Investigating whole-body vibration injuries in forestry skidder operators: Combining operator vibration exposures and postures in the field with biodynamic responses in the laboratory

Thumbnail Image
Jack, Robert Joel
Journal Title
Journal ISSN
Volume Title
University of Guelph

The purpose of this thesis was to investigate potential links between trunk stiffness, vibration transmission and whole-body vibration (WBV) injuries. The investigation was comprised of field and laboratory studies. Tri-planar trunk postures, operator injury histories and 6-degree-of-freedom (DOF) vibration exposure data were collected from eight forestry skidders during normal field operations in Northern Ontario. Using this skidder posture and vibration exposure data, the laboratory investigation examined interactions between WBV exposure levels and spectra, seated trunk postures, trunk muscle activity, and trunk stiffness on the transmission of 6-DOF vibration from the seat to several levels of the spine. The field study revealed that when driving, skidder operators were exposed to vibrations with higher accelerations and lower frequency exposures while adopting the most neutral postures. When dropping-off (DOAL), picking-up (PUAL) or ploughing a load, operators were exposed to vibrations with lower accelerations and higher frequency exposures while adopting the postures furthest away from neutral. Furthermore, operators who adopted the greatest lateral trunk bending and forward flexion for the greatest percentage of time reported low-back and neck pain, however, interestingly were not exposed to the greatest exposure accelerations. Operators who complained of neck pain as a result of twisting to see the rear of the vehicle while DOAL and PAUL experienced some of the highest translational and rotational vibration exposures during those operating conditions. This suggests that WBV exposures and postures may interact to produce operator injuries. The laboratory study revealed a number of interactions between vibration exposure (magnitude, spectra and axis), posture, muscle activity, trunk stiffness, vibration transmissibility, dominant transmission frequency and spinal level. In general, experiment conditions expected to increase trunk muscle activity and stiffness typically did. In contrast, the expected increase in vibration transmissibility and dominant transmission frequency with increased muscle activity and trunk stiffness was not present under many of the simulated field conditions. Trunk muscle activity patterns necessary to maintain required trunk postures were often out of phase with input accelerations, reducing trunk stiffness and increasing transmissibility. These results are contrary to findings from previous studies thus bringing into question the appropriateness of literature based vibration exposure guidelines.

Whole-body vibration, 6-degree-of-freedom, transmissibility, dynamic stiffness, dominant transmission frequency, field exposure spectra, field acceleration levels, forestry skidders