parasite loads classified on a binary scale, with 0-3 (0-100 spores) = moderate to no
infection, and score 4-5 (>100) = heavily infected.
LIST OF FIGURES

Figure 1. Map of study area showing field site locations colour coded by landscape type and the location of the study area within Ontario, Canada (red box in the inset map).

Figure 2. Milkweed density (total number of milkweed stems divided by the total area of the patch) in patches of milkweed each landscape type (agriculture: n = 330; non-agriculture: n = 162; roadside: n = 170). Outliers not shown (see fig. A-2). Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines).

Figure 3. Predicted egg density (eggs/milkweed stem) in three landscape types (A, agriculture; B, non-agriculture; C, roadside) by patch size and milkweed density (milkweed stem/m²) predicted from parameter estimates from the top model. Adjacent to each panel figure is a photographic example of a site in each associated landscape type.

Figure 4. Invertebrate predator abundance (number of predators per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Outliers not shown (see fig. A-3). Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines).

Figure 5. Invertebrate predator diversity (number of predator families present per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Box and whiskers plots are composed of non-outlier ranges (whiskers), lower and higher quartiles (boxes) and medians (middle lines). Outliers are represented as dots.

Figure 6. Parasitoid abundance (number of parasitoids per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Outliers not shown (see fig. A-4). Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines).
Figure 7. Parasitoid diversity (number of parasitoid families present per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Box and whiskers plots are composed of non-outlier ranges (whiskers), lower and higher quartiles (boxes) and medians (middle lines). Outliers are represented as dots.
INTRODUCTION

Habitat loss is one of the leading causes of species decline and extinction worldwide (Wilcove et al. 1998; Pimm and Raven 2000; Ceballos and Ehrlich 2002; Kerr and Cihlar 2004; Venter et al. 2006). Although not applicable to all species, one way to mitigate the negative effects of habitat loss is through active habitat restoration (Kareiva and Wennergren 1995; Fahrig 1997; Wisdom et al. 2002). However, realizing optimal gains in restoring habitat requires detailed and accurate knowledge of species habitat preferences. It is well known that organisms make decisions about where to settle based on multiple spatial scales, from landscapes to microenvironments, with the organism relying on different cues to identify a suitable site (Johnson 1980). Even if it is known what type of habitat a species prefers and at what spatial scale (Åström et al. 2013; Camaclang et al. 2015; Foit et al. 2016), the spatial configuration of the habitat can also influence settlement patterns (Pulliam et al. 1992; Lewis et al. 1996; Huxel and Hastings 1999). For example, patch area (Freemark and Merriam 1986; Davis 2004; Winter et al. 2006), patch shape (Davis 2004; Weldon and Haddad 2005), connectivity (Schadt et al. 2002; O’Bien et al. 2006), fragmentation (Hunter et al. 1995; Pereboom et al. 2008), and habitat heterogeneity (Freemark and Merriam 1986; Hunter et al. 1995; Heikkinen et al. 2004) have all been shown to influence individual success (Bergin et al. 2000; Misenhelter and Rotenberry 2000; DeCesare et al. 2014) and, in some cases, settlement preferences. Additionally, the preference of a species for particular habitat or habitat feature can also depend on the larger spatial scale in which it exists (Mazerolle and Villard 1999; Boyce et al. 2003; Quevedo et al. 2006; Mayor et al. 2009). For instance, the preference of the monarch flycatcher, ‘elepaio (Chasiempis sandwichen) for ground cover measured on a fine scale (1.5 m radius), differed depending on whether the habitat was disturbed
by human activities or undisturbed (VanderWerf 1993). Knowledge of what factors can influence species habitat preferences is important for effective restoration.

The eastern North American population of monarch butterflies (Danaus plexippus L.; Lepidoptera: Danainae) has declined by 95% in the last 20 years (Brower et al. 2012) and the population is at a high risk of extirpation (Semmens et al. 2016). Butterflies of the last generation of the summer migrate up to 4000 km to the overwintering sites in central Mexico where they and congregate in massive clusters in oyamel fir (Abies religiosa) forests (Urquhart and Urquhart 1976; Brower 1996). In the spring, the same individuals migrate north to breeding grounds, mate, and over successive generations that follow, repopulate northern areas (Cockrell et al. 1993; Malcolm et al. 1993; Miller et al. 2012; Flockhart et al. 2013). Summer breeding individuals that live for 2-5 weeks travel comparatively shorter distances in search of nectar, mates, and egg-laying locations (Oberhauser 2004). Monarchs oviposit – lay their eggs – exclusively on milkweeds of the subfamily Asclepiadoideae (milkweeds), typically singly on the undersides of leaves (Urquhart, 1960) and most commonly one per plant (Zalucki and Kitching 1982a). Milkweed provides both food and a chemical defense for the developing larvae (Parson 1965; Rothschild et al. 1966).

While a number of factors have been proposed for the population decline of monarchs, recent population models have shown that monarch abundance is more sensitive to the decline of milkweed, the obligate larval host plant, on the breeding grounds compared to deforestation or rising temperatures on the overwintering grounds in Mexico (Flockhart et al. 2015; Semmens et al. 2016 but see Inamine et al. 2016). The most significant reduction of milkweed has occurred in agricultural fields due to the use of glyphosate herbicides to kill weeds (Pleasants and Oberhauser 2013). The increase in the use of glyphosate herbicides follows the adoption of
genetically modified (GM) crops, notably corn and soybean, altered to be glyphosate-tolerant (Padgette et al. 1996; Duke and Powles 2008). This has reduced the number of milkweed in North America, most severely in the central midwestern United States (Hartzler 2010; Pleasants and Oberhauser 2013; Pleasants 2017), a significant region of monarch production (Wassenaar and Hobson 1998; Oberhauser et al. 2001; Pleasants and Oberhauser 2013, Flockhart et al. 2017). For example, one study estimated that the 2.2 billion milkweeds present on the landscape in the central Midwest in 1999 had declined by almost 40% by 2014 (Pleasants 2017). Another study estimated changes in agricultural weed management in Illinois led to an estimated 68% loss of available milkweed for monarchs in the last two decades (Zaya et al. 2017). To counteract the loss of milkweed on the breeding grounds, habitats could be restored to increase the availability of egg laying sites. Thus, it is imperative to understand the causes of monarch butterfly oviposition preference in different landscapes and spatial configurations to determine the most effective restoration strategy on the breeding grounds.

To date, studies examining female preferences for oviposition sites have largely consisted of counting eggs and larvae on milkweed in agricultural and non-agricultural landscapes (Oberhauser et al. 2001; Pleasants and Oberhauser 2013; Kasten et al. 2016). Agricultural landscapes have been shown to contain a higher number of eggs per plant than non-agricultural landscapes (Oberhauser et al. 2001; Pleasants and Oberhauser 2013). Roadsides, previously categorized as non-agricultural landscape with natural areas, have been proposed as a potentially suitable area for milkweed restoration due to the abundance of roads and availability of land on road margins (Hartzler and Buhler 2000, Taylor and Shields 2000, Oberhauser et al. 2001, Hartzler 2010, Pleasants and Oberhauser 2013). However, a recent study showed that roadsides have significantly lower egg per plant densities than non-agricultural areas, which included
gardens, natural areas, pastures, and old fields (Kasten et al. 2016). There has yet to be a comprehensive study to compare all landscapes concurrently in the same region.

In addition, the mechanisms driving the oviposition preference between landscapes are not well understood. Females may prefer to oviposit in agricultural landscapes over non-agricultural landscapes and roadsides because agricultural landscapes may have fewer invertebrate predators. This pattern could arise from the use of agro-chemicals, specifically insecticides targeted to kill insects, as well as herbicides, which could reduce habitat for invertebrate predators. Conversely, females may prefer non-agricultural landscapes to oviposit due to the greater availability of nectar sources, which may lead to lower foraging times, better body condition and, ultimately, a larger number of eggs laid.

Monarch oviposition preference could also be influenced by the spatial configuration of habitat, such as the size or density of the milkweed patch. Low-density milkweed patches and single individual milkweed plants have been shown to contain a higher number of eggs per plant than high-density milkweed patches both in agricultural fields (Oberhauser et al. 2001; Pleasants and Oberhauser 2013) and in natural areas (Zalucki and Kitching 1982a, Zalucki and Suzuki 1987). However, this pattern in natural areas has only been shown in Australia where monarchs have been introduced and breed year-round in some regions, and it is not known whether the same pattern would occur in the eastern North American population in a different ecosystem containing of different milkweed species. While valuable, these studies also do not explain the possible mechanisms behind these patterns. Females may seek small milkweed patches to avoid natural enemies because large patches may be easier for predators, parasitoids, and parasites to find and could support their populations better than a smaller patch (Zalucki and Kitching 1982b). A protozoan parasite that monarchs are susceptible to is Ophryocystis elektroscirrha
(OE), which in heavily infected individuals can result in short adult lifespans, reduced body size, lower mating success and decreased flight ability (Altizer and Oberhauser 1999; De Roode et al. 2007). The occurrence of OE in monarchs has not been examined in relation to the size of the milkweed patch they inhabit. The rate of OE infection in monarchs could be higher in larger milkweed patches that are frequented by more adult butterflies, potentially increasing the spread of OE to other adults or to milkweed leaves. Investigating which features in the landscape drive oviposition selection could help guide where restoration efforts should be focused.

Here, we examined the factors that drive monarch butterfly oviposition preference by monitoring the number of eggs and larvae in different landscapes (agricultural, non-agricultural, and roadsides) in patches of milkweed of varying sizes and densities, and by measuring the abundance and diversity of invertebrate predators and parasitoids and the occurrence of the protozoan parasite, OE, in adults that emerged from collected fifth instars. Our hypotheses were considered at two spatial levels: the ‘landscape’ and ‘patch’ level. At the landscape level, following previous literature that suggests that agricultural landscape contains a higher number of eggs per plant than non-agricultural landscape (Oberhauser et al. 2001; Pleasants and Oberhauser 2013) due to lower abundance and diversity of invertebrate predators, parasites, and parasitoids, we predicted that egg densities would be higher in agricultural landscape compared to non-agricultural landscape and roadsides. Following this same hypothesis, we also predicted that invertebrate predators, parasitoids, and rate of OE infection would be lowest in agricultural landscapes and highest in non-agricultural landscapes due to reduced vegetation and use of agro-chemicals. At the patch level, prior evidence suggests that low-density patches, single and small milkweed patches, contain higher egg densities than high-density milkweed patches in both agricultural fields (Oberhauser et al. 2001; Pleasants and Oberhauser 2013) and natural areas
(Zalucki and Suzuki 1987) due to fewer predators, parasitoids, and parasites locating and breeding in small and low-density patches. Thus, we predicted that number of eggs per milkweed would be negatively related (i) to milkweed density in a patch and (ii) to patch size, as measured by monitoring milkweed patches of different sizes and densities in different landscape types. In addition, we predicted that estimated abundance and diversity of invertebrate predators and parasitoids, as well as the rate of infection of OE, would be positively related to milkweed density in a patch and to patch size.

METHODS

Study sites & experimental design

We conducted our study from Jul 13-Aug 21 2015, Jul 11-Aug 19 2016 in Norfolk, Oxford, and Brant Counties in southwestern Ontario, Canada (Fig. 1). The focal area, Norfolk County, borders the north shore of Lake Erie, which is a major migration pathway for monarchs (Gibo and Pallett 1979; Brower 1995). Study sites (n = 26 total; 2015: n = 7; 2016: n = 19) were located in one of three landscape types based on land use: agricultural crop fields (n = 8 total; 2015: n = 3; 2016: n = 5), non-agricultural fields (n = 9 total; 2015: n = 1; 2016: n = 8), and roadsides (n = 9 total; 2015: n = 3; 2016: n = 6). Agricultural fields contained either corn or soybean crops and landowners were contacted through Syngenta Canada. Non-agricultural fields consisted of restored meadows (n = 6) and private gardens and lawns (n = 3). Roadside sites were stretches of public land in between roadways (county highways, regional, and municipal roads) and property borders (agricultural, natural, and residential). At each site there could be multiple milkweed patches (number of patches per site: mean = 4, range = 1-21).
Egg and larva monitoring

In both years, we counted eggs and larvae by checking and counting all milkweeds in a patch for all sites during the breeding season (Jul 11 – Aug 21). To maximize the number of observations without double counting eggs or missing larvae, milkweed patches (n = 111 total; 2015: n = 43; 2016: n = 68) were checked for eggs and larvae every 7 d (Prysby 2004). Monarch larvae hatch 4-6 d after oviposition and have five instars, with each instar lasting from 2-5 d depending on ambient temperature (Zalucki 1982). The fifth instar pupates into a chrysalis from which the adult will eclose 9-14 d later (Zalucki 1982). Larval instars were identified by measuring the head capsule and tentacle lengths with a ruler (Oberhauser and Kuda 1997). ‘Egg density’ at a given site was calculated by the number of eggs counted divided by the total number of milkweeds checked. A milkweed patch was defined by a cluster of milkweed stems that were at least 10 m away from any other surrounding milkweed stems (hereafter referred to as ‘milkweed; Matter 1996). Milkweed ‘patch size’ (m²) was measured by either using a 1 m² sampling quadrat or by walking the perimeter of the clustered stems using a Global Positioning System (GPS – GPSMAP 64st model ± 5m accuracy; Hartzler 2010). Single stems were assigned a patch size of 1m² (Hartzler and Buhler 2000). Milkweed density within a patch, referred to from here on as ‘milkweed density’, was calculated as the number of individual stems divided by the total area of the patch. To determine milkweed density in a patch, an individual milkweed stem was defined as any stem that was separated from another stem of the same milkweed species by soil (Kasten et al. 2016). The area and milkweed density of the patch was measured each time eggs were counted (every 7 d) to have an accurate representation of the patch area and milkweed density at the time of oviposition because milkweed plants may have emerged or died over time.
Patch size was recorded as a continuous variable but there was some evidence that some landscape categories had mostly small (e.g. agriculture) or large (e.g. non-agriculture) patch sizes (Figure A-1). To capture this variation in patch area across landscapes we conducted an initial analysis to determine discrete patch size categories to ensure that we had sufficient sample sizes for each landscape. To do so, we used a GLMM to explain egg density using Julian date, year (2015, 2016), and landscape type (agricultural, non-agricultural, roadside), which included the number of plants checked as an offset. Patch ID was included as a random effect because the same patches were checked each week over the breeding season. The model was then iterated to cycle through all possible patch area combinations among three patch sizes (small, medium and large). We recorded the AIC (Akaike Information Criterion; Burnham and Anderson, 2002) value of each model iteration and then used the size categories reported in the model with the lowest AIC value. From this preliminary analysis, the patch size categories were determined to be ‘small’ 1-15 m², ‘medium’ 16-28 m², and ‘large’ 29-472 m² and were used in all further statistical models (Table 1; see Statistical Analysis, below).

Invertebrate predator and parasitoid abundance and diversity

The abundance of invertebrate predators and parasitoids was estimated using pan traps that were placed inside 86 (2015: n = 18; 2016: n = 68) of 111 monitored milkweed patches. Standard yellow insect pan traps were used because they have been shown to attract the widest diversity of insects (Kirk 1984) and monarch eggs and larvae are known to be subject to an array of invertebrate predators and parasitoids (Oberhauser et al. 2015). Predators include lacewing larvae (Chrysopidae; Oberhauser et al. 2015), lady beetles (Coccinellidae; Koch et al. 2003; Koch et al. 2005), true bugs (Hemiptera; Zalucki and Kitching 1982b; De Anda and Oberhauser 2015), ants (Formicidae; Calvert 2004; Prysby 2004) and paper wasps (Vespidae; Rayor 2004;
Oberhauser et al. 2015). Monarchs are also susceptible to parasitism by parasitoid Hymenoptera (Oberhauser et al. 2015; Stenoien et al. 2015) and tachinid flies (Tachinidae; Arnaud 1978; Borkin 1982; Oberhauser et al. 2012). The traps were placed such that they were flush with the soil surface and filled halfway with a solution made with 4 teaspoons of salt and 5 drops of unscented dishwashing detergent per litre of water. Pan traps were placed in a patch for 48 hrs, then reinstalled every week in 2015 or every other week in 2016. Data collected in 2015 were censored to only include samples from every other week to be consistent with 2016 sampling. The contents of each pan trap were strained, rinsed, and put into a glass vial containing 75% ethanol. All invertebrates were identified to family level or below in the laboratory using a microscope at 35 X and dichotomous keys (Triplehorn 2005; Marshall 2007; Marshall 2012).

Parasitism of fifth instars

To evaluate the occurrence of parasitism by tachinid flies, parasitoid wasps, and the protozoan parasite, *Ophryocystis elektroscirrha* (OE), fifth instars from monitored patches were collected and reared until eclosion (n = 106 total; 2015: n = 45; 2016: n = 61). OE can be spread by vertical transmission from female to offspring with spores on the surface of the egg capsule or milkweed leaves being ingested by the emerging larvae (McLauglin and Myers 1970; Leong et al. 1997). Additionally, OE can spread by horizontal transmission between adults during mating or other interactions such as on flowers or roosting (Altizer and Oberhauser 1999). Spores must be ingested by the host to cause new infections (Leong et al. 1997). To minimize the transfer of spores between larvae, we followed the sampling procedure outlined by Project Monarch Health (University of Georgia; http://monarchparasites.org). Each larva was kept in an individual plastic container with mesh fabric held in place with rubber bands as a lid. Enclosures were cleaned daily by removing frass and old milkweed leaves. The containers were cleaned using a 20%
chlorine bleach-water solution. Larvae were given fresh milkweed daily with a moist paper towel placed on the bottom of the enclosure to reduce dehydration of leaves. Milkweed leaves were obtained from non-monitored milkweed patches and soaked in 10% chlorine bleach-water solution for 20 min followed by rinsing and soaking for another 20 minutes in water prior to being given to larvae to kill OE spores that may have been on the leaves.

Eclosed adults were tested for OE ten hours or more after emergence. Following previous studies (Altizer et al. 2000; Satterfield et al. 2015; Altizer et al. 2015), OE spores were collected using a clear mailing sticker (2.54 cm diameter) wrapped around the sides of the abdomen and removed and then placed on a white index card. Spores were viewed and counted using a microscope at 65 X. Samples were assigned to parasite load classes according to the following ordinal scale: 0: no spores, 1: one spore, 2: 2-20 spores, 3: 21-100, 4: 101-1000 spores, 5: > 1000 spores (Altizer et al. 2000). Following previous studies (Altizer et al. 2000; Bartel et al. 2011; Satterfield et al. 2015; Altizer et al. 2015), these 6 parasite load classifications were then further generalized to a binary scale, with 0-3 = ‘moderate to no infection’, and 4-5 = ‘heavily infected’.

Chrysalises that appeared abnormal and deceased were kept for an additional 7 d past typical emergence date to check for presence of emerging parasitoids. Larvae that did not eclose properly or died prior to eclosure were frozen and any emerged parasitoids were put into glass vials containing 75% ethanol.

Statistical analyses

To understand the factors that drive monarch butterfly oviposition preference, a generalized mixed-effects Poisson model was fitted using maximum likelihood (Laplace approximation) through the ‘glmer’ function in the package lme4 (Bates et al. 2015) in R v. 3.3-1 (R Development Core Team 2017). Because the response variable, egg count, was dependent upon
the number of milkweed monitored, an offset of the number of milkweed monitored in the patch was included in the model such that fixed-effects parameter estimates were scaled on a per milkweed basis. Julian date, year (2015, 2016), landscape type (agriculture, non-agricultural, roadside), patch size (small, medium, large), and milkweed density were all included as fixed-effects. We included patch ID as a random effect because patches were checked each week over the breeding season. A two-way interaction between landscape type and patch size was also included to account for the possibility that the effect of patch size on the number of eggs per milkweed differed by landscape type. Significance of fixed effects was assessed using type III ANOVA with Wald chi-square tests (Bolker et al. 2009). The model evaluation approach used for all models was a backwards model selection based on a priori hypotheses to select the best fitting model using Akaike Information Criterion (AIC) values (Burnham and Anderson, 2002). Parameter estimates from the top model were used to predict the egg density across landscape type, patch size, and milkweed density to inform land managers of the most effective planting strategy depending on the site location and milkweed distribution.

To assess the effect of abundance and diversity of invertebrate predators and parasitoids on monarch oviposition, we performed four separate generalized mixed-effects Poisson models fitted using maximum likelihood (Laplace approximation) through the ‘glmer’ function in the package lme4 (Bates et al. 2015) in R v. 3.3-1 (R Development Core Team 2017). Firstly, a model was used to explain the abundance of invertebrate predators (the number of predators present per trap per sampling period), and a second model to explain the diversity of invertebrate predators (the number of individual families present per trap per sampling period). Additionally, a model was used to explain the abundance of parasitoids and a final model to predict the diversity of parasitoids. Julian date, year (2015, 2016), landscape type (agriculture, non-
agricultural, roadside), patch size (small, medium, large), and milkweed density were all included as fixed-effects in all models. We included patch ID as a random effect because the same patches were sampled every other week over the breeding season. Significance of fixed effects was assessed using type II ANOVA with Wald chi-square tests (Bolker et al. 2009).

To understand the consequences of oviposition in regards to OE parasitism, a binomial generalized linear model (GLM) was used to predict the binary response variable, OE infection status (moderate to no infection/heavily infected) of collected fifth instars. Julian date, year (2015, 2016), landscape type (agriculture, non-agricultural, roadside), patch size (small, medium, large), and milkweed density were all included as fixed-effects.

RESULTS

Egg density

A total of 30,069 milkweeds were counted and checked for monarch eggs over two years (2015: n = 6,526; 2016: n = 23,543). Monitored milkweed patches were distributed between landscape types with agricultural landscape having the most ‘small’ patches (< 16 m²) and the fewest ‘large’ patches (> 28 m²), while the opposite was found in roadside landscape (Table 1).

Milkweed density in a patch was 2.7 ± 5.3 milkweed/m² (mean ± SD) (range = 0.1 – 58.0 milkweeds/m²) across all landscapes with agricultural landscape having the highest average milkweed density (3.6 ± 7.3 milkweed/m²; $\chi^2 = 6540$, df = 2, $p = < 0.0001$) (Fig. 2).

From the monitored milkweed patches, a total of 1,988 eggs were counted over two years (2015: n = 1,071; 2016: n = 917). Although eggs were laid in all landscape types, there were no eggs counted in 21 patches (19%) (2015: n = 5; 2016: n = 16). Egg density, the number of eggs per milkweed in a given patch, was 0.1 ± 0.4 (max. = 4) across all landscapes (Fig. A-1).
The best supported generalized mixed-effects Poisson model for egg density was the global model that included Julian date, year, landscape type, milkweed density, patch size, and the interaction between landscape type and patch size (Table A-1). All fixed effects were significant predictors of egg density (Table 2). Egg density tended to increase over the breeding season and was higher in 2015 compared to 2016. Agricultural landscape milkweed patches had significantly higher egg densities compared to roadside landscape patches. However, milkweed patches in non-agricultural landscape did not differ significantly from agricultural landscape in predicting egg density. Small milkweed patches (<16 m²) had higher egg density than medium patches (16-28 m²) and large patches (> 28 m²). As expected, egg density decreased as milkweed density increased (Fig.3). In this model, there was also a significant negative interaction between landscape type and patch size suggesting that the effect of patch size on egg density differed by landscape type (Fig.3). In agricultural landscapes, small patches had the highest egg density followed by medium patches and lastly large patches (Fig.3). In non-agricultural landscapes, medium patches tended to have fewer eggs per milkweed than small and large patches (Fig. 3). In contrast, in roadside landscape, more eggs were laid per milkweed in medium patches than small patches, with fewest eggs laid in large patches (Fig. 3).

Invertebrate predator abundance and diversity

From the 86 patches monitored (2015: n = 18; 2016: n = 68), 3,167 invertebrate predators were identified and counted (Table 3). The abundance of invertebrate predators (count of predators per trap of predators per sampling period) was 12.9 ± 26.1 across all landscapes. Collectively, 15 different invertebrate predator families were sampled (max. per sample = 5) and the diversity of invertebrate predators was 1.9 ± 1.1 across all landscapes types (Table 4).

The best model predicting invertebrate predator abundance included Julian date, year,
and patch size but not landscape type (Table A-2). Predator abundance tended to decreased over the breeding period (Table 5) and medium milkweed patches (16 – 28 m²) tended to have higher predator abundance compared to small (< 16 m²) and large patches (> 28 m²) (Fig. 4). Although year was in the top model, it was not a significant predictor of invertebrate abundance.

There was not a clear top model for predator diversity (Table A-3). All models tested were within 6 AIC of the best-fitting model. We conducted full model averaging on the three top models (ΔAIC < 2). Predator diversity decreased over the breeding season (β ± SE: -0.0084 ± 0.0039, Z = -2.17, 95% CI: [-0.016, -0.00095]). However, the 95% confidence interval of year (β ± SE: -0.055 ± 0.13, Z = 0.43, 95% CI: [-0.19, 0.31]), landscape type (nonagricultural β ± SE: -0.038 ± 0.11, Z = 0.34, 95% CI: [-0.18, 0.26]; roadside β ± SE: -0.15 ± 0.12, Z = -1.26, 95% CI: [-0.38, 0.081]), milkweed density (β ± SE: -0.00024 ± 0.013, Z = -0.19, 95% CI: [-0.025, -0.025]), and patch size (small β ± SE: 0.16 ± 0.12, Z = 1.32, 95% CI: [-0.0075, 0.42]; medium β ± SE: 0.15 ± 0.15, Z = 0.97, 95% CI: [-0.15, 0.46]) overlapped with zero (Fig. 5).

Parasitoid abundance and diversity

The same 86 monitored patches (2015: n = 18; 2016: n = 68) were used to sample parasitoid abundance and diversity (Table 3). From the collected samples, 704 parasitoids were identified and counted (Table 4). The abundance of parasitoids (count of parasitoids per trap per sampling period) was 2.9 ± 5.2 across all landscapes. Collectively, four different parasitoid families were present in the samples (max. per sample = 2). The diversity of parasitoids was 0.96 ± 0.60 per trap across all landscape types.

The best model to explain parasitoid abundance included year and landscape type, and excluded milkweed density and patch size (Table A-4). Year and landscape type were significant predictors of parasitoid abundance. Parasitoid abundance was greater in 2015 than 2016, and
roadside landscapes had a lower abundance of parasitoids compared to agricultural and non-agricultural landscapes (Table 6; Fig. 6).

There was not a clear top model for parasitoid diversity (Table A-5). All models tested were within 6 AIC of the best-fitting model. We conducted full model averaging on the three top models (ΔAIC < 2). However, the 95% confidence interval of Julian date ($\beta \pm SE$: -0.0059 ± 0.0056, $Z = 1.07, 95\% CI: [-0.0048, 0.017]$), year ($\beta \pm SE$: -0.056 ± 0.16, $Z = -0.35, 95\% CI: [-0.36, 0.27]$), landscape type (non-agricultural $\beta \pm SE$: -0.040 ± 0.16, $Z = -0.24, 95\% CI: [-0.36, 0.28]$; roadside $\beta \pm SE$: -0.28 ± 0.18, $Z = -1.58, 95\% CI: [-0.63, 0.063]$), patch size (small $\beta \pm SE$: 0.060 ± 0.19, $Z = 0.32, 95\% CI: [-0.30, 0.44]$; medium $\beta \pm SE$: 0.17 ± 0.22, $Z = 0.76, 95\% CI: [-0.26, 0.60]$), and milkweed density ($\beta \pm SE$: 0.016 ± 0.013, $Z = 1.26, 95\% CI: [-0.013, 0.037]$) overlapped with zero (Fig. 7).

Parasitism by Ophryocystis elektroscirrha

From the 106 fifth instars collected, 18 (2015: n = 11; 2016: n = 7) were heavily infected (>100 spores) with the protozoan parasite, OE (Table 7). Two of the collected fifth instars were parasitized by tachinid flies and, therefore, were not able to be tested for OE parasitism. The highest infection rate was found in roadside landscapes (Table 7). The best fitting binomial generalized linear model, based on AIC comparisons, included Julian date, year, landscape type, and milkweed density as predictors of OE (Table A-6). However, the confidence interval of Julian date ($\beta \pm SE$: -0.0047 ± 0.024, $Z = 0.20, 95\% CI: [-0.040, 0.054]$), year ($\beta \pm SE$: -0.53 ± 0.56, $Z = -0.97, 95\% CI: [-1.65, 0.57]$), landscape type (non-agricultural $\beta \pm SE$: -0.96 ± 1.17, $Z = -0.83, 95\% CI: [-4.00, 1.02]$; roadside $\beta \pm SE$: 0.82 ± 0.66, $Z = 1.26, 95\% CI: [-0.49, 2.12]$),
and milkweed density ($\beta \pm SE: -0.26 \pm 0.19, Z = -1.39, 95\% CI: [-0.74, 0.024]$) overlapped with zero.

DISCUSSION

Our study is the first to examine monarch butterfly preference and consequences of oviposition on multiple spatial scales, which has important implications for restoration and management decisions related to this declining species. We provide evidence that monarch butterfly oviposition patterns are related to both the size and density of the milkweed patch, as well as the landscape in which the milkweed patches reside. Small ($<16 \text{ m}^2$) and low-density (0-2 milkweed stems per m^2) milkweed patches in agricultural landscapes had the highest egg density compared to larger milkweed patches and higher milkweed densities found in non-agricultural and roadside landscapes. Consistent with previous literature (Zalucki and Kitching 1982a; Zalucki 1987; Pleasants and Oberhauser 2013; Stenoien et al. 2016), we also found that low-density milkweed patches had greater egg density across all landscape types and patch sizes than high-density milkweed patches. In two of the three landscape types (agriculture and non-agriculture), we found that predator abundance was highest in patch sizes where egg density was lowest. In contrast, we found no support for predator diversity or parasitoid abundance/diversity driving egg-laying patterns by patch size. Furthermore, we did not find evidence that rates of OE parasitism varied by landscape type, milkweed density, or patch size.

Our results have important implications for restoration of milkweeds for conserving monarch populations. Given the option, agricultural fields appear to be the most effective landscape to plant and maintain milkweeds to attract egg-laying females. Milkweed stems in agricultural landscape sampled in our Ontario-based study averaged 3.5 times more monarch
eggs than milkweed stems in non-agricultural landscape, comparable but slightly lower than that found by Pleasants and Oberhauser (2013) in Midwest US. One important implication, therefore, is that it will be vital to develop incentive programs working with landowners to plant and maintain milkweeds in agricultural landscapes. Programs for milkweed restoration could be in conducted in collaboration with other pollinator initiatives or ecosystem service programs in agricultural landscapes that focus on increasing nectar availability (e.g. Alternative Land Use Service, ALUS; Conservation Reserve Program, CRP). Ideal areas for planting milkweed patches could be in crop margins, field corners, or other marginalized land within close proximity to crop fields. Consideration should be made for areas where milkweed will not be trampled by machinery or livestock or sprayed by herbicides during the breeding season.

If milkweed restoration in agricultural landscapes is difficult to implement or not feasible, our results suggest that non-agricultural landscapes may be the next most effective landscape for attracting egg-laying females rather than roadsides. Non-agricultural milkweed patches are commonly large as they are left to naturalize and are not subject to pesticides or vegetation management. Large milkweed patches may be particularly important to consider for restoration because they tend to house a higher density of male monarchs searching for mates. Previous work has provided evidence of a male-biased sex ratio around large, high-density milkweed patches, while showing that females tend to reside outside of these patches (Zalucki and Kitching 1984; Bull et al. 1985). Small milkweed patches in non-agricultural landscapes, such as in gardens and urban parks, while not as preferred as agricultural patches can still provide usable egg-laying habitat and are usually in close proximity to other nectar sources that can provide energy for adults. Restoration efforts in urban areas include registering and certifying monarch waystations (Monarch Watch, University of Kansas,
www.monarchwatch.org), to encourage creating habitat that includes milkweeds and nectar sources to support monarchs both during the breeding season and migration. Additionally, the new ‘Butterflyway Project’, organized by the David Suzuki Foundation (www.butterflyway.davidsuzuki.org), works on creating a network of wildflower patches across large urban cities in Canada.

Despite the fact that roadside habitat is abundant throughout North America, milkweed patches in this landscape received half the amount of eggs of what was laid in agricultural landscape patches. One possible reason for this could be that females are often not reaching roadside milkweed because of high mortality from vehicle collisions (Munguira and Thomas 1992; McKenna et al. 2001; Ries et al. 2001). Roadside habitats can also be detrimental for developing larvae in the form of heavy metal contamination from cars that can leech into the soil and vegetation (Lagerweff and Specht 1970; Scanlon 1987), mowing milkweed that contain eggs and larvae, and road salt runoff (Snell-Rood et al. 2014). Road salt runoff can affect neural investment that result in larger eyes in female monarchs and increased muscle mass in male monarchs (Snell-Rood et al. 2014). Monarchs reared on roadside-collected milkweed leaves also had lower survival than monarchs reared on prairie-collected milkweed leaves (Snell-Rood et al. 2014). Thus, even if some roadsides are appealing to females for oviposition due to availability of host plants, nectar sources, and sodium, they could result in decreased survival of larvae. In this sense, it is possible that some roadsides could act as ecological traps (Dwernychuk and Boag 1972; Ries et al. 2001; Battin 2004). We have noted multiple factors that affect monarch persistence in roadside habitats, however it is not well understood from an evolutionary perspective how these effects may drive natural selection and the resulting consequences on the
population (Brady and Richardson 2017). These factors, combined with our results, suggest that investing heavily in milkweed restoration in roadside habitats should be met with some caution.

While the overall differences in oviposition preference between landscape types are consistent with previous literature reporting that monarchs lay more eggs in agricultural areas (Oberhauser et al. 2001; Pleasants and Oberhauser 2013), it is still unclear as to why agricultural landscapes are more attractive for oviposition compared to other landscapes. One explanation for why agricultural landscapes are attractive could be the use of fertilizer, which would run off into areas along field margins where milkweeds are growing. Host plants with higher nitrogen levels have been shown to increase development in some species of Lepidoptera (Slansky and Feeny 1977; Tabashnik 1982; Taylor 1984), and increase larval survival (Myers and Post 1981; Myers 1985; Clancy 1992). There is some equivocal evidence that plant nitrogen content could also influence oviposition preference in other species of Lepidoptera. Cabbage white butterflies (Pieris rapae) prefer to oviposit on plants that have higher nitrogen content (Myers 1985). In contrast, neither copper butterflies (Lycaena tityrus; Fischer and Fiedler 2000) nor monarchs in Australia (Oyeyele and Zalucki 1990) showed oviposition preference for plants with higher nitrogen.

Another proximate factor driving oviposition preference in agricultural landscapes could be that the chemical signals used to locate milkweeds are easier for females to distinguish in monoculture fields versus milkweed that are embedded in more complex plant communities (Pleasants and Oberhauser 2013). Using chemical receptors on antenna (Thorsteinson 1960), insects recognize host plants by comparing ratios of host plant volatiles against the volatiles of surrounding plants (Bruce et al. 2005). Thus, detection of a host plant is thought to be more difficult when surrounded by a high diversity of other plants (Tahvanainen and Root 1972; Finch
and Collier 2000). However, if the surrounding plants are all one species, as in a monoculture crop field, this could make a milkweed’s chemical signal easier to detect by females seeking to lay eggs.

While monarch egg density was higher in agricultural landscapes, our results also suggest that the effect of patch size on egg density varied across different landscape types. In both agricultural and non-agricultural landscapes, medium milkweed patches contained lower egg density than small or large patches. A mechanism that we did not test that could explain this pattern is male avoidance. The number of males in a habitat has been shown to be negatively related to the number of eggs per plant in Australia (Zalucki and Suzuki 1987). Males tend to frequent larger milkweed patches (Zalucki and Kitching 1984; Bull et al. 1985). However, females are frequently harassed by males; they experience forced copulations from mature males (Oberhauser and Frey 1999) as well as highly aggressive behaviour from juvenile males (Zalucki and Suzuki 1987). Once a female has mated, she avoids other males and searches for egg laying locations.

In contrast to agricultural and non-agricultural landscapes, egg density in roadside landscapes was highest in medium-sized milkweed patches. One explanation for this surprising result could be that small roadside patches are mowed more frequently than larger roadside patches, which could result in failing to locate eggs if the patch was mowed in between visits. Small patches could have also be harder to locate in roadside landscape, as vegetation is restricted between the edges of the roads and property borders causing vegetation to grow in closer proximity to other plants. Alternatively, females may avoid small patches in roadside landscapes if they contain more predators. Although not significant, we found a higher abundance of predators in small roadside patches than in medium and large roadside patches.
Despite the fact that monarchs lay more eggs in low-density milkweed patches, our results suggest that this cannot be explained by a lower abundance of predators, parasitoids, or parasites in this type of habitat. An alternative explanation could be that females are attracted to low-density milkweed patches because the quality of milkweed in these patches is higher than in high-density patches. Plants growing in high-density would likely experience increased competition for resources compared to plants growing in a low-density spatial arrangement. Plant nutrient uptake is proportional to the root length density (Reich et al. 2003; Raynaud and Leadley 2004; Craine et al. 2005), which could be restricted and reduced when growing more closely to surrounding stems. Milkweed stems of higher nutrient quality due to from growing in a lower competitive environment could be preferred by females, to provide larvae with higher quality host plants.

Although egg density was highest in agricultural milkweed patches, our results suggest this cannot be attributed to a lower abundance of invertebrate predators in agricultural landscape. In contrast to our lack of support of invertebrate predator abundance being lower in agricultural landscape, 74% of studies reviewed by Bianchi et al. (2006) showed that populations of predatory invertebrates were higher in complex, non-crop habitats compared to simplified agricultural landscapes. In the present study, we did not quantify the abundance or diversity of surrounding vegetation. However, while the abundance of predators did not differ between landscape types, it was influenced by the size of the milkweed patch and Julian date. We found that medium patches had the highest predator abundance compared to small and large patches, coinciding with medium patches having the lowest monarch egg density in both agricultural and non-agricultural landscapes.

While predator abundance was not influenced by landscape type, parasitoids were least
abundant in roadside milkweed patches in roadside milkweed patches where females laid the fewest eggs compared to agricultural and non-agricultural landscapes. An overall lower abundance of insects in roadside landscapes could be due to reduced vegetation in the landscape (Murdoch et al. 1972; Southwood et al. 1979; Lawton 1983), therefore limiting available hosts for parasitoids. Roadsides in our study area mostly consisted of planted non-native grasses (*Poa pratensis*) as well as common roadside flowering species (*e.g.* *Trifolium repens, Lotus corniculatus, Cichorium intybus*), many of which are invasive and may not support native insect species. Adult parasitoids not only need to find hosts but must also find food sources to meet their nutritional needs. Adult tachinid flies feed on a variety of substrates including flower nectar (Gilbert and Jervis 1999), hemipteran honeydew (Zoebelein 1956) and host/non-host tissue (Jervis et al. 1992). Some adult parasitoid wasps can feed on similar substrates including nectar (Lewis et al. 1998), pollen (Patt et al. 1997), and honeydew (Lee et al. 2004; Wäckers and Steppuhn 2003). Parasitoids also require a host or location for overwintering. Tachinid flies generally overwinter as larvae within the pupae of their host (Schaffner and Griswold 1934; O’Hara 1999), which would not be possible in monarchs because adults migrate south. Alternatively, tachinid flies could overwinter in a different host, soil, or leaf litter (Oberhauser et al. 2007). Parasitoid wasp larvae typically rely less on their host to overwinter as they build cocoons which fall into the soil where they pupate and eclose the following spring (Fulton 1940). We expected agricultural landscapes to have higher monarch egg density in part due to fewer parasitoids. Therefore, we would expect agricultural landscape to also not be able to support parasitoid populations because of their low plant diversity. One discrepancy between the landscapes types is frequent mowing of vegetation and spraying for invasive species in roadside landscapes.
There was no support that OE rates differed by landscape type, patch size, or milkweed density in a patch, which could be due to the overall low abundance of OE in this region and resultant low statistical power. Testing for differences in OE parasitism between habitats was limited by the number of fifth instars detected. The overall prevalence of OE is low in the eastern North American population and, therefore, requires a large sample size to be able to make inferences about differences between landscape types or habitats (Bradley and Altizer 2005). It is possible that the OE prevalence in the northern range of the eastern North American monarch population is so low that OE may not be a factor that influences egg laying in that region, but it could still be a contributing factor to oviposition preference in more southern locations.

It is important to note that conclusions drawn about the effect of patch size on egg density should be made with some caution because of the uneven distribution of patch sizes that were sampled across the landscape types. Differences in the distribution of patch sizes across landscapes was likely due to differences in vegetation structure and management practices. In non-agricultural (e.g. meadows and fields) and roadside landscapes, milkweed is commonly not managed and left to naturalize with patches growing larger over time, rendering small milkweed patches relatively uncommon in these landscapes. Conversely, large milkweed patches are rare in agricultural landscapes, which is likely due to both the use of herbicides and the widening of crop fields, which reduces field margins where milkweed commonly grows. There were also different distributions of milkweed patch density between landscape types. Non-agricultural patches tended to have lower milkweed density than agricultural and roadside patches. The difference in densities could be due to non-agricultural landscapes commonly having a greater availability of land and providing more space for milkweeds to grow compared to agricultural and roadside habitats which are often restricted by property borders and crops. While one
obvious solution to uneven distribution of patch sizes and densities between different landscape
types would be to plant specific sized patches and densities, this would be challenging to
execute. Creating patches of milkweed plants would include growing plants and transplanting
plants and waiting for multiple growing seasons for the patches to become established with a
mixture of mature and young plants. Female’s oviposition preference may be affected by the age
of the plant, but it also important to have mature plants to secure the establishment of the patch
in future growing seasons. Furthermore, establishing large (e.g. > 28 m²) milkweed patches in
agricultural landscapes might be difficult due to space restrictions.

While we have provided evidence that egg-laying preferences in monarchs are influenced
by patch size, milkweed density, and landscape type, we acknowledge that there may be
additional factors affecting female choice of sites. One of these factors could be the proximity of
milkweed patches to each other on the landscape. Using a simulated egg-laying model, Zalucki
and Lammers (2010) showed that when small milkweed patches are removed from the matrix
(the area between larger patches), search time for milkweeds increased, resulting in reduced
lifetime potential fecundity by ~20%. However, there are no empirical data to support this
hypothesis. A second factor to consider could be the quality of the milkweed plants, such as
height, age, and leaf quality. Females have been shown to prefer young plants that have newly
emerged leaves (Zalucki and Kitching 1982a), and taller plants that are closer to flowering with
intermediate levels of cardenolides (Cohen and Brower 1982; Malcolm and Brower 1986;
Oyeyele and Zalucki 1990) in a variety of milkweed species. However, the mechanism behind
these preferences for oviposition is not well understood. Bergström et al. (1995) compared plant
volatiles from new and old leaves in two milkweed species (A. syriaca, A. curassavica) and there
was no volatile unique to either leaf age class.
Although we have provided evidence for factors that influence the preference of egg-laying sites, a key question remains: do these same characteristics influence the subsequent survival of larva? It is possible that even though oviposition preference is higher in small agricultural patches, survival could be relatively low due to the use of agro-chemicals and predators. From our results the abundance of predators in agricultural landscapes was comparable to that of non-agricultural and roadside landscapes, suggesting that agricultural patches do not act as a prey refuge for monarchs. Monarchs are susceptible to many predators and have a very high mortality rate, ~88-98% during egg and early larval instars (Borkin 1982; Zalucki and Kitching 1982b; Prysby 2004; Nail et al. 2015), therefore having a significant impact on population growth. How agrochemicals, such as neonicotinoids, affect larval survival is not well understood. Neonicotinoid insecticides (e.g. clothianidin) are the most widely used class of insecticide (Goulson 2013). These compounds are water-soluble (Tomizawa and Casida 2005), allowing for uptake into plants (Krupke et al. 2012) including milkweeds (Pecenka and Lundgren 2015). Some research has suggested that monarch larvae on milkweeds in agricultural fields may be exposed to neonicotinoids (Pecenka and Lundgren 2015). It is unknown what sublethal effects neonicotinoid exposure might have on monarch behaviour during foraging and navigation. It is crucially important to understand the factors that affect larval survival in relation to habitat in order to aid in monarch population recovery.

Our study examined monarch egg-laying preferences in Ontario but it is possible that these results are not generalizable to the entire eastern North American monarch population. There are over 100 species of milkweeds in North America, with monarchs using 27 species in the genus Asclepias, and a few related genera, Cynanchum and Sarcostemma as host plants (Malcolm and Brower 1986). In our study area Asclepias syriaca, A. incarnata, and A. tuberosa
are the three milkweed species. It is possible that oviposition preference could differ depending on the milkweed species available. Additionally, because our study area is on the northern edge of the eastern North American monarch population range, fewer monarchs reach this far north during the spring and summer migration. With a higher density of monarchs further south, female preference for oviposition sites may not be as apparent simply because of higher competition for egg laying sites.

In summary, we found that monarch egg density was highest in small, low-density milkweed patches in agricultural landscape. Small milkweed patches also yielded lower invertebrate predator abundance than medium patches. Based on these findings it will be important to develop programs with landowners and other pollinator initiatives or ecosystem service programs to actively restore milkweed in agricultural landscapes. Ideal areas for planting milkweed patches are crop margins, field corners, and other marginalized land within close proximity to crop fields. Small and large patches in non-agricultural landscapes provide the next most effective landscape for attracting egg-laying females. Large patches may also be important for providing a location for male monarchs to searching for mates. Roadside patches which received half the amount of eggs compared to agricultural landscapes, may potentially pose a number of threats to monarchs; restoration should, therefore, be approached with some caution. Detailed planning and immediate action is needed to continue to help protect this vulnerable and rapidly declining species.
Table 1. Number of monitored milkweed patches in each size category, by landscape type over 6-week periods in both 2015 and 2016.

<table>
<thead>
<tr>
<th>Landscape</th>
<th>Small (< 16 m²)</th>
<th>Medium (16 - 28 m²)</th>
<th>Large (29 - 472 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>276</td>
<td>42</td>
<td>12</td>
</tr>
<tr>
<td>Non-agricultural</td>
<td>99</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>Roadside</td>
<td>65</td>
<td>39</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td>440</td>
<td>108</td>
<td>113</td>
</tr>
</tbody>
</table>
Table 2. Parameter estimates from the top mixed effects generalized linear model (based on AIC model selection, see Table A-1) to explain egg density based on landscape type, Julian date, year, patch size, milkweed density, and patch ID. Note the intercept value represents the predicted egg density in large agricultural patches. We report 95% confidence intervals. ’ * ’ represents parameters that do not overlap with zero.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate ± SE</th>
<th>z</th>
<th>95% Confidence Interval</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch ID</td>
<td></td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept *</td>
<td>-2.51 ± 0.60</td>
<td>-4.16</td>
<td>-3.73, -1.30</td>
<td></td>
</tr>
<tr>
<td>Julian Date *</td>
<td>0.22 ± 0.025</td>
<td>8.68</td>
<td>0.17, 0.26</td>
<td></td>
</tr>
<tr>
<td>Year 2016 *</td>
<td>-0.58 ± 0.12</td>
<td>-5.46</td>
<td>-0.80, -0.37</td>
<td></td>
</tr>
<tr>
<td>Non-agricultural</td>
<td>-0.13 ± 0.70</td>
<td>-0.19</td>
<td>-1.55, 1.25</td>
<td></td>
</tr>
<tr>
<td>Roadside *</td>
<td>-1.70 ± 0.66</td>
<td>-2.59</td>
<td>-3.05, -0.39</td>
<td></td>
</tr>
<tr>
<td>Small Patch</td>
<td>0.50 ± 0.62</td>
<td>0.81</td>
<td>-0.80, 1.74</td>
<td></td>
</tr>
<tr>
<td>Medium Patch *</td>
<td>-1.71 ± 0.68</td>
<td>-2.51</td>
<td>-3.14, -0.39</td>
<td></td>
</tr>
<tr>
<td>Milkweed Density *</td>
<td>-0.30 ± 0.09</td>
<td>-3.35</td>
<td>-0.48, -0.13</td>
<td></td>
</tr>
<tr>
<td>Non-agricultural: Small Patch</td>
<td>-0.51 ± 0.74</td>
<td>-0.69</td>
<td>-2.00, 0.99</td>
<td></td>
</tr>
<tr>
<td>Roadside: Small Patch</td>
<td>0.30 ± 0.74</td>
<td>0.40</td>
<td>-1.17, 1.84</td>
<td></td>
</tr>
<tr>
<td>Non-agricultural: Medium Patch</td>
<td>-0.012 ± 0.92</td>
<td>-0.013</td>
<td>-1.84, 1.88</td>
<td></td>
</tr>
<tr>
<td>Roadside: Medium Patch *</td>
<td>3.18 ± 0.77</td>
<td>4.13</td>
<td>1.41, 4.79</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Summary of the number of samples collected for invertebrate predator and parasitoid abundance and diversity sampling for each milkweed patch size and landscape type. Sampling was conducted every other week with a given patch being sampled a maximum of 3 times over the total 6-week period.

<table>
<thead>
<tr>
<th>Landscape</th>
<th>Small (≤ 16 m²)</th>
<th>Medium (16 – 28 m²)</th>
<th>Large (29 – 472 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>72</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Non-agricultural</td>
<td>50</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Roadside</td>
<td>29</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>151</td>
<td>45</td>
<td>49</td>
</tr>
</tbody>
</table>
Table 4. Mean and total number (in brackets) of individual invertebrate predators and parasitoids by family per pan trap sample. * represents families that included both adults and larval stages.

<table>
<thead>
<tr>
<th>Invertebrate Predators</th>
<th>Agriculture</th>
<th>Non-agriculture</th>
<th>Roadside</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Med.</td>
<td>Large</td>
</tr>
<tr>
<td>Formicidae</td>
<td>6 (569)</td>
<td>4.3 (55)</td>
<td>6.7 (40)</td>
</tr>
<tr>
<td>Vespidae</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Carabidae</td>
<td>1.3 (59)</td>
<td>1.1 (23)</td>
<td>1.7 (10)</td>
</tr>
<tr>
<td>Cicindelidae</td>
<td>0.07 (4)</td>
<td>0.1 (3)</td>
<td>0.7 (2)</td>
</tr>
<tr>
<td>Coccinellides*</td>
<td>0.2 (12)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Anthocoridae</td>
<td>0.05 (3)</td>
<td>0.09 (2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Reduviidae</td>
<td>0.04 (2)</td>
<td>0 (0)</td>
<td>0.3 (1)</td>
</tr>
<tr>
<td>Nabidae</td>
<td>0.05 (2)</td>
<td>0.1 (1)</td>
<td>0.3 (1)</td>
</tr>
<tr>
<td>Berytidae</td>
<td>0.02 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Phymatinae</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Asopinae*</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Chrysopidae*</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Dermaptera</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Phalangiidae</td>
<td>2.2 (117)</td>
<td>2.9 (62)</td>
<td>9.3 (28)</td>
</tr>
<tr>
<td>Schedyidae</td>
<td>0.05 (3)</td>
<td>0.1 (1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Parasitoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachinidae</td>
<td>0.2 (20)</td>
<td>0.1 (3)</td>
<td>0.7 (4)</td>
</tr>
<tr>
<td>Pteromalidae</td>
<td>0.9 (66)</td>
<td>1.8 (26)</td>
<td>0.6 (4)</td>
</tr>
<tr>
<td>Braconidae</td>
<td>0.6 (44)</td>
<td>0.9 (19)</td>
<td>0.8 (5)</td>
</tr>
<tr>
<td>Chalcididae</td>
<td>0.9 (62)</td>
<td>0.7 (15)</td>
<td>1.3 (8)</td>
</tr>
</tbody>
</table>
Table 5. Parameter estimates from the top mixed effects generalized linear model (based on AIC model selection, see Table A-2) to explain invertebrate predator abundance based on Julian date, year, patch size, and patch ID. Note the intercept value represents the predicted predator abundance in large patches. We report 95% confidence intervals. ' * ' represents parameters that do not overlap with zero.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate ± SE</th>
<th>z</th>
<th>95% Confidence Interval</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch ID</td>
<td></td>
<td></td>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept *</td>
<td>5.66 ± 0.44</td>
<td>12.98</td>
<td>4.79, 6.52</td>
<td></td>
</tr>
<tr>
<td>Julian Date *</td>
<td>-0.021 ± 0.0015</td>
<td>-14.01</td>
<td>-0.024, -0.018</td>
<td></td>
</tr>
<tr>
<td>Year 2016</td>
<td>0.32 ± 0.29</td>
<td>1.13</td>
<td>-0.24, 0.89</td>
<td></td>
</tr>
<tr>
<td>Small Patch (< 16 m²) *</td>
<td>0.45 ± 0.18</td>
<td>2.47</td>
<td>0.093, 0.81</td>
<td></td>
</tr>
<tr>
<td>Medium Patch (16-28m²) *</td>
<td>0.68 ± 0.24</td>
<td>2.96</td>
<td>0.21, 1.16</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Parameter estimates from top mixed effects generalized linear model (based on AIC model selection, see Table A-4) to explain parasitoid abundance based on landscape type, Julian date, year, and patch ID. Note the intercept value represents the predicted predator abundance in agricultural landscapes. We report 95% confidence intervals. ‘ * ’ represents parameters that do not overlap with zero.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate ± SE</th>
<th>z</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch ID</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.74 ± 0.70</td>
<td>1.06</td>
<td>-0.65, 2.12</td>
</tr>
<tr>
<td>Julian Date</td>
<td>0.0034 ± 0.0032</td>
<td>1.08</td>
<td>-0.0029, 0.0097</td>
</tr>
<tr>
<td>Year 2016 *</td>
<td>-0.59 ± 0.20</td>
<td>-3.02</td>
<td>-0.98, -0.20</td>
</tr>
<tr>
<td>Non-agricultural</td>
<td>-0.030 ± 0.18</td>
<td>-0.16</td>
<td>-0.40, 0.34</td>
</tr>
<tr>
<td>Roadside *</td>
<td>-0.55 ± 0.19</td>
<td>-2.92</td>
<td>-0.94, -0.18</td>
</tr>
</tbody>
</table>
Table 7. Infection rate of *Ophryocystis elektroscirrha* (OE), a protozoan parasite, from adults eclosing from collected 5\(^{th}\) instars originating from different landscape types. The parasite loads classified on a binary scale, with 0-3 (0-100 spores) = moderate to no infection, and score 4-5 (>100) = heavily infected.

<table>
<thead>
<tr>
<th>Landscape</th>
<th>Heavily Infected (4-5)</th>
<th>Moderate to no infection (0-3)</th>
<th>Infection rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>12</td>
<td>66</td>
<td>15%</td>
</tr>
<tr>
<td>Roadside</td>
<td>5</td>
<td>11</td>
<td>31%</td>
</tr>
<tr>
<td>Non-Agricultural</td>
<td>1</td>
<td>9</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>86</td>
<td>17%</td>
</tr>
</tbody>
</table>
Figure 1. Map of study area showing field site locations colour coded by landscape type and the location of the study area within Ontario, Canada (red box in the inset map).
Figure 2. Milkweed density (total number of milkweed stems divided by the total area of the patch) in patches of milkweed in each landscape type (agriculture: n = 330; non-agriculture: n = 162; roadside: n = 170). Outliers not shown (see fig. A-2). Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines).
Figure 3. Predicted egg density (eggs/milkweed stem) in three landscape types (A, agriculture; B, non-agriculture; C, roadside) by patch size and milkweed density (milkweed stems/m²) predicted from parameter estimates from the top model. Adjacent to each panel figure is a photographic example of a site in each associated landscape type.
Figure 4. Invertebrate predator abundance (number of predators per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Outliers not shown (see fig. A-3). Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines).
Figure 5. Invertebrate predator diversity (number of predator families present per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Box and whiskers plots are composed of non-outlier ranges (whiskers), lower and higher quartiles (boxes) and medians (middle lines). Outliers are represented as dots.
Figure 6. Parasitoid abundance (number of parasitoids per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Outliers not shown (see fig. A-4). Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines).
Figure 7. Parasitoid diversity (number of parasitoid families present per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Box and whiskers plots are composed of non-outlier ranges (whiskers), lower and higher quartiles (boxes) and medians (middle lines). Outliers are represented as dots.
REFERENCES

Goulson, D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides.

Hartzler, G., and Buhler, D. D. 2000. Occurrence of common milkweed (Asclepias syriaca) in
cropland and adjacent areas. Crop Protection 19: 363-366.

Hartzler, G. 2010. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa

landscape structure and spatial variables on the abundance of birds in an agricultural-

Hunter, J. E., Gutiérrez, R. J., and Franklin, A. B. 1995. Habitat configuration around spotted
owl sites in northwestern California. The Condor 97: 684-693.

migratory cycle of the monarch butterfly to understand its population decline. Oikos 125:
1081-1091.

Johnson, D. H. 1980. The comparison of usage and availability measurements for evaluating

Kareiva, P., and Wennergren, U. 1995. Connecting landscape patterns to ecosystem and

Kasten, K., Stenoien, C., Caldwell, W., and Oberhauser, K. 2016. Can roadside habitat lead

Pleasants, J. M. 2017. Milkweed restoration in the Midwest for monarch butterfly recovery:

 Estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to
 increase the monarch population. Insect Conservation and Diversity 10: 42-53.

Pleasants, J. M., and Oberhauser, K. S. 2013. Milkweed loss in agricultural fields because of
herbicide use: effect on the monarch butterfly population. Insect Conservation and
Diversity 6: 135-144.

Prysby, M. D. 2004. Natural enemies and survival of monarch eggs and larvae. In The monarch

case study. Ecological Applications 2:165 177.

Quevedo, M., Bañuelos, M. J., and Obeso, J. R. 2006. The decline of Cantabrain capercaillie:

 project.org/

Raynaud, X., and Leadley, P. W. 2004. Soil characteristics play a key role in modeling nutrient

Rayor, L. S. 2004. Effects of monarch larval host plant chemistry and body size on Polistes wasp
 predation. In The monarch butterfly: Biology and conservation (eds KS Oberhauser, MJ

APPENDIX

Table A-1. Results of AIC model comparisons, modeling egg density (eggs/milkweed using an offset) in response to multiple fixed predictors and random effect of patch ID. All models included in the model selection are shown (number of patches sampled = 111 total; 2015: n = 43; 2016: n = 68).

<table>
<thead>
<tr>
<th>Model</th>
<th>Fixed effect terms</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>w</th>
<th>l</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Julian date + year + landscape + patch size + milkweed density + landscape:patch size</td>
<td>2952.8</td>
<td>0.0</td>
<td>0.99</td>
<td>1.0</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Julian date + year + landscape + patch size + landscape:patch size</td>
<td>2962.5</td>
<td>9.7</td>
<td>0.01</td>
<td>0.008</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Julian date + year + landscape + patch size + milkweed density</td>
<td>3000.8</td>
<td>47.4</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Julian date + year + patch size + milkweed density</td>
<td>3002.1</td>
<td>49.3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Julian date + year + patch size</td>
<td>3008.2</td>
<td>55.4</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Julian date + year + landscape + milkweed density</td>
<td>3050.5</td>
<td>97.7</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Julian date + year + landscape</td>
<td>3054.5</td>
<td>101.7</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Julian date + year + milkweed density</td>
<td>3067.3</td>
<td>114.5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Table A-2. Results of AIC model comparisons, modeling invertebrate predator abundance in response to multiple fixed predictors and random effect of patch ID. All models included in the model selection are shown (number of patches sampled = 86 total; 2015: n = 18; 2016: n = 68).

<table>
<thead>
<tr>
<th>Model</th>
<th>Fixed effect terms</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>w</th>
<th>I</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Julian date + year + patch size</td>
<td>2869.9</td>
<td>0.0</td>
<td>0.57</td>
<td>1.0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Julian date + year + landscape type + patch size</td>
<td>2872.1</td>
<td>2.2</td>
<td>0.17</td>
<td>0.3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Julian date + year + patch size + milkweed density</td>
<td>2872.7</td>
<td>2.8</td>
<td>0.11</td>
<td>0.2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Julian date + year + landscape type + patch size + milkweed density</td>
<td>2873.2</td>
<td>3.3</td>
<td>0.09</td>
<td>0.2</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Julian date + year + milkweed density</td>
<td>2877.1</td>
<td>7.2</td>
<td>0.01</td>
<td>0.03</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Julian date + year + landscape type</td>
<td>2877.6</td>
<td>7.7</td>
<td>0.01</td>
<td>0.02</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Julian date + year + landscape type + milkweed density</td>
<td>2879.7</td>
<td>9.8</td>
<td>0.00</td>
<td>0.00</td>
<td>7</td>
</tr>
</tbody>
</table>
Table A-3. Results of AIC model comparisons, modeling invertebrate predator diversity in response to multiple fixed predictors and random effect of patch ID. All models included in the model selection are shown (number of patches sampled = 86 total; 2015: n = 18; 2016: n = 68).

<table>
<thead>
<tr>
<th>Model</th>
<th>Fixed effect terms</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>w</th>
<th>l</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Julian date + year + landscape type</td>
<td>754.8</td>
<td>0.0</td>
<td>0.29</td>
<td>1.0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Julian date + year + milkweed density</td>
<td>755.1</td>
<td>0.31</td>
<td>0.25</td>
<td>0.86</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Julian date + year + patch size</td>
<td>755.3</td>
<td>0.57</td>
<td>0.22</td>
<td>0.75</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Julian date + year + landscape type + milkweed density</td>
<td>756.9</td>
<td>2.11</td>
<td>0.10</td>
<td>0.35</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Julian date + year + milkweed density + patch size</td>
<td>757.4</td>
<td>2.67</td>
<td>0.08</td>
<td>0.26</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Julian date + year + landscape type + patch size</td>
<td>757.9</td>
<td>3.14</td>
<td>0.06</td>
<td>0.21</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Julian date + year + landscape type + patch size + milkweed density</td>
<td>760.1</td>
<td>5.29</td>
<td>0.02</td>
<td>0.07</td>
<td>9</td>
</tr>
</tbody>
</table>
Table A-4. Results of AIC model comparisons, modeling parasitoid abundance in response to multiple fixed predictors and random effect of patch ID. All models included in the model selection are shown (number of patches sampled = 86 total; 2015: n = 18; 2016: n = 68).

<table>
<thead>
<tr>
<th>Model</th>
<th>Fixed effect terms</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>w</th>
<th>l</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Julian date + year + landscape type</td>
<td>1226.7</td>
<td>0.0</td>
<td>0.45</td>
<td>1.0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Julian date + year + landscape type + patch size</td>
<td>1228.8</td>
<td>2.07</td>
<td>0.18</td>
<td>0.4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Julian date + year + patch size + milkweed density</td>
<td>1229.2</td>
<td>2.53</td>
<td>0.14</td>
<td>0.3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Julian date + year + landscape type + patch size + milkweed density</td>
<td>1229.3</td>
<td>2.64</td>
<td>0.11</td>
<td>0.3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Julian date + year + milkweed density</td>
<td>1231.1</td>
<td>4.42</td>
<td>0.04</td>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Julian date + year + landscape type</td>
<td>1232.3</td>
<td>5.66</td>
<td>0.02</td>
<td>0.06</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Julian date + year + landscape type + milkweed density</td>
<td>1233.2</td>
<td>6.51</td>
<td>0.02</td>
<td>0.04</td>
<td>5</td>
</tr>
</tbody>
</table>
Table A-5. Results of AIC model comparisons, modeling parasitoid diversity in response to multiple fixed predictors and random effect of patch ID. All models included in the model selection are shown (number of patches sampled = 86 total; 2015: n = 18; 2016: n = 68).

<table>
<thead>
<tr>
<th>Model</th>
<th>Fixed effect terms</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>w</th>
<th>l</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Julian date + year + milkweed density</td>
<td>550.9</td>
<td>0.0</td>
<td>0.31</td>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Julian date + year + landscape type + patch size</td>
<td>551.1</td>
<td>0.11</td>
<td>0.29</td>
<td>0.95</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Julian date + year + patch size + milkweed density</td>
<td>552.3</td>
<td>1.35</td>
<td>0.16</td>
<td>0.51</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Julian date + year + landscape type + patch size + milkweed density</td>
<td>553.2</td>
<td>2.24</td>
<td>0.10</td>
<td>0.33</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Julian date + year + milkweed density</td>
<td>554.2</td>
<td>3.17</td>
<td>0.06</td>
<td>0.20</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Julian date + year + landscape type</td>
<td>554.8</td>
<td>3.76</td>
<td>0.05</td>
<td>0.15</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Julian date + year + landscape type + milkweed density</td>
<td>556.0</td>
<td>5.04</td>
<td>0.03</td>
<td>0.08</td>
<td>9</td>
</tr>
</tbody>
</table>
Table A-6. Results of AIC model comparisons, modeling OE infection rate in fifth instars in response to multiple fixed predictors and random effect of patch ID. All models included in the model selection are shown (number of 5th instars sampled = 106 total; 2015: n = 45; 2016: n = 61).

<table>
<thead>
<tr>
<th>Model</th>
<th>Fixed effect terms</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>w</th>
<th>/</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Julian date + year + landscape type + milkweed density</td>
<td>105.4</td>
<td>0.0</td>
<td>0.45</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Julian date + year + milkweed density</td>
<td>107.7</td>
<td>2.17</td>
<td>0.15</td>
<td>0.34</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Julian date + year + landscape type</td>
<td>107.5</td>
<td>2.33</td>
<td>0.14</td>
<td>0.31</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Julian date + year + patch size + milkweed density</td>
<td>107.8</td>
<td>2.42</td>
<td>0.12</td>
<td>0.30</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Julian date + year + patch size</td>
<td>109.6</td>
<td>4.24</td>
<td>0.05</td>
<td>0.12</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Julian date + year + landscape type + patch size + milkweed density</td>
<td>110.0</td>
<td>4.65</td>
<td>0.04</td>
<td>0.10</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Julian date + year + landscape type + patch size</td>
<td>111.5</td>
<td>6.11</td>
<td>0.02</td>
<td>0.05</td>
<td>7</td>
</tr>
</tbody>
</table>
Figure A-1. Egg density per patch (number of eggs/number of milkweeds checked) and log-transformed patch area (m²) by landscape type.
Figure A-2. Milkweed density per patch (total number of milkweed stems divided by the total area of the patch) in each landscape type (agriculture: n = 330; non-agriculture: n = 162; roadside: n = 170). Data are the same as Fig. 2 but with outliers included. Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines). Outliers are represented as dots.
Figure A-3. Invertebrate predator abundance (number of predators per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside).

Data are the same as Fig. 4 but with outliers included. Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines). Outliers are represented as dots.
Figure A-4. Parasitoid abundance (number of parasitoids per trap sampled every other week) per each patch size and landscape type (agriculture, non-agriculture, roadside). Data are the same as Fig. 6 but with outliers included. Box and whiskers plot are composed of lower and higher quartiles (boxes), non-outlier ranges (whiskers), and medians (middle lines). Outliers are represented as dots.