Modification of the complete chicken lysozyme gene domain by poxvirus medicated gene targeting

dc.contributor.advisorGibbons, Ann
dc.contributor.authorLosos, Jan
dc.date.accessioned2021-01-26T15:14:22Z
dc.date.available2021-01-26T15:14:22Z
dc.date.copyright2001
dc.degree.departmentDepartment of Animal and Poultry Scienceen_US
dc.degree.grantorUniversity of Guelphen_US
dc.degree.nameDoctor of Philosophyen_US
dc.description.abstractThe highly recombinant environment resulting from infection of rabbit cornea cells (SIRC) with the Shope fibroma virus (SFV) has been used to mediate the precise modification of the large chicken lysozyme gene domain. A gene targeting strategy was employed as an alternative to traditional genetic engineering practices requiring extensive sequencing and restriction endonuclease information. Homologous recombination was designed to occur between target DNA maintained in a lambda vector and modified targeting DNA maintained in a plasmid. Two target phages of differing sizes, '[lambda]DIILys' (50.7 kb, with the complete 21.5 kb chicken lysozyme gene domain subcloned into a [lambda] replacement vector) and '[lambda]ZLys4.7' (45.52 kb, with a 4.7 kb 'Spe I' fragment containing the chicken lysozyme gene start codon subcloned into a phagemid), were constructed to compare efficiencies of product recovery using the same gene targeting strategy. Three gene targeting plasmids, 'pLys.Alpha', 'pLys.GFP' and ' pLys.HT', based on modifications of the lysozyme gene start and stop codon, were designed and constructed. These constructs differed in both the extent of the modification and the amount of flanking homologous lysozyme sequence. The start codon was targeted for the insertion of 'lacZ' [alpha]-complement (584 bp, 'pLys.Alpha') and GFP (971 bp, 'pLys.GFP') coding sequences, while 'pLys.HT' was designed to insert a sequence encoding a short hydrophobic pentapeptide prior to the lysozyme stop codon. Lambda and plasmid DNA were cotransfected into SFV-infected SIRC cells; concatemerized DNA (both modified and unmodified) was recovered selectively from the cells by packaging and identified using a succession of ' E. coli' host strains. Recombination efficiencies for the insertion of the 'lacZ' [alpha]-complement sequences (from 'pLys.Alpha ') into '[lambda]DIILys' and '[lambda]ZLys4.7 ' were 5.5 and 11.9%, respectively. The 'lacZ' [alpha]-complement transferred into '[lambda]DIILys' was then "knocked out" by GFP sequences (from 'pLys.GFP') in 9.5% of the recovered phages. The transfer of the hydrophobic sequences ('pLys.HT') resulted in an apparent recombination efficiency of 3%. In comparison to ' [lambda]DIILys', SFV/SIRC gene targeting of '[lambda]ZLys4.7 ' proved to be highly efficient in both levels of recombination and eventual product recovery into plasmid form. Together, these experiments suggest that poxvirus mediated recombination constitutes a routine, rapid, and remarkably efficient genetic engineering system for the precise genetic modification of large eucaryotic gene domains when compared to traditional practices.en_US
dc.identifier.urihttps://hdl.handle.net/10214/24040
dc.language.isoen
dc.publisherUniversity of Guelphen_US
dc.rights.licenseAll items in the Atrium are protected by copyright with all rights reserved unless otherwise indicated.
dc.subjectmodificationen_US
dc.subjectchicken lysozyme gene domainen_US
dc.subjectpoxvirus medicateden_US
dc.subjectgene targetingen_US
dc.titleModification of the complete chicken lysozyme gene domain by poxvirus medicated gene targetingen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Losos_Jan_PhD.pdf
Size:
11.79 MB
Format:
Adobe Portable Document Format